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Abstract. Numerical and theoretical results of the natural transition in a plane Poiseuille flow were obtained in this work.
Here the natural transition scenario was described by wavesmodulated in streamwise and spanwise directions. The
natural transition is often studied in boundary layers, butthe analysis in a parallel flow allows the use of the Reynolds
number as a control parameter. Direct numerical simulationof the incompressible three-dimensional Navier-Stokes
equations in a vorticity-velocity formulation was performed using numerical schemes with high order of accuracy. As
the flow was parallel, a temporal analysis was considered. Two different situations were adopted. First, the scenario
generated by interactions between wavepackets was investigated. Further, the isolated wavepacket was studied. The
results indicated the scenario from interactions between wavepackets being the most likely scenario, where the oblique
transition (described in literature) plays a role in natural transition and can lead to turbulent.

Keywords: Wavepacket, Numerical Simulation, High Order of Accuracy,Temporal Numerical Simulation, Plane
Poiseuille Flow

1. INTRODUCTION

Transition laminar-turbulent of fluids is a phenomenon of intense interest. In fact, prediction of laminar or turbulent
flow is extremely important for applications in the aeronautical industry. It is necessary because the friction coefficient
of the turbulent flow is much greater than that of the laminar flow. Consequently, the delay of transition from a laminar
to turbulent flow may be important for reducing the viscous drag of aircraft in flight. This fact can reduce spending fuel
and the size of aircraft. Furthermore, it increases the number of transported passengers number and the gain of airlines,
(Joslin, 1998; Green, 2002; Boiko et al., 2002).

The flow transition occurs because the flow may be unstable forsmall perturbations. In fact, these perturbations
generate systems of waves that develop along of the flow increasing in amplitude. In practical situations, the flow transition
is called natural transition. There, the perturbations generate three-dimensional TS waves with modulation on spanwise
and streamwise directions of the flow ( three-dimensional wavepackets). In laboratory, wavepackets can be originated
by a source point in the surface of the geometry and have been indicated by literature as a good technique for mimic the
practical situation (Lele, 1992).

Due the high complexity for interpreting the natural transition, studies of simplified situations are performed. In fact,
an important part of the study of flow transition involves thenonlinear interaction at two or three waves propagating in a
boundary layer flow or plane Poiseuille flow. These simplifiedsituations lead to three classical routes for the transition,
theK−type andH−type transition and the oblique transition (Boiko et al., 2002). However, such simplified scenarios are
much less complex than the natural transition, where many waves are present. These waves are modulated in streamwise
and spanwise directions and result premature nonlinear activities (Gaster, 1978). Spikes and turbulent spots are often
present in natural transition but the classical theory cannot anticipate these phenomena. Therefore, many questions remain
regarding the relevance of these studies to natural transition. For instance, it is unknown whether such classical routes
actually occur in natural transition, whether they occur simultaneously or interact, whether there is a dominant mechanism
under some circumstances, etc.

The main proposal of this paper was to study the natural transition of the plane Poiseuille flow. The study has numerical
and theoretical nature. So, a computational program of highorder of accuracy was developed (Silva, 2008a). This code
was submitted for some verification tests using the method ofManufactured Solutions (MMS) (Silva, 2008a; Silva et al.,
2009). Also, numerical simulations and comparisons with results from the literature were performed and can be found in
Silva (2008a).

One manner to study the natural transition is assuming only the spanwise modulation. This is done introducing per-
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turbations able to generate three-dimensional wavetrainsin the flow. They result scenarios more complex than those
presented in the literature but less complex than that generated by wavepackets. The wavetrains allow only studying the
three-dimensionality of the flow. This characteristic of the flow can give important informations on the natural transition.
Medeiros (2004) studied the nonlinear regime of spanwise modulated wavetrains in a boundary layer flow. In that study,
Medeiros (2004) observed a modified oblique transition, which was a seed for the growth of theK−type transition. Silva
(2008a); Silva and Medeiros (2008) studied the nonlinear regime of spanwise modulated wavetrains in plane Poiseuille
Flow. Silva (2008a); Silva and Medeiros (2008) observed twononlinear regimes that also could be attributed to classical
scenarios. However, in plane Poiseuille flow, the nonlinearregime occurred separately for different regions of the insta-
bility diagram. In cases near the first branch of the diagram,the oblique transition was dominant for the nonlinear regime.
On the other hand, far the first branch, theK−type transition takes over. The results showed that both scenarios could be
attributed to classical scenarios described in literature. However, the nonlinear regime of wavetrains in plane Poiseuille
flow could not be similar to those results reached in Medeiros(2004). In fact, as explained above, the nonlinear regime of
the plane Poiseuille flow was dominated by classical scenarios of transition, but not in the same parameters. It is contrary
to the case boundary layer flow, where a modified oblique transition was a seed for dominance ofK−type transition.
Other differences between them were reported in Silva and Medeiros (2008).

The studies of wavetrains motivated the analysis of more complex situations, where wavepackets in the flow. Medeiros
(2006) studied the nonlinear regime of isolated wavepackets in boundary layer. The results suggested that the three
classical scenarios of transition, indicated above, can occur simultaneously. In fact, the wavepackets analysis was an
extension that performed for three-dimensional wavetrain. Despite that such behavior was much more complex than
the wavetrains, Medeiros (2006) observed the presence of each classical scenario of transition in different stages of the
nonlinear regime. Firstly, a modified oblique transition was observed. This first nonlinear stage was a seed to the nonlinear
second stage, which was dominated byK−type transition. It was similar to the results reaching in Medeiros (2004).
However, it was possible to identify a third nonlinear stage, more advanced, where theH−type transition dominated the
process.

Similar studies, but in plane Poiseuille flow, were performed in this paper. Here, two different scenarios for transition
were identified. One scenario was resulted from interactions between wavepackets. Another scenario was resulted from
the evolution of isolated wavepackets. The results suggested that the first scenario may be the most relevant scenario for
natural transition because it is often present in practicalsituations.

The current paper is presented as follows. In section 2 governing equations and boundary conditions for the physical
problem in question, are shown. In this same section, a fast explanation for the adopted numerical scheme is presented.
Choice of the initial conditions and parameters are explained in section 3. Section 4 presents results of these studies.Final
remarks are presented in the section 5.

2. GOVERNING EQUATIONS, BOUNDARY CONDITIONS AND NUMERICAL METHOD

The governing equations describe an incompressible and three-dimensional flow between two plates. In this paper,
the governing equations were written in a vorticity-velocity formulation, where the Navier/Stokes equations are usedfor
transport of vorticity~ω in the interior of the domain, as follow:

∂~ω

∂t
= (~ω · ∇)~u − ~u · ∇~ω +

1

Re
∇2~ω, (1)

where the components of~ω are:

ωx =
∂v

∂z
−

∂w

∂y
, ωy =

∂w

∂x
−

∂u

∂z
, ωz =

∂u

∂y
−

∂v

∂x
. (2)

From the definition of vorticity, Eq. (2), and using the fact that both velocity and vorticity vector fields are solenoidal,
namely,

∇ · ~u = 0, ∇ · ~ω = 0, (3)

one obtains the Poisson equation for the velocity field as follow

∇2~u = −∇× ~ω. (4)

A periodic boundary condition was adopted in both streamwise and spanwise directions (x andz−directions). For
the wall normal direction (y−direction), non-slip and impermeability (u = v = w = 0 at the walls ) conditions were
imposed. The flow geometry is presented in Fig. 1.

As the flow was parallel, a temporal analysis was considered.The equations cited above were rewritten to the Fourier
space and solved using numerical schemes with mixed high order of accuracy. In fact, for streamwise and spanwise
directions of the flow, the discretization of the equations was performed using pseudo-spectral methods. For the normal
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Figure 1. Schematic diagram of the physical system.

direction of the flow, mixed high-order compact finite difference schemes were used. The temporal integration was
performed with a Runge-Kutta method of4th order of accuracy except to mean flow distortion calculations, where Runge-
Kutta of the4th order of accuracy and Crank Nicolson methods were necessaryto assure numerical stability. Full details
of the chosen numerical scheme can be found in (Silva, 2008a)and (Silva and Medeiros, 2008).

3. INITIAL CONDITION AND CHOOSE OF THE PARAMETERS

The initial condition was generated using the current numerical code. Initially, a disturbance was introduced into
computational domain through a technique of type blowing orsuction, as used in experimental procedures Laurien and
Kleiser (1989); Marxen (1998). In this technique, the wall normal velocityv has the following expression

v(x, y0, z, t) = A(m,n)(1 − cos(2π
t − t1
t2 − t1

))ℜ(ei(αnx+βmz+φ(n,m))), (5)

whereA(m,n), αn, βm andφ(n,m) indicate, respectively, amplitude, streamwise and spanwise wavenumbers and phase
for the disturbance(n, m). Theℜ symbol indicates the real part of the complex numberei(αnx+βmz+φ(n,m)). Here,y0

assumes the values0 and2H .
In order to avoid possible nonlinear mechanisms during the generation of the initial condition, only the linear terms

of the governing equations were simulated. The disturbance(5) converged to Tollmien-Schlichting waves (TS waves),
which are solutions of the Navier-Stokes equations in a linearized version (Boiko et al., 2002). The linearized Navier-
Stokes equations are fundamental for the Linear Stability Theory (LST), and result the Orr-Sommerfeld equation, which
was solved numerically, for example, by Mendonça (2003). Some comparisons between the propagation of TS waves,
using the current initial condition, and the LST were performed and found in Silva (2008a).

The figure shows the linear instability diagram for TS waves.
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Figure 2. Linear Stability Diagram of the two and three-dimensional TS waves.

It was plotted as streamwise wavenumber versus Reynolds number values (α × Re). Each curve indicated (neutral
curve) into the diagram corresponds to one set of TS waves. For example, the curveβ = 0 represents the two-dimensional
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TS waves that satisfy null linear growth rate. So, the two-dimensional TS waves located inside of the region limited by
curveβ = 0 increase in amplitude. On the other hand, the two-dimensional TS out of this region and not located at the
curve, the reverse situation occurs. This explanation alsocan be validated for other cases ofβ values.

In the present work, the chosen initial condition covered the discrete range of streamwise and spanwise wavenumbers
set to0 ≤ α ≤ 1.72 × −1.72 ≤ β ≤ 1.72. Each TS wave had initial amplitude set toA = 2 × 10−5. The chosen
Reynolds number was set toRe = 8000. Details about the initial condition and the motivation forchoosing it can be
found in Silva (2008a) and Silva (2008b).

Figure 3.displays the initial condition in both physical (left) and Fourier (right) spaces.
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Figure 3. Initial condition for present simulations.

Note in fig. 3.a modulation in both streamwise and spanwise directions of the wavepacket in physical space. This fact
occurred because of the use of a big number of Fourier modes applied in the flow. The initial condition was spectrum
flat, although the figure 3.(right) not indicates it. This occurred because the maximal amplitude of each Fourier mode is
located at different points in normal direction of the flow. Here, the results were recorded only from fixed value0.11H in
normal direction of the flow. More details for this explanation can be found in Silva (2008a).

A mesh refinement test was performed in the present work (not shown in this paper). It can be found in Silva (2008a).
The optimal mesh and parameters for both Fourier and physical spaces were presented in the Tab. 4.

Table 1. Parameters for the present studya.

Parameters for the Fourier Space Parameters for the physical Space
Nx 85 nx 128
α0 0.04 λx (0 , 2π/α) = (0 , 157.07)
N 201 N 201
Nz 85 nz 128
β0 0.04 λz (−2π/β , 2π/β) = (−157.07 , 157.07)

The parametersα0 andβ0 are the smallest streamwise and spanwise wavenumbers able to be simulated using this
resolution.nx, N, nz denote, respectively, the number of points used at streamwise, normal and spanwise directions for
physical space discretization.Nx andNz are numbers of Fourier modes at streamwise and spanwise directions. Note that
thex andz−directions resolution for the Fourier space was smaller than the physical space only to avoid alias error (Press
et al., 1992).

4. NUMERICAL RESULTS

Figure 4 displays the temporal evolution of theu−velocity for the three-dimensional wavepacket. The results were
obtained from the wall normal positiony = 0.11H . They were recorded in the adimentional times set to356, 763, 1144
and1450. Initially the wavepacket was strongly concentrated on thecenterline of the domain orz = 0. During the linear
regime of the flow, the wavepacket satisfied a dispersion relation (Silva, 2008a) spending a larger portion of the flow field.
However, aftert = 1114, it was possible to identify interactions between adjacentwavepackets. Such scenario is different
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Figure 4. Time evolution foru−velocity of the wavepacket in a short physical space in spanwise direction.

of a scenario where the wavepacket evolves separately. Nevertheless, it is very important because it describes a typical
situation in natural transition. In attempt to understand the nonlinear regime of the flow, an analysis of the Fourier space
was performed.

The analysis in the physical space is interesting, but the analysis in the Fourier space can give more information from
the nonlinear regime of the flow. Figure 5 displays the temporal evolution of the Fourier modes in a spectral domain. The
results were recorded in adimentional times similar to the Fig. 4. Along of temporal evolution it was indentified Fourier
modes increasing in amplitude according to Linear Instability Theory (Boiko et al., 2002). So, around oft = 1144, some
spanwise-periodic Fourier modes satisfyingα near and at the zero were presents. These Fourier modes had peaks at the
modesα = 0 andβ = −1 and1, respectively. In the nonlinear regime, such peaks had the largest amplification rate and
confirmed such scenario as dominant for this case. This scenario resembled the oblique transition.

A study of the nonlinear regime of isolated wavepacket was also done. For this objective, a numerical simulation was
performed using the same parameters indicated in table 1 except to theβ0 value, which was set to0.02. Therefore, the
length of the domain in spanwise direction was longer than that shown in fig. 4. Figure 6 displays the temporal evolution
of theu−velocity for the three-dimensional wavepacket in physicalspace. The results were also obtained from the wall
normal positiony = 0.11H . Indeed, they are recorded in adimentional times similar tofig. 4. The start of the temporal
evolution was similar to that shown in fig. 4. In fact, the wavepacket was strongly concentrated on the centerline of the
domain orz = 0 and satisfied a dispersion relation (Silva, 2008a). Around of time t = 1450 it was possible to identify
some flow distortions near centerline of the domain. These distortions may not be described by the Linear Stability Theory
and, therefore, the weakly nonlinear mechanisms may be present in the flow. Figure 7 displays the temporal evolution of
the Fourier modes in a spectral domain. The results confirmeda dispersion relation from linear regime of the flow. In
fact, it was possible to indentify the Fourier modes increasing in amplitude according to Linear Instability Theory (Boiko
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Figure 5. Time evolution of the Fourier modes for theu−velocity.Top left: (0, Nzβ) modes.Top right: (α, Nzβ) modes.
Lower: (2α, Nzβ) modes.

et al., 2002). However, around oft = 1144, other spectral modes had appeared in the spectral domain. First, spectral
modes satisfying near and at null streamwise wavenumber were present. After, other spectral ranges around ofβ = −1.2
and1.2 and severalα values were also amplified. This behavior cannot be predicted by Linear Instability Theory. They
may be increasing because of nonlinear interactions in the flow. Furthermore, they may be the cause of the distortions
near centerline of the flow, as pointed by results in the physical space, fig. 6.

Such results not pointed the dominance at isolated classical nonlinear scenario,K− orH− type instabilities or oblique
transition. In fact, it was not possible to identify some dominance by oblique modes, as occur in oblique transition.
However, although the results showed some spectral ranges of harmonics and subharmonics modes, it can be hard to
identify the dominance ofH− or K− type instabilities. Nevertheless, other explanation for this scenario is the presence
of the three scenarios simultaneously. This possibility cannot be discarded and other studies of this case should be
performed.

Another flow instability, still not mentioned in this paper,is the dominance of the flow by detuned modes (Herbert,
1988). Such scenario involves the resonant combination of symmetrical oblique modes at the near subharmonic values
amplifying another pair of symmetrical oblique waves at the’mirror streamwise wavenumber’. The fig. 7, in adimentional
time t = 1450, presents generated Fourier modes by nonlinear regime satisfying properly such concept. In fact, in
particular to positive Fourier modes, the three dimensional waves aroundα = 0.7 andβ = 1.2 may be generated by
symmetrical waves aroundα = 0.3 andα = 1.1. Similar behavior for the negative Fourier modes.

5. FINAL REMARKS

The paper reports an investigation of the natural transition in a plane Poiseuille flow. It was performed numerical
simulations of the linear and weakly nonlinear regime of wavepacket generated by perturbations imitating blowing and
suction in the flow. The wavepacket was composed of a sufficient number of TS waves to cover a discrete range of the
Fourier modes linearly unstables. Indeed, it satisfied a Reynolds number atRe = 8000 and was of very small amplitude.

Two different situations were adopted. First, a transitionscenario caused by interactions between wavepackets was
studied. This scenario is important because it is concerning to the practical situation, where different source pointsof per-
turbations generated different wavepackets that, in some moment of the flow evolution, can be interacting between them.
Further, choosing a sufficient spanwise length to the Fourier domain, the temporal evolution of an isolated wavepacket
was also investigated.
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Figure 6. Time evolution of theu−velocity of a wavepacket in the plane Poiseuille flow aty = 0.11H . Results obtained
from the physical space.

The results suggested that the nonlinear regime from interactions between wavepackets was dominated by a modified
oblique transition scenario. In fact, the nonlinear regimeof the flow was dominated by some waves satisfying streamwise
wavenumber near and at null. They presented two peaks located at two stationary spanwise-periodic waves, satisfying
α = 0 andβ = −1 and1. These modes can be resulted from nonlinear interactions between oblique waves, as occur in
oblique transition. However, the oblique transition is generated from two oblique waves only, which is different of the
present case where there were a large number of waves of different streamwise and spanwise wavenumber. There, the
present result can be assumed as a modified oblique transition.

The scenario of the isolated wavepacket in the plane Poiseuille flow had different behavior to the nonlinear regime,
when compared with the scenario of interactions between wavepackets. On the other hand, it was more complex than those
classical scenarios described in literature. In fact, although the results in physical space have suggested some distortions
around of centerline of the flow, it may not be associated withlongitudinal streaks, as occur to oblique transition. Indeed,
it was not identified some dominant oblique wave in the Fourier space. Flow distortions around of centerline was also
identified in the wavetrains in plane Posieuille flow (Silva and Medeiros, 2008). However, those flow distortions were
strongly concentrated in the centerline of the flow, different of the present result. In that work, the cause to those flow
distortions was the dominance ofK−type transition. In the present results, the flow distortions were less concentrated
around the centerline of the flow. Although the results indicated the presence of fundamental modes and subharmonics
modes in the nonlinear regime, it is difficult to identify thedominance of theK− or H− type transition. On the other
hand, the results indicated strongly characteristic of detuned modes, but this conjecture need verifications in futureworks.
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Figure 7. Time evolution of the Fourier modes for theu−velocity.Top left: (0, Nzβ) modes.Top right: (α, Nzβ) modes.
Lower: (2α, Nzβ) modes.
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