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Abstract. Hydrocyclones are classification devices which divide an ore particle flux in two directions, according to a
granulometric threshold. Thus, a hydrocyclone classifies ore particles based on size, ensuring a final product within a
required size. Many interdependent variables determine the classification efficiency, including cyclone geometry, oper-
ational conditions and characteristics of the ore to be classified. Inadequate settings of these variables result in a wide
range of problems, including final product quality reduction, energy waste and low production caused by several cycles
of comminution/classification. Optimizing hydrocyclones operation by means of computational simulation techniques re-
quires formulating a mathematical model and acquisition of experimental granulometric distribution data in their exit
fluxes. Actually, the most accurate granulometric analysis techniques present some disadvantages, mainly related with
high cost of acquisition and maintenance of sophisticated devices. On the other hand, cheaper systems are generally char-
acterized by low precision or long time to conclude the analysis. The only techniques capable to apply a morphological
analysis, today considered fundamental to mineral characterization, are image based, generally reached by microscopy.
However, morphological analysis made by humans is a hard and time consuming operation. This, in turns, tends to result
in mistakes caused by limitations on the operator technical formation and subjectivity related to the process. This work
investigates the viability of using computational image analysis techniques to achieve a granulometric profile.
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1. INTRODUCTION

The massive use of mills and hydrocyclones operating in closed circuit, in various industrial applications of huge
socio-economic relevance, gives special importance to the problem of developing mathematical models and processes
aiming at this closed circuit optimization (Lira, 1990; Kohmuench, 2000). Applications of hydrocycloning classifiers
are vast: sugar, ore, paper, rubber, petrochemical, agricultural and gas industries, civil construction and purification of
brackish water, among many others. It is generally considered that hydrocyclones bring a number of advantages over
other methods of particle classification: they do not have moving parts, do not damage the environment, they are compact
and also they have a low cost of acquisition and operation (Kapur and Meloy, 1998).

Preliminary investigations indicated that the mill-hydrocyclone circuits in important industrial sectors operate with a
particle return rate of over 25% from the hydrocyclone to the mill (Lira, 1985). By using appropriate mathematical models
for optimizing these circuits, one could reduce this inefficiency to less than 10%. This detected inefficiency leads to an
enormous and continuing reduction in productivity, with serious losses for these companies. However, the problem goes
beyond profitability reduction: since multiple milling cycles do reflect in unnecessary energy waste and overgrinding,
there is in fact the installation of environmental damages. An improvement of this order in the mineral industry will
certainlly contribute to an economic heating, with healthy social and environmental consequences.

A practical problem of optimizing the Lynch-Rao Model (Lynch and Rao, 1975) requires obtaining the experimental
granulometric distribution (Silva et al., 2004) in the hydrocyclone’s discharge and overflow. The empirical granulometric
distribution depends on the hydrocyclone’s operating characteristics, as well as on the nature and momentary material
conditions one wishes to classify. After obtaining the granulometric distribution, it is possible to calculate all necessary
constants needed to characterize the classification system, in conformity to the Lynch-Rao Model. In possession of these
constants, it is possible to perform computer simulations of the hydrocyclone under new operating conditions, which
enables its quick and low cost optimization.

Particle granulometry by laser diffraction is also used in many industrial sectors. The applicable particle range size
goes from 0.02 micrometers to 3000 micrometers. This technique is based on the fact that the laser diffraction angle
is proportional to the particles’ size. Modern equipments implement the Mie Equations (Lira, 1985), which model the
interaction between light and matter. The disadvantages of this technique include the high cost of the equipments and
the requirement imposed on knowing or on determining the refractive material’s indices and also the material and its
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surroundings absorption allotment.
The granulometric qualitative analysis by means of manual microscopy is also widely used. However, the operator

workload is strenuously, making the result prone to errors caused by factors related to fatigue, operators’ training and the
subjectivity inherent to the human visual analysis. A visual inspection by humans is particularly limited in the granu-
lometric analysis, which requires the counting of thousands of particles to obtain a statistically significant profile of the
material.

Techniques based on technologically sophisticated devices have high costs, mainly associated with equipment pur-
chasing and maintenance and also, in many cases, with problems associated by using ionizing radiation (Gamma and X
Rays). Cheaper systems, moreover, often require the use of thermally insulated drying chambers, which means more time
to obtain results, and are characterized by low accuracy in determining the granulometric profile. In almost all cases, the
analysis time depends on the granulometric range that will be analyzed and on the accuracy required. In other words, the
higher the accuracy, the more time is needed for the analysis, which can reach up to 24 hours.

Computerized image analysis, or Computer Vision, has been widely used to characterize particles’ size and mor-
phology (Wojnar, 1999). Computer Vision techniques based on Mathematical Morphology are also being increasingly
adopted in many sectors (such as pharmaceutical, biotechnology, ceramics, polymers, pigments, abrasives and explosives
industries), as they allow further investigation of relevant phenomena such as particle’s clustering tendency and impure
particles detection.

There are computerized image granulometric analysis commercial systems, as well as there are commercial systems
for mill-hydrocyclone circuit optimization based on various mathematical models, but industrial secrets prevent the tech-
niques employed to be disclosed in detail. It is to be noted that a recent study (Dur et al., 2004) showed the existence of a
good correlation between laser diffraction granulometry and computer aided image analysis in a problem of fine mineral
granulometry, but the cited work employed a non-automatic analysis method — the software is only an assistant to the
operator.

The main objective of this paper is concerned with investigating the feasibility on using computational image analysis
techniques to obtaining a granulometric profile. This method has the advantages of having no subjectivity when related to
the manual microscopy, as well as a reduced cost when compared to the laser diffraction method. The rest of the paper is
organized as follows: Section 2 gives a brief description of materials and methods used in this work; Section 3 presents
the results obtained by means of computational sieving; and Section 4 discusses and concludes the paper.

2. MATERIALS AND METHODS

This section aims to provide the materials and methods that enabled the realization of this study, as well as to substan-
tiate the concepts and tools used in it.

2.1 Classification by Sieving

One of the oldest techniques for particle classification — the separation based on the sample size or any other of
its physical attributes — and still widely used today is sieving. The preponderance of this method is due to some of
its advantages, such as low investment cost, relative ease of implementation and execution (which, in turn, requires low
technical skills), good reliability and capability to separate particles in sizes that vary from 100mm to 0.02mm (Kelly and
Spottiwood, 1982). This characteristics are usually do not associated with other classification methods.

The series of sieves used in this work was the U.S. Sieve Series, which has the following components:

Table 1. Sieves used in the experiments.

U.S. Sieve Series No4 No8 No12 No16 No20 No30 No40
Aperture (mm) 4.750 2.360 1.700 1.180 0.850 0.600 0.425

Mesh 4 8 12 16 20 30 40
U.S. Sieve Series No50 No70 No100 No140 No270 No400 —
Aperture (mm) 0.300 0.212 0.149 0.106 0.052 0.038 —

Mesh 50 70 100 140 270 400 —

2.2 Image Acquisition

Image capture for processing and analysis was performed by means of a Digital Photo Camera Canon EOS Digital SLR
Camera – Rebel XTi, of a Trinocular Stereoscopic Microscope Taimin XTB-1B and a Table Scanner Microtek ScanMaker
i800. Using these three devices, four methods of image acquisition were tested: 1. the photographic camera equipped
with a 50mm objective; 2. the photographic camera equipped with macro lens; 3. the microscope with a photographic
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camera attached to it; and 4. the table scanner.
Being in possession of such equipment and of the ore samples, the next step was to define the useful viewing range

for each device and its associations. This range was set from two items: 1. the apparatus physical feasibility; and 2. its
visualization (in other words, the field of view in the captured image).

Verify the apparatus physical feasibility consists on checking if it is possible to capture the image of a specific grain
size with a certain device or association of devices. For example, it is impossible to use the scanner to capture images of
grains larger than 1.5 mm (mesh number 12, 8 and 4) because the lid of the scanner will not closed due to the grain size.
On the other hand, the visualization has — as its determining factor — the field of view in the captured image. This field of
view is very restricted, for example, in the camera with microscope association. In this case, to capture grains larger than
600µm (meshes number 30, 20, 16, 12, 8 and 4) involves viewing only a few grains fully contained in the image, reducing
the granulometry reliability (Francus, 2005). In Table (2) one can verify the useful particle visualization range. In this
table, “P.C. 50mm” means the photographic camera with 50mm lenses, “P.C. Macro” means the photographic camera with
macro lenses e “P.C. + Mic.” means the association of the photographic camera with the microscope.

Table 2. Useful particle visualization range.

Mesh 4 8 12 16 20 30 40 50 70 100 140 270 400
P.C. 50mm x x x x x x x
P.C. Macro x x x x x x x x
P.C. + Mic. x x x x x x x
Scanner x x x x x x x x x

2.3 Morphological Operations

To extract components of interest in a digital image is one of the fundamental problems in the image processing and
analysis field (Francus, 2005). Regarding the image processing and computer vision, Mathematical Morphology is used
as a tool to extract components of an image that are useful in representing and describing its shape, such as borders (or
frontiers), circularity, convexity, ellipticity, convex hull and symmetry.

As will be seen next, the main idea of studying Mathematical Morphology is to extract information on the geometry
and topology of an unknown set (or ensemble), that is, an image, and compare this information with a well-defined
set called structuring element. The structuring element has, in general, geometric and/or topological characteristics
according to the information to be extracted in the set of interest. The structuring element is a matrix used to define the
shape and size of a neighborhood for morphological operations. The structuring element matrix has a binary support
(which means that it is composed of 0s and 1s) and can have an arbitrary shape and size which varies according to what
is to be analyzed. For example, if the object that is to be extracted from an image has a linear shape, it is appropriate to
use linear structuring elements. There are linear, circular and composed structural elements.

Dilation and erosion are the most used morphological operators. From them, other morphological operations of greater
complexity can be expressed, providing interesting and useful results in image processing. Next there will follow a brief
description and definition of the morphological operations used in this work.

2.3.1 Dilatation

Dilation is the process of incorporating to the object all the points of its surrounding background, leaving it with a
larger area. The dilation is useful to fill gaps or holes between objects in an image.

Definition 1 Let A and S to be subsets of Z2. The dilation of the set A by the set S is defined as the operation

A⊕ S = {x | (Ŝ)x ∩A 6= ∅}, (1)

where ∅ is the empty set and S is the structuring element.

2.3.2 Erosion

Erosion is the process of eliminating an object’s border points, leaving it with a smaller area, in pixels. For this reason,
the operation of erosion is useful either to remove small objects or to separate objects that are touching in an image.

Definition 2 Let A and S to be subsets of Z2. The erosion of the set A by the set S is defined as the operation

A	 S = {x | (S)x ⊆ A}. (2)
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2.3.3 Opening

The opening operation is a process composed by an erosion followed by a dilation. Although the two are opposite
operations, one does not undo the other and so the result of applying an opening operation depends on the initial image.
The effects of a morphological opening in an image are: elimination of small and narrow objects, breaking objects into
smaller pieces and, generally, a contour smoothing without a significant change in the image area. For this reason the
erosion operation is useful both to remove small objects in a picture as to separate objects that are touching.

Definition 3 Let A and S to be subsets of Z2. The morphological opening of the set A by the set S, denoted by A ◦ S, is
the erosion of the set A by the set S followed by a dilation of the result by the set S and is defined as

A ◦ S = (A	 S)⊕ S. (3)

In Figure (1) there is an example of the morphological opening. In this case, the morphological operation aims to
eliminate small and imperfect grains. Figure (1a) has a few grain pieces remaining from the processing. The result of a
morphological opening with a structuring element in the form of a disk of radius 15 is seen in Fig. (1b), which has only
the whole grains, without the small objects from the previous image.

(a) (b)
Figure 1. Effect of the opening operation using a disk structuring element with a radius 15: (a) image with pieces of

grains; (b) morphological opening processed image.

2.4 Morphological and Physical Sieving

To estimate the relationship between the mass retained in the manual and computer sieving, it was used the equation
that relates mass and volume m = ρV , where ρ is the ore’s density — or specific mass. As the computational sieving was
performed with a disc-shaped structural element, by knowing the number of particles with a given radius r it is possible
to approximate the ore weight for that specific particles’ area or volume.

Thus, the procedure followed was: 1. Calculating the relationship between the mass of the product obtained by
manual sieving; 2. Computational separation followed by counting the grains retained in each computational mesh; 3.
Determination of the size of the division between the sieves (the cutting radius) 4. Grain area and volume approximation.

3. RESULTS

This section presents the results concerning the display range of all equipments used in the image acquisition and
the Mathematical Morphology sieving. It also compares manual and digital sieving methods. The results of lighting
correction in the images captured with the macro lens are shown in Subsection (3.2). As shown before, Tab. (2) gives the
useful particle visualization ranges for each image acquisition method used in this work.

3.1 Computational Sieving Using Mathematical Morphology

The processing steps involved in the computational sieving method using Mathematical Morphology will be illustrated
based on two example images, each one captured with a different instrument. The first image was captured with a camera
equipped with 50mm lenses (its standard lenses) and the second one was captured with a scanner. Both images are
preprocessed by means of a binarization operation.

For each image, charts with the particle size distribution, histograms representing the number of grains versus the
amount of pixels found, and images that show the amount of material withheld in each computational sieving stage are
given. In the end, a comparison between the manual and computational sieving is done.

There is also a third example image, captured with a camera equipped with macro lenses, that is shown in order to
emphasize illumination correction preprocessing.

Camera with 50mm lenses: grains on Fig. (2) are obtained from the junction of ore samples retained in sieves with
meshes 12 and 16.
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(a) (b)
Figure 2. Junction of sieves with meshes 12 and 16: (a) gray scale image (original); (b) enhanced and binarized image,

without objects at the edges.

Figure (3a) represents the computational sieving. Image objects are sifted by opening the image with a structuring
element of increasing size and by counting the remaining intensity surface area (the summation of pixel values in the
image) after each opening.

In Figure (3b) the first derivative is computed and it is possible to see variations in the number of pixels between two
consecutive opening operations. A significant variation between two consecutive opening operations indicates the image
has objects of the same size of the structuring element used in the smaller opening operation.

(a) (b)
Figure 3. (a) Computational sieving simulation; (b) Computational variation of grain sizes between sieves.

The histogram shown in Fig. (4) results from the grain counting computational process. Its horizontal axis indicates
the number of pixels and its vertical axis represents the amount of grains. According to the computational counting in
Fig. (2b) there are 123 grains. Computationally counting the grains agrees with the visual counting. Even grains that are
touching each other were separately counted by morphological sieving.

Figure 4. Histogram of grain counting — 123 grains.

Figure (5) displays the result of successive morphological openings as an example of computational sieving. What
is seen in (a) is the result of a morphological opening operation with a structuring element of radius 16, in (b) with a
structuring element of radius 23 and in (c) with a structuring element of radius 24.

The relationship between manual and computational sieving for the sample in the Fig. (2) is given by the ratio between
the masses of the product in sieves 12 and 16, that is:

Ratio between the product mass in the sieves:
m16
m12

=
91, 71g

102, 16g
∼= 0, 9; Ratio between the estimate of the product

mass in the sieves (approximation by their area):
m16
m12

=
119, 026
167, 605

∼= 0, 71; Ratio between the estimate of the product

mass in the sieves (approximation by their volume):
m16
m12

=
165, 39
330, 836

∼= 0, 5.
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(a) (b) (c)
Figure 5. Ore retained in computational sieves. Grains with radius (a) 16, (b) 23, and (c) 24, respectively.

Table 3. Number of particles in each radius of the Fig. (2) — 1mm = 26 pixels.

Radius (pixels) 11 12 13 14 15 16 17 18 19 20 21
Number of particles 4 2 2 3 4 9 3 10 14 11 4

Radius (pixels) 22 23 24 25 26 27 28 29 30 31 32
Number of particles 9 13 3 8 4 1 4 1 1 1 1

Scanner with 600dpi resolution: grains on Fig. (6) are obtained from the junction of ore samples retained in sieves
with meshes 40 and 50.

(a) (b)
Figure 6. Junction of meshes 40 and 50: (a) gray scale image (original); (b) enhanced and binarized image, without

objects at the edges.

The histogram shown in Fig. (7) results from the grain counting computational process. According to the compu-
tational counting, in Fig. (6b) there are 319 grains. Again, computationally counting the grains agrees with the visual
counting.

Figure 7. Histogram of grain counting — 319 grains.

The morphological opening operation and the variation in the number of grains between two consecutive opening
operations from Fig. (6a) are shown in Figs. (8a) and (8b). In Figure (8a), one can verify that the variation in the structuring
element radius was in in a range between three and ten. In Figure (8b) the variation on the amount of remaining grains
can be verified.

Figure (9) shows the separation of the grains from Fig. (6a) based on morphological opening and reconstruction
operations. In Figure (9i) there are no grains, which means that in this specific image there are no objects with a size
bigger than the structuring element of radius 11.

The relationship between manual and computational sieving for the sample in Fig. (6) is given by the ratio between
the masses of the product in the sieves 40 and 50, that is:

Ratio between the product mass in the sieves:
m50
m40

=
38, 52g

50, 94g
∼= 0, 756; Ratio between the estimate of the product
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(a) (b)

Figure 8. (a) Opening operation radius in the imagem; (b) Variation of the amount of grains in each opening operation.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 9. Ore retained in computational sieves: from (a) to (h) grains with radius from three to ten pixels, respectively; (i)

image without grains.

mass in the sieves (approximation by their area):
m50
m40

=
8, 507
7, 57

∼= 1, 124; Ratio between the estimate of the product

mass in the sieves (approximation by their volume):
m50
m40

=
1, 696
2, 123

∼= 0, 799.

Table 4. Number of particles in each radius of the Fig. (6) — 1mm = 23.62 pixels.

Radius (pixels) 2 3 4 5 6 7 8 9 10
Number of particles 10 6 74 138 71 14 14 1 0

3.2 Illumination Correction Preprocessing

It is common to use some kind of preprocessing task to correct certain elements in digital images. Illumination
correcting is one of those tasks. In the specific case of acquiring an image with a combination of lenses (macro lenses),
the images suffer from an effect that makes their edges to shade off gradually, that is, there is a difference in illumination
between the center and the edges of the images, as shown in Fig. (10a).

Camera with macro lenses: Figure (10a) represents an ore sample retained in the sieve 140, and Fig. (10b) is its
binarized image after the preprocessing stage shown in Fig. (11).
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(a) (b)
Figure 10. (a) Sample obtained from the sieve 140; (b) Its binarized image.

To correct the illumination in Fig. (10a) a histogram equalization was performed, followed by applying the imadjust
function in Matlab R©, which enhances the image. Next, the morphological opening operation is applied using a structuring
element with an adequate radius in order to eliminate small objects (the shield noise) that may remain in the image. In the
example image shown here, the structuring element used a 12 pixel radius. The result can be seen in Fig. (11). Finally,
the image was binarized by adjusting its whitening balance. In this case, a 20% of whitening was used, resulting in what
can be seen in the Fig. (10b).

Figure 11. Image Enhancement, histogram equalization and morphological opening on Fig. (10a).

Although these elements were brought together by a single sieve, the computerized method computer identifies differ-
ent grain sizes. This means that it is possible to operate with “computational sieves” between the values of the physical
sieves. The charts shown in Figs. (12a) and (12b) are related to the opening operations and to the grain size variation
relatives to the Fig. (10a). It can be seen that from radius 12 there was a sharper decrease in the number of pixels of the
image. So from this point one should carry out in the division of the sizes of objects in the image.

(a) (b)

Figure 12. (a) Opening radius in the image; (b) Variation on the amount of grains in each opening.

Figure (13) is the visualization of the number of grains versus the number of pixels (in other words, the grain counting).
According to the computational counting, Fig. (10a) shows 52 grains.

4. DISCUSSIONS AND CONCLUSIONS

Computational granulometry by means of Mathematical Morphology shows promising results as it is able to efficiently
separate mineral particles of different sizes, as shown in Tab. (2). Comparing the results obtained with morphologic
sieving and physical sieving do really presented some discrepancies. This is mainly due to sieving errors and the two
dimensional ore image analysis. The ore particles tend to stabilize in the lower energy position, therefore, a simple two
dimensional analysis is not sufficient for an accurate prediction. The assumption of spherical particles, common in size
profile determination by physical or morphological sieving proved to be inadequate.
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Figure 13. Grain counting histogram — 52 grains.

Regarding to the equipment used, in the case of the camera and microscope association, the useful range extends
beyond a 400 mesh sieve (in other words, it is possible to capture images with quality in which the grains are smaller
than 38 micrometers). The same occurs with the scanner, in which its useful range of view is beyond a 400 mesh sieve.
However, acquiring images by means of the scanner was difficult because it was necessary to protect it from the ore
particles so there was no damage to the device (thus, in this case the particles were arranged on a transparency over the
scanner glass). With meshes up to 270, the images were satisfactory, but when 400 mesh was reached, the captured images
were also showing the imperfections in the plastic, giving an appearance of an image without focus. This does not occur,
or at least was not perceived below 270 mesh.

Concluding, the results show in this paper stated that even when it is necessary to separate elements trapped in a same
sieve, the computational method is able to identify different grain sizes. This means that it is possible to “enter different
computer sieves” between the physical mesh values. This is of great importance when there is a need for greater accuracy
in the analysis.
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