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Abstract. The AST6 (Assumed Shear Triangle) finite element is a triangular six-node plate finite element that considers
transverse shear and can be used in the structural analysis of laminated composite plates, being free from shear locking.
In this work, the element has two different mass matrix formulations presented, the first utilizing the same quadratic
interpolation functions used for the stiffness formulation and the other based on mass lumping. The AST6 is then used
to solve laminated plates free vibration problems. Exact Navier solutions based on the Reissner-Mindlin plate theory are
also presented for them. These results are finally compared aiming to evaluate the performance of the AST6 in calculating
natural frequencies of laminated plates of several aspect ratios.
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1. INTRODUCTION

The AST6 (Assumed Shear Triangle) is a finite element that was initially developed for plate bending by Sze et al.
(1997). Based in the Reissner-Mindlin plate theory (Reissner, 1945; Reddy, 1997), the element is free from shear locking
(or artificial stiffening in shear), due to a special linear approximation for the transverse shear used in its formulation.

After its initial proposal, the AST6 had the employment considerably extended, specially when regarding composite
laminate analysis. In this line, Lucena Neto et al. (2001) predicted the membrane behavior of laminates using the element.
Goto (2002) applied it in the analysis of composite plates and shells, presenting the element stiffness matrix in a explicit
way. In Meleiro and Hernandes (2005), the geometrical stiffness matrix formulation was developed in a quasi-consistent
manner, and good results were obtained for the buckling of thermally stiffened composite plates.

In terms of mass formulation, a mass matrix of the element was employed in Alves (2003), but its formulation was not
detailed. Ferreira (2008) deduced explicitly mass matrices for the AST6, using quasi-consistent and lumped formulations,
and the element was employed in the free vibration of laminated plates. Moreover, the AST6 also had successful employ-
ments in varied composite laminate optimization scenarios (Meleiro, 2006; Meleiro and Hernandes, 2007; Ferreira, 2008;
Ferreira and Hernandes, 2008).

In the present work, the mass matrices proposed by Ferreira (2008) are shown and the element has the performance
evaluated in the analysis of natural frequencies of laminated plates. For this aim, composites with two stacking sequences
are considered, being a regular cross-ply and one with non-standard orientations. The finite element results are compared
with results given by the Navier exact solution in free vibration (Reddy, 1997).

2. LAMINATED PLATE FREE VIBRATION PROBLEM

2.1 Weak Form

The Reissner-Mindlin plate theory (Reissner, 1945) is based on a characteristic displacement field derived from a set
of proper hypotheses that considers plate transverse shear (Reddy, 1997). Using this model, it is possible to derive a
continuum free vibration problem for a composite plate, shown in Eq. (1).∫ t2

t1

∫
A

[
−
(
{εm}T [A]{δεm}+ {κ}T [B]{δεm}+ {εm}T [B]{δκ}+ {κ}T [D]{δκ}+ {γ}T [G]{δγ}

)
#1

+

+
(
{∆̇}T [I0]{δ∆̇}

)
#2

]
dAdt = 0

(1)

The Eq. (1) is an integral equation, that represents the weak form (Reddy, 1993) of the referred free vibration problem,
and is deduced in fine detail in Ferreira (2008). It is an integral in time t, defined in a time interval t1, t2, and also in
the area A of a generic composite plate. The terms inside the first parenthesis (#1) are related to the plate strain energy.
The vectors {εm} and {κ} are respectively the vectors of membrane and bending strains in the plate mid-surface. The
vector {γ} is the vector of transverse shear strains. The symbol δ defines a first variation in the variational calculus sense
(Reddy, 1993). The matrices [A], [B], [D], [G] are equivalent constitutive matrices of a laminate (Daniel and Ishai, 1994;
Reddy, 1997; Jones, 1999). The terms of the integral inside the second parenthesis (#2) are related to the plate kinetic
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energy and include inertial coefficients collected in the inertial matrix [I0]. The vector {∆̇} is a vector of velocities and
the upper dot ( ˙ ) means a partial first derivative in time, ∂( )/∂t. Both {∆̇} and [I0] are given in Eq. (2).

{∆̇}T =
{
u̇0 v̇0 ẇ0 θ̇x θ̇y

}
[I0] =


I1 0 0 0 I2
0 I1 0 −I2 0
0 0 I1 0 0
0 −I2 0 I3 0
I2 0 0 0 I3

 (2)

In the Eq. (2) u0, v0, w0 are plate mid-surface displacements and θx, θy are rotations of the normals of the plate
mid-surface. They are directly related to the Reissner-Mindlin displacement field and its intrinsic hypotheses. When these
quantities are derived in time, as shown in the Eq. (2), they can be considered as linear and angular velocities, respectively.

Again in the Eq. (2), the inertial coefficients I1, I2, I3 in the matrix [I0] are respectively the translational inertia, the
translational-rotational coupling inertia and the rotational inertia of a composite plate. They are given by the Eq. (3) and
Eq. (4), according to Ferreira (2008).

I1 =
N∑
k=1

ρk

∫ zk+1

zk

dz I2 =
N∑
k=1

ρk

∫ zk+1

zk

zdz I3 =
N∑
k=1

ρk

∫ zk+1

zk

z2dz (3)

I1 = ρ

∫ h/2

−h/2
dz = ρh I2 = ρ

∫ h/2

−h/2
zdz = 0 I3 = ρ

∫ h/2

−h/2
z2dz =

ρh3

12
(4)

The Eq. (3) shows the general forms of the inertial coefficients of a laminated plate, that must be sums of the inertial
terms of each layer k, with density ρk, of a laminate withN layers. These terms are integrated over the laminate thickness
direction z in intervals according to the layers height coordinates zk. The Eq. (4) shows simplified forms for the inertial
coefficients that occur when the layers densities ρk are identical and can be defined just by a general density ρ. In this
case, the sums become simple integrals in the thickness direction z, defined in the interval −h/2, h/2, where h is the
plate total thickness, and the coupling coefficient becomes I2 = 0.

2.2 Equilibrium Equations and Navier Solution

From the weak form in the Eq. (1), it is possible to derive the equilibrium differential equations of the free vibration
problem of a laminated plate in terms of the plate displacements u0, v0, w0, θx, θy . In this form, they can be solved
exactly in certain special cases by the Navier solution method (Reddy, 1997). To employ this solution, the plate at first
must be rectangular and simply supported in all its edges. Moreover, its laminate must have some equivalent constitutive
coefficients vanished in the [A], [B], [D], [G] matrices (Ferreira, 2008), namely A16 = A26 = B16 = B26 = D16 =
D26 = G45 = 0, such that this laminate can be characterized as a specially orthotropic (Jones, 1999). Having the
fulfilment of these requirements, the Navier solution can be applied to the equilibrium equations by adopting proper
trigonometric series for the involved displacements. This methodology is presented in Ferreira (2008).

3. THE AST6 FINITE ELEMENT

As shown in Fig. 1(a), the AST6 is a triangular six-node finite element that has three nodes in its vertices and more
three in the middle points of its edges. The element also has five degrees of freedom per node, being three translations
(ui, vi, wi with i = 1, ..., 6) and two rotations (θxi, θyi). The translations are respectively related to the x, y, z axes and
the rotations are respectively around the x and y axes, all being positive as shown in Fig. 1(a). The coordinate systems
used for the calculations in the element are depicted in Fig. 1(b), being (x,y) the global system, (x′,y′) the local system
and (ξ,η) the natural system. Moreover, also in the Fig. 1(b), Ae is the element area.

3.1 Stiffness Matrix Formulation

The Eq. (5) shows a set of bi-quadratic interpolation functions in natural coordinates, arranged in the vector {Q}.

{Q}T =
{

2(1− ξ − η)(
1
2
− ξ − η) ξ(2ξ − 1) η(2η − 1) 4ξη 4η(1− ξ − η) 4ξ(1− ξ − η)

}
(5)

By using this set of functions from Eq. (5), together with the nodal displacements ui, vi, wi, θxi, θyi (where i =
1, ..., 6), it is possible to approximate the continuum plate displacements u0, v0, w0, θx, θy inside the AST6 finite element.
These approximated displacements can be used to compose estimations of the plate strains in the weak form of the Eq.
(1). In fact, this is the procedure used to approximate membrane and bending strains, respectively {εm} and {κ}, in the
AST6 stiffness formulation. However, to approximate the shear strains {γ}, Sze et al. (1997) proposed a scheme based
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Figure 1. The AST6 finite element with nodes and degrees of freedom. Coordinate systems used for the element: (a)
global (x,y), (b) local (x′,y′) and natural (ξ,η).

on a set of bi-linear interpolation functions, that is shown in the Eq. (6) arranged in the vector {L}. This approximation
scheme aims to eliminate shear locking, and is shown in the Eq. (7).

{L}T = { 2η + 2ξ − 1 1− 2ξ 1− 2η } (6)

{γ} =
{
γyz
γxz

}
≈
[
{0} {L}T
{L}T {0}

]
{γ̄} {γ̄}T = {γ̄yz4 γ̄yz5 γ̄yz6 γ̄xz4 γ̄xz5 γ̄xz6} (7)

In the Eq. (7), γyz , γxz are plate transverse shear strains. The vector {γ̄} is a vector of average shear strains that are
determined in points defined over the element dominium, according to criteria also defined by Sze et al. (1997). Once
the membrane, bending and shear strains {εm}, {κ}, {γ} are approximated, it is possible to compute the AST6 stiffness
matrix by integrating the first parenthesis (#1) of the weak form in Eq. (1) over the area Ae of an element, together with
the [A], [B], [D], [G] constitutive matrices. This procedure is presented in detail in Goto (2002) and Meleiro (2006).

3.2 Mass Matrices Formulation

Ferreira (2008) proposed two mass matrices formulations for the AST6 element. The first uses the set {Q} of bi-
quadratic interpolation functions shown in Eq. (5) but does not take into account the bi-linear shear strain approximation
scheme in Eq. (7), and due to this fact may be called as quasi-consistent. The second formulation is based on mass
lumping.

3.2.1 Quasi-Consistent Mass Matrix

The quasi-consistent mass matrix is obtained by integrating the second parenthesis (#2) of the weak form in Eq. (1)
over the area Ae of an element. This procedure considers the velocities in the vector {∆̇} properly approximated by
the use of the bi-quadratic interpolation functions in Eq. (5), and also the inertial matrix [I0] shown in Eq. (2), with
coefficients given by the Eqs. (3,4). The resulting quasi-consistent mass matrix is designated as [Me]qc and is shown in
the Eq. (8), with the matrix [P ] given by the Eq. (9).

[Me]qc = [P ]⊗ [I0] =


I1[P ] 0 0 0 I2[P ]

0 I1[P ] 0 −I2[P ] 0
0 0 I1[P ] 0 0
0 −I2[P ] 0 I3[P ] 0

I2[P ] 0 0 0 I3[P ]


30×30

(8)
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[P ] = 2Ae
∫ 1

0

∫ 1−ξ

0

{Q}{Q}T dηdξ =
2Ae

90


3/2 −1/4 −1/4 −1 0 0
−1/4 3/2 −1/4 0 −1 0
−1/4 −1/4 3/2 0 0 −1
−1 0 0 8 4 4

0 −1 0 4 8 4
0 0 −1 4 4 8

 (9)

It is worth remembering that in Eq. (8) the symbol ⊗ means a matrix direct product. Moreover, the quasi-consistent
matrix [Me]qc is compatible with the nodal velocities vector {∆̇e} shown in the Eq. (10).

{∆̇e}T =
{
u̇1 u̇2 u̇3 u̇4 u̇5 u̇6 ... v̇i ... ẇi ... θ̇xi ... θ̇y1 θ̇y2 θ̇y3 θ̇y4 θ̇y5 θ̇y6

}
(10)

3.2.2 Lumped Mass Matrix

It is possible to see the matrix [P ] in the Eqs. (8,9) as a matrix of weights of the inertial terms I1, I2, I3 in the matrix
[Me]qc. In a simple way, these weights distribute the inertias over the AST6 degrees of freedom. Since the matrix [P ]
has a concentration of the highest weights on its diagonal, it is possible to conceive a diagonal mass lumped matrix [Me]l
that uses a new matrix of weights [P ]∗ and considers a new inertial matrix [I0]∗, with the translational-rotational coupling
inertia coefficient I2 = 0. These matrices are given in the Eqs. (11,12), where [Me]l is also compatible with the nodal
velocities vector {∆̇e} shown in Eq. (10).

[Me]l = [P ]∗ ⊗ [I0]∗ =


I1[P ]∗ 0 0 0 0

0 I1[P ]∗ 0 0 0
0 0 I1[P ]∗ 0 0
0 0 0 I3[P ]∗ 0
0 0 0 0 I3[P ]∗


30×30

(11)

[P ]∗ = Ae


1/6 0 0 0 0 0
0 1/6 0 0 0 0
0 0 1/6 0 0 0
0 0 0 1/6 0 0
0 0 0 0 1/6 0
0 0 0 0 0 1/6

 (12)

An interesting point in Eqs. (11,12) is that the use of [P ]∗ in [Me]l can be seen as the adoption of equally distributed
inertial weights over the element degrees of freedom. Moreover, I2 = 0 was adopted to ensure that [Me]l be diagonal,
which is interesting from a numerical point of view. It was proceeded because I2 is a small number and it additionally
vanishes in the very common case of symmetrical laminates. Despite being even smaller than I2, the rotational inertia
coefficient I3 was kept to avoid zeros in the diagonal of the matrix.

4. RESULTS

To evaluate the AST6 finite element in the free vibration analysis of laminated plates, several cases of natural frequen-
cies were computed. In these cases, the plates were all simply supported and square, with dimensions a = b = 360 mm,
length and width, respectively. Nevertheless, the analysis differ in several aspects. At first, two laminates were employed,
being a cross-ply and one with non-standard fiber orientations. However, both have the same unidirectional graphite-epoxi
material. The laminates lay-ups and the material properties are shown in Tab. 1, where Ei are extensional moduli, Gij are
shear moduli, νij are Poisson ratios and ρ is the density. Moreover, both the laminates presented are specially orthotropic
in constitutive terms.

Table 1. Plates characteristics: dimensions, specially orthotropic laminates employed and material properties.

Laminates Material
Cross-Ply Non-Standard

[0/90/0/90/0]t [7.560/-29.113/49.903/-78.333]s
Graphite-Epoxi

a = b = 360mm
E1 = 159 GPa, E2 = E3 = 10 GPa

h = 1.2− 1.8− 3.6− 7.2− 18− 36mm
G23 = 3 GPa, G12 = G13 = 5 GPa

a/h = 300− 200− 100− 50− 20− 10
ν23 = 0.52, ν12 = ν13 = 0.3

hk = h/5 hk = h/8
ρ = 1550 kg/m3

In Tab. 1 it is also possible to note that the plates were analyzed for several aspect ratios a/h given by the use of
several plate total thicknesses h. Moreover, in the same table, hk is the thickness of an unidirectional lamina. After the
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differences in laminates lay-ups and a/h ratios, the natural frequencies of the plates were also calculated for AST6 meshes
with different refinement levels, shown in Fig. 2.

Figure 2. AST6 meshes employed in the composite plates natural frequencies calculations.

With the laminated plates and meshes defined, it is possible to solve the finite element free vibration problem for them,
that has the form shown in Eq. (13) (Craig, 1981; Bathe, 1996). In this equation, [K] is the stiffness global matrix of the
problem, [M ] is the mass global matrix, {∆̄} is the global nodal displacements vector and ω is a natural frequency.(

[K]− ω2[M ]
)
{∆̄} = 0 (13)

The last variation in the natural frequencies cases computed regards the mass matrix formulation employed for solving
the problem in Eq. (13). At first, the quasi-consistent formulation was employed and then the lumped formulation was also
considered, with the use of the element mass matrices here presented [Me]qc, [Me]l. The stiffness formulation employed
was the one developed in Meleiro (2006), and the eigenvalue problems were solved by a FORTRAN code based in
the subspace iteration method (Bathe, 1996). Finally, as the laminated plates dealt here are all specially orthotropic,
rectangular and simply supported in all their edges, it was obtained exact solutions for their natural frequencies by the
Navier solution method, following the methodology discussed in detail in Ferreira (2008).

The natural frequencies results obtained with the use of the Navier solution and the finite element method are collected
in Tabs. 2 to 7, where are shown the five first natural frequencies of each case computed. Tables 2 and 5 show exact results
for the cross-ply and non-standard laminates, respectively. Tables 3 and 6 show finite element solutions with the use of
the quasi-consistent mass matrix formulation, also for the cross-ply and non-standard laminates, respectively. Tables 4
and 7 show the same results with the use of the lumped mass matrix.

The accuracy of the finite element solutions was here estimated by the use of the relative error εω given in the Eq. (14).
In this equation, ωi is an i-th natural frequency calculated approximately by the finite element method and ω∗i is the same
frequency calculated exactly by the Navier solution method. The several values of εω obtained are shown throughout the
Tabs. 3, 4 and 6, 7.

εω =
ωi − ω∗i
ω∗i

· 100 (%) (14)

From Tabs. 3, 4 and 6, 7 it is possible to notice that, in general, good natural frequencies results were obtained with
the use of the AST6 element. The results assumed relative errors εω < 2% in most of the frequencies calculated, with
exceptions for the cases with the 2 × 2 meshes and the a/h = 10 aspect ratio. However, it can be seen in Tabs. 3 and 4,
that the fifths natural frequencies of the cross-ply plates with a/h = 20 were also not adequately calculated, presenting
εω ≈ 10%, with a single exception.

Following the line discussed, almost all first natural frequencies obtained had very good agreement with the exact
results, since in this case most of them had εω ≈ 1%, with many having εω ≈ 0%, independently inclusive on the mesh
refinement and mass matrix formulation employed. Exceptions are seen, in the greatest part, in the plates with a/h = 10.
For this aspect ratio, first natural frequencies results with εω < 1% were obtained only employing the most refined mesh
16× 16.

In terms of mesh refinements, the 2 × 2 mesh provided great part of the worst results, with some of them presenting
εω > 20%, as it can be clearly seem from Tabs. 3 and 4. The results where the 2 × 2 mesh had the best performance
are presented in Tab. 7, that shows the case of the non-standard laminates analyzed with the lumped mass formulation.
Nevertheless, great part of them presented εω ≈ 10%.

In terms of aspect ratios, the AST6 had problems with plates where a/h = 10, specially for the cross-ply laminates,
as it can be seen from Tabs. 3 and 4. In this case, it can be noticed that the third to fifth natural frequencies results
for the plates with a/h = 10 were not good, using both mass matrices formulations. This is observed for all the mesh
refinements, where many of the results presented εω > 20%. However, for the case of the non-standard laminated plates
with a/h = 10, shown in Tabs. 6 and 7, the results obtained presented some improvement in comparison to the cross-ply
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Table 2. Natural frequencies results for 360× 360× h simply supported cross-ply laminated plates, calculated exactly by
the Navier solution method.

h 1.2 1.8 3.6 7.2 18 36
a/h 300 200 100 50 20 10
Natural Frequency (Hz)

1st 47.205 70.794 141.430 281.617 683.508 1247.639
2nd 100.721 151.029 301.499 598.595 1426.150 2481.970
3rd 158.256 237.180 472.178 927.516 2078.099 3200.690
4th 188.729 282.861 563.234 1107.290 2495.278 3906.789
5th 205.079 307.395 612.387 1206.159 2743.500 4343.996

Table 3. Natural frequencies results for 360× 360×h simply supported cross-ply laminated plates, with different meshes
of the AST6 finite element and quasi-consistent mass matrix formulation.

Nat. Freq. Mesh εω Mesh εω Mesh εω Mesh εω

(Hz) 2× 2 (%) 4× 4 (%) 8× 8 (%) 16× 16 (%)
h = 1.2mm, a/h = 300

1st 47.652 0.947 47.237 0.066 47.205 -0.0001 47.203 -0.005
2nd 107.155 6.389 101.311 0.586 100.758 0.037 100.718 -0.003
3rd 166.343 5.110 159.025 0.486 158.277 0.013 158.224 -0.020
4th 229.128 21.406 190.486 0.931 188.826 0.052 188.700 -0.015
5th 255.779 24.722 210.061 2.429 205.438 0.175 205.085 0.003

h = 1.8mm, a/h = 200

1st 71.459 0.940 70.836 0.060 70.789 -0.006 70.786 -0.011
2nd 160.640 6.363 151.895 0.574 151.075 0.030 151.016 -0.009
3rd 249.138 5.042 238.242 0.448 237.145 -0.015 237.070 -0.047
4th 342.789 21.187 285.421 0.905 282.941 0.029 282.754 -0.038
5th 382.939 24.576 314.658 2.363 307.879 0.157 307.370 -0.008

h = 3.6mm, a/h = 100

1st 142.710 0.905 141.471 0.029 141.379 -0.036 141.375 -0.039
2nd 320.313 6.240 303.069 0.521 301.493 -0.002 301.392 -0.036
3rd 494.343 4.694 473.441 0.267 471.431 -0.158 471.342 -0.177
4th 676.315 20.077 567.577 0.771 562.722 -0.091 562.395 -0.149
5th 758.379 23.840 625.401 2.125 612.902 0.084 612.033 -0.058

h = 7.2mm, a/h = 50

1st 283.789 0.771 281.361 -0.091 281.201 -0.148 281.244 -0.133
2nd 633.381 5.811 600.769 0.363 597.926 -0.112 597.917 -0.113
3rd 959.712 3.471 924.446 -0.331 921.425 -0.657 922.032 -0.591
4th 1291.626 16.647 1110.589 0.298 1101.737 -0.501 1101.821 -0.494
5th 1464.375 21.408 1225.772 1.626 1204.579 -0.131 1203.912 -0.186

h = 18mm, a/h = 20

1st 683.461 -0.007 678.338 -0.756 678.842 -0.683 680.356 -0.461
2nd 1476.670 3.542 1421.198 -0.347 1418.796 -0.516 1423.291 -0.200
3rd 2041.014 -1.785 2018.897 -2.849 2025.260 -2.543 2040.639 -1.803
4th 2502.626 0.294 2455.853 -1.580 2446.799 -1.943 2460.769 -1.383
5th 2713.280 -1.102 2495.076 -9.055 2494.554 -9.074 2494.520 -9.075

h = 36mm, a/h = 10

1st 1227.928 -1.580 1223.400 -1.943 1230.401 -1.382 1237.034 -0.850
2nd 2475.999 -0.241 2452.466 -1.189 2468.483 -0.543 2487.093 0.206
3rd 2502.626 -21.810 2495.076 -22.046 2494.554 -22.062 2494.520 -22.063
4th 2982.370 -23.662 3041.895 -22.138 3079.963 -21.164 2494.520 -36.149
5th 4172.871 -3.939 3796.269 -12.609 3807.187 -12.357 3116.376 -28.260
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Table 4. Natural frequencies results for 360× 360×h simply supported cross-ply laminated plates, with different meshes
of the AST6 finite element and lumped mass matrix formulation.

Nat. Freq. Mesh εω Mesh εω Mesh εω Mesh εω

(Hz) 2× 2 (%) 4× 4 (%) 8× 8 (%) 16× 16 (%)
h = 1.2mm, a/h = 300

1st 47.157 -0.102 47.203 -0.004 47.203 -0.005 47.203 -0.005
2nd 114.971 14.148 100.882 0.160 100.728 0.007 100.716 -0.004
3rd 179.410 13.367 158.326 0.044 158.228 -0.017 158.221 -0.022
4th 187.287 -0.764 188.504 -0.119 188.693 -0.019 188.692 -0.019
5th 215.310 4.989 206.497 0.691 205.190 0.054 205.068 -0.005

h = 1.8mm, a/h = 200

1st 70.716 -0.109 70.786 -0.010 70.786 -0.011 70.786 -0.011
2nd 172.226 14.035 151.250 0.146 151.029 -0.0001 151.014 -0.010
3rd 267.785 12.904 237.183 0.001 237.071 -0.046 237.066 -0.048
4th 280.568 -0.810 282.446 -0.146 282.739 -0.043 282.742 -0.042
5th 322.393 4.879 309.266 0.609 307.501 0.035 307.344 -0.017

h = 3.6mm, a/h = 100

1st 141.223 -0.146 141.369 -0.043 141.372 -0.041 141.375 -0.039
2nd 342.473 13.590 301.747 0.082 301.395 -0.035 301.385 -0.038
3rd 525.219 11.233 471.253 -0.196 471.272 -0.192 471.330 -0.180
4th 557.309 -1.052 561.597 -0.291 562.294 -0.167 562.363 -0.155
5th 638.766 4.307 614.304 0.313 612.092 -0.048 611.967 -0.069

h = 7.2mm, a/h = 50

1st 280.799 -0.291 281.147 -0.167 281.184 -0.154 281.242 -0.133
2nd 674.073 12.609 597.960 -0.106 597.689 -0.151 597.893 -0.117
3rd 1006.116 8.474 919.765 -0.836 920.999 -0.703 921.972 -0.598
4th 1086.538 -1.874 1098.320 -0.810 1100.695 -0.596 1101.694 -0.505
5th 1233.317 2.252 1202.350 -0.316 1202.605 -0.295 1203.689 -0.205

h = 18mm, a/h = 20

1st 675.628 -1.153 677.595 -0.865 678.728 -0.699 680.331 -0.465
2nd 1554.636 9.009 1411.976 -0.994 1417.538 -0.604 1423.041 -0.218
3rd 2126.302 2.320 2003.039 -3.612 2022.359 -2.682 2039.880 -1.839
4th 2374.325 -4.847 2418.213 -3.088 2440.984 -2.176 2459.415 -1.437
5th 2466.596 -10.093 2488.334 -9.301 2492.989 -9.131 2494.115 -9.090

h = 36mm, a/h = 10

1st 1209.108 -3.088 1220.493 -2.176 1229.716 -1.437 1236.858 -0.864
2nd 2466.596 -0.619 2423.134 -2.371 2462.447 -0.787 2485.608 0.147
3rd 2469.813 -22.835 2488.334 -22.256 2492.900 -22.114 2494.115 -22.076
4th 2562.539 -34.408 2992.421 -23.405 2493.077 -36.186 2494.159 -36.158
5th 3082.648 -29.037 3685.404 -15.161 3067.573 -29.384 3113.005 -28.338

cases. For the non-standard laminates, the 16× 16 mesh refinement was effective in providing εω ≈ 1.5% or less for both
mass formulations. Nevertheless, with other refinements, the relative error frequently assumed values εω ≈ 2% or more,
specially in Tab. 7, where the lumped mass matrix was employed and εω > 2% in most cases.

In terms of mass matrices, the quasi-consistent formulation has not presented a concrete advantage over the lumped
formulation in terms of the accuracy of the results, since in most cases both presented relative errors very similar. However,
there is no surprise in a more complex mass formulation providing results similar or worst in comparison with results
obtained with mass lumping (Hinton et al., 1976).

The AST6 finite element had not particular problems regarding to a specific laminate employed. Both the cross-ply
and the non-standard laminates had the frequencies calculated with similar relative errors in most cases. Surprisingly,
the exception is given by the natural frequencies for the cross-ply laminates with a/h = 10 and both mass formulations,
where the highest frequencies presented large errors (εω > 20%), as can be seen in Tabs. 3 and 4.

Finally, it can be perceived in Tabs. 3, 4 and 6, 7 that there is a tendency of worse results as the plates get thicker, for
both laminates analyzed and both mass formulations as well. It can be seen specially from the results with a/h = 20 and
a/h = 10, where some of the highest errors were encountered. However, it can be more clearly noticed when checking
the results from Tab. 4 with the mesh refinement 8 × 8. In this case, the cross-ply laminate was analyzed with the use
of the lumped mass formulation. The errors εω grow as a/h decreases and the plates get thicker. When a/h = 300 and
a/h = 200, the errors are practically zero. For a/h = 100 and a/h = 50, they are still close to zero but have increased.
For a/h = 20 and a/h = 10, the errors increased more and some of them have εω > 20%.
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Table 5. Natural frequencies results for 360×360×h simply supported plates with the non-standard orientations laminate,
calculated exactly by the Navier solution method.

h 1.2 1.8 3.6 7.2 18 36
a/h 300 200 100 50 20 10
Natural Frequency (Hz)

1st 53.117 79.655 159.090 316.444 762.742 1365.809
2nd 99.684 149.468 298.315 591.747 1402.419 2414.981
3rd 165.302 247.733 493.112 968.067 2161.922 3308.862
4th 176.857 265.126 528.545 1043.798 2411.043 3942.941
5th 212.336 318.180 632.889 1239.189 2731.617 4113.941

Table 6. Natural frequencies results for 360×360×h simply supported plates with the non-standard orientations laminate,
different meshes of the AST6 finite element and quasi-consistent mass matrix formulation.

Nat. Freq. Mesh εω Mesh εω Mesh εω Mesh εω

(Hz) 2× 2 (%) 4× 4 (%) 8× 8 (%) 16× 16 (%)
h = 1.2mm, a/h = 300

1st 53.589 0.889 53.150 0.063 53.116 -0.001 53.114 -0.005
2nd 104.969 5.302 100.196 0.513 99.714 0.030 99.678 -0.005
3rd 173.613 5.028 166.096 0.480 165.327 0.015 165.272 -0.018
4th 222.760 25.955 180.897 2.285 177.150 0.166 176.859 0.001
5th 257.688 21.358 214.182 0.869 212.435 0.046 212.298 -0.018

h = 1.8mm, a/h = 200

1st 80.356 0.881 79.699 0.056 79.649 -0.007 79.645 -0.012
2nd 157.356 5.278 150.221 0.503 149.500 0.021 149.447 -0.014
3rd 260.014 4.957 248.834 0.444 247.708 -0.010 247.630 -0.042
4th 333.666 25.852 271.097 2.252 265.526 0.151 265.098 -0.011
5th 385.249 21.079 320.841 0.836 318.242 0.020 318.042 -0.043

h = 3.6mm, a/h = 100

1st 160.421 0.836 159.121 0.020 159.023 -0.042 159.021 -0.043
2nd 313.713 5.162 299.666 0.453 298.242 -0.024 298.149 -0.056
3rd 515.746 4.590 494.470 0.275 492.423 -0.140 492.342 -0.156
4th 662.318 25.310 539.718 2.114 528.968 0.080 528.178 -0.069
5th 757.262 19.652 637.133 0.671 632.143 -0.118 631.834 -0.167

h = 7.2mm, a/h = 50

1st 318.567 0.671 316.072 -0.118 315.921 -0.165 316.010 -0.137
2nd 620.016 4.777 593.352 0.271 590.656 -0.184 590.714 -0.175
3rd 999.652 3.263 965.299 -0.286 962.410 -0.584 963.345 -0.488
4th 1287.658 23.363 1061.918 1.736 1042.247 -0.149 1041.417 -0.228
5th 1425.892 15.067 1240.404 0.098 1231.996 -0.580 1232.807 -0.515

h = 18mm, a/h = 20

1st 760.727 -0.264 756.196 -0.858 757.545 -0.681 759.844 -0.380
2nd 1443.377 2.921 1393.740 -0.619 1391.623 -0.770 1396.789 -0.401
3rd 2107.856 -2.501 2104.534 -2.655 2116.826 -2.086 2136.062 -1.196
4th 2778.704 15.249 2418.315 0.302 2390.387 -0.857 2400.752 -0.427
5th 2827.133 3.497 2674.942 -2.075 2677.229 -1.991 2700.346 -1.145

h = 36mm, a/h = 10

1st 1337.472 -2.075 1338.615 -1.991 1350.191 -1.143 1357.762 -0.589
2nd 2418.358 0.140 2376.354 -1.599 2391.105 -0.989 2406.037 -0.370
3rd 3037.140 -8.212 3158.269 -4.551 3221.211 -2.649 3260.326 -1.467
4th 4186.322 6.173 3908.581 -0.871 3910.505 -0.823 3938.185 -0.121
5th 4226.466 2.735 3979.459 -3.269 4024.108 -2.184 4066.787 -1.146
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Table 7. Natural frequencies results for 360×360×h simply supported plates with the non-standard orientations laminate,
different meshes of the AST6 finite element and lumped mass matrix formulation.

Nat. Freq. Mesh εω Mesh εω Mesh εω Mesh εω

(Hz) 2× 2 (%) 4× 4 (%) 8× 8 (%) 16× 16 (%)
h = 1.2mm, a/h = 300

1st 53.030 -0.163 53.113 -0.008 53.114 -0.005 53.114 -0.006
2nd 112.422 12.779 99.769 0.086 99.684 0.0003 99.677 -0.007
3rd 186.720 12.957 165.347 0.027 165.276 -0.016 165.269 -0.020
4th 193.579 9.455 177.758 0.510 176.934 0.044 176.845 -0.007
5th 210.695 -0.773 211.947 -0.184 212.284 -0.024 212.290 -0.022

h = 1.8mm, a/h = 200

1st 79.518 -0.172 79.643 -0.015 79.645 -0.012 79.645 -0.012
2nd 168.516 12.744 149.579 0.074 149.455 -0.009 149.445 -0.016
3rd 278.783 12.533 247.703 -0.012 247.630 -0.042 247.626 -0.043
4th 289.969 9.370 266.368 0.469 265.199 0.028 265.075 -0.019
5th 315.534 -0.831 317.490 -0.217 318.014 -0.052 318.028 -0.048

h = 3.6mm, a/h = 100

1st 158.745 -0.217 159.007 -0.052 159.015 -0.047 159.021 -0.043
2nd 335.855 12.584 298.362 0.016 298.147 -0.056 298.143 -0.058
3rd 547.516 11.033 492.156 -0.194 492.253 -0.174 492.329 -0.159
4th 575.689 8.920 530.108 0.296 528.285 -0.049 528.125 -0.079
5th 625.699 -1.136 630.411 -0.392 631.654 -0.195 631.795 -0.173

h = 7.2mm, a/h = 50

1st 315.205 -0.392 315.827 -0.195 315.900 -0.172 316.008 -0.138
2nd 663.215 12.078 590.613 -0.192 590.427 -0.223 590.690 -0.179
3rd 1050.943 8.561 960.383 -0.794 961.955 -0.631 963.277 -0.495
4th 1119.373 7.240 1041.999 -0.172 1040.660 -0.301 1041.248 -0.244
5th 1211.952 -2.198 1226.579 -1.018 1230.753 -0.681 1232.638 -0.529

h = 18mm, a/h = 20

1st 751.861 -1.427 755.293 -0.977 757.387 -0.702 759.803 -0.385
2nd 1535.791 9.510 1384.939 -1.246 1390.375 -0.859 1396.516 -0.421
3rd 2220.724 2.720 2087.919 -3.423 2113.555 -2.237 2135.093 -1.241
4th 2386.528 -1.017 2360.049 -2.115 2383.038 -1.161 2399.265 -0.488
5th 2567.946 -5.992 2631.388 -3.669 2669.724 -2.266 2698.345 -1.218

h = 36mm, a/h = 10

1st 1315.695 -3.669 1334.862 -2.266 1349.181 -1.217 1357.486 -0.609
2nd 2535.580 4.994 2348.355 -2.759 2385.034 -1.240 2404.498 -0.434
3rd 3199.523 -3.304 3105.708 -6.140 3206.462 -3.095 3256.122 -1.594
4th 3405.693 -13.626 3752.480 -4.830 3881.464 -1.559 3931.196 -0.298
5th 3726.541 -9.417 3853.768 -6.324 3994.240 -2.910 4058.709 -1.343

The element is based on the Reissner-Mindlin plate theory and it should be able to provide natural frequencies at least
as well as the exact solutions for thicker plates, since the transverse shear is included in the plate formulation (Reddy,
1997). Nevertheless, this tendency of worse results in thicker plates can perhaps be explained by the use of the linear
interpolation functions employed by Sze et al. (1997) in approximating the shear strains, shown in Eqs. (6,7). Possibly
they do not characterize such strains properly, once the linear approximations may become inadequate as plates get
thicker.

5. CONCLUSIONS

The AST6 finite element was employed in the free vibration analysis of laminated plates. In most cases, the natural
frequencies results obtained presented good agreement with the exact solutions obtained by the Navier method, but with
some exceptions. The element had a tendency of providing worse results for thicker plates, despite being based on the
Reissner-Mindlin plate theory. The reason of this fact may lie in the approximations for the shear strains employed in the
element stiffness formulation, which are based in linear functions. They probably become inadequate as plates thicknesses
increase. Moreover, the AST6 also had some problems in calculating natural frequencies with coarser meshes.

The results presented for the quasi-consistent and lumped mass matrices formulations were similar in most of the cases
computed. This is not a new fact since, as commented earlier, the use of more complex mass formulations do not ensure
better natural frequencies results.
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