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Abstract. In this paper we deal with the problem of constructing reduced-order models for linear and nonlinear discrete
systems under random excitation. A Galerkin approximation is used to project the n-dimensional dynamics in a m-
dimensional subspace generated by a set of Karhunen-Loève modes, or Smooth Karhunen-Loève modes. The resulting
approximations are compared with each other and compared with the classical modal reduction technique based on the
linear normal modes of the underlying linear system. Linear and nonlinear mechanical systems are considered with
homogeneous and non-homogeneous mass distribution.
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1. INTRODUCTION

The Karhunen-Loève Decomposition (KLD) method has been extensively used as a tool for analyzing random fields,
[Holmes et al., 1996]. The KLD reveals some coherent structures which have been advantageously used in different
domains as, for example, the stochastic-finite-elements method, the simulation of random fields, the modal analysis
of nonlinear systems, and construction of reduced-order models. Depending on the discipline and the properties of
the random field under study, but also on the averaging operator used to build the KLD[Bellizzi and Sampaio, 2006,
Bellizzi and Sampaio, 2007], this decomposition has been named principal component analysis (PCA), proper orthogonal
decomposition (POD), or singular value decomposition (SVD). In structural vibration, the KLD has been principally
applied to the displacement field but it can be applied to either the displacement or the velocity field and, also, the
displacement-velocity field[Bellizzi and Sampaio, 2009].

Recently, a new multivariable data analysis method called Smooth Orthogonal Decomposition (SOD) has been pro-
posed by [Chelidze and Zhou, 2006]. The SOD is defined from a maximization problem associated to a scalar time series
of measurement but subject to a minimization constraint acting on the associated time derivative of the time series. The
SOD can be used to extract normal modes and natural frequencies of multi-degree-of-freedom vibration systems. Free and
forced sinusoidal responses have been considered in [Chelidze and Zhou, 2006] and randomly excited systems have been
analyzed in [Farooq and Feeny, 2008]. The Smooth Orthogonal Decomposition has been formulated in term of a Smooth
Karhunen-Loève Decomposition (SKLD) to analyze (time continuous) random fields in [Bellizzi and Sampaio, 2009b].
The SKLD is obtained solving a generalized eigenproblem defined from the covariance matrix of the random field and
the covariance matrix of its time derivative.

In this paper we deal with the problem of constructing reduced-order models for linear and nonlinear discrete me-
chanical systems with preserve the second order structure. A Galerkin approximation is used to project the n-dimensional
dynamics in a m-dimensional subspace. The efficiency of such an approach depends largely on whether the full solution
dynamics are essentially contained in the subspace spanned by the basis vectors. The reduced order models are obtained
using the set of Karhunen-Loève modes or smooth Karhunen-Loève modes. The resulting approximations are compared
with each other and compared with the classical modal reduction technique based on the Linear Normal Modes (LNM)
of the underlying linear system.

2. SMOOTH KARHUNEN-LOEVE DECOMPOSITION

Let {U(t), t ∈ R} be a Rn-valued random process indexed in R. We assume that {U(t), t ∈ R} is a second order
stationary process and admits a time derivative process {U̇(t), t ∈ R} which is also a second order stationary process.
With these assumptions, the covariance matrices of {U(t), t ∈ R} and {U̇(t), t ∈ R}, denoted RU = E(U(t)T U(t))
and RU̇ = E(U(t)T U(t)) respectively, do not depend on time. Without loss of generality, we will also assume that
{U(t), t ∈ R} is a zero-mean random process and that RU and RU̇ are symmetric positive definite.

2.1 Decomposition principle

The Smooth Karhunen-Loève Decomposition of {U(t), t ∈ R} aims at obtaining the most characteristic constant
vectors Γ in the sense that they maximize the ratio of the ensemble average of the inner product between U(t) and Γ and
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the inner product between U̇(t) and Γ

max
Γ∈Rn

E(< U(t),Γ) >2)
E(< U̇(t),Γ >2)

(1)

where <,> denotes the inner product in Rn.
Due to the stationary property, the objective function (1) reads as

max
Γ∈Rn

ΓT RUΓ
ΓT RU̇Γ

(2)

showing that the cost function is time independent and only depends on the covariance matrices of {U(t), t ∈ R} and
{U̇(t), t ∈ R}. The vectors which yields the maximum are solutions of the eigenproblem

RUΓk = σkRU̇Γk. (3)

The Smooth Karhunen-Loève Decomposition (SKLD) of the random field will then be given by

U(t) =
n∑

k=1

ζk(t)Γk (4)

where the vectors Γk solve the generalized eigenproblem (3) and the scalar random processes, ζk(t) are given by

ζk(t) =
ΓT

k RUU(t)
ΓT

k RUΓk

=
ΓT

k RU̇U(t)
ΓT

k RU̇Γk

. (5)

Note that the scalar processes {ζk(t), t ∈ R} can be defined from either RU or RU̇, that is they do not depend on which
one of this two covariance matrices is used.

For this definition, the following notation is used: the eigenvalues σk are called the Smooth Karhunen-Loève Val-
ues (SKLVs) (Σ = diag(σk)), the eigenvectors Γk are called the Smooth Karhunen-Loève Modes (SKLMs) (Γ =
[Γ1Γ1 · · ·Γn]), and the scalar random processes {ζk(t)} are called the Smooth Karhunen-Loève Components (SKLCs).

The generalized eigenproblem (3) is a statistical version (for continuous-time random process), of the generalized
eigenvalue problem introduced in [Chelidze and Zhou, 2006] to characterize the SOD, what constitutes a major difference.
In the definition (3) only the covariance matrices RU and RU̇ are used, no other operator is necessary. The idea comes
from [Bellizzi and Sampaio, 2009]. The results are, of course, similar to the ones presented in [Chelidze and Zhou, 2006,
Farooq and Feeny, 2008], but now, since one relies on the covariance matrices, one has a powerful computation tool, not
available before.

The objective function used to define the SKLD differs significantly from that used to define the classical Karhunen-
Loève Decomposition, [Bellizzi and Sampaio, 2006]. Here the denominator of the objective function takes the covariance
matrix of the time-derivative process {U̇(t), t ∈ R} into account (which justifies the name smooth KLD).

2.2 Some properties of the SKLD

2.2.1 Properties of SKLV, SKLM, and SKLC

The matrices RU and RU̇ being symmetric positive definite, all the SKLVs (eigenvalues) νk are strictly positive and
the set of the vectors Γk (the SKLMs) constitutes a basis which is orthogonal with respect to both covariance matrices
RU and RU̇. Note that the SKLM are unique up to a scaling constant.

The scalar processes {ζk(t), t ∈ R} are correlated

E(ζk(t)ζl(t)) =
ΓT

k RURURUΓl

ΓT
k RUΓkΓT

l RUΓl

=
ΓT

k RU̇RURU̇Γl

ΓT
k RU̇ΓkΓT

l RU̇Γl

. (6)

So, the SKLVs are not related to energy distribution and, of course, the SKLD does not satisfy the standard optimality
relationship. So, properly speaking, the SKLV is not a Karhunen-Loève decomposition. The introduction of regularity
has then its drawbacks.

2.2.2 Linear transformation of the SKLD

Let {V(t), t ∈ R} be a Rn-valued random process defined as

V(t) = AU(t) (7)
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where A is a square invertible matrix.
From the relationships

RV = ARUAT and RV̇ = ARU̇AT

it can be shown that the SKLVs of {V(t), t ∈ R} coincide with those of {U(t), t ∈ R} and the sets of the SKLMs
satisfy the condition

Γk(V ) = A−T Γk(U) (8)

where Γk(U) (respectively Γk(V )) denotes a SKLM of {U(t), t ∈ R} (respectively, of {V(t), t ∈ R}). Finally,
following (5), the SKLCs are invariant with respect to the linear change of variables if and only if AAT = I.

3. MECHANICAL INTERPRETATION OF THE SKLD

Consider a discrete linear mechanical system with n degrees of freedom governing by the equations of motion

MÜ(t) + CU̇(t) + KU(t) = F(t) (9)

where M, C, and K are n× n symmetric square matrices and the excitation vector, {F(t), t ∈ R}, is a zero-mean white-
noise random excitation (i.e., RF (τ) = E(F(t + τ)FT (t)) = SF δ(τ), where the intensity SF is a symmetric constant
matrix).

Let Φ = [Φ1 · · ·Φi · · ·Φn] the modal matrix defined from the Linear Normal Modes (LNM) (KΦk = MΦkΩ2
k with

the normalization conditions ΦT MΦ = I and Ω2 = diag(ω2
i )). Introducing the modal-displacement vector Q(t) with

U(t) = ΦQ(t) =
n∑

i=1

ΦiQi(t), (10)

the equation of motion (9) can be equivalently replaced by

Q̈(t) + ΘQ̇(t) + Ω2Q(t) = ΦT F(t) (11)

with Θ = ΦT CΦ.

3.1 SKLD and modal analysis

The objective of this section is to discuss the relationships between the SKLD of the steady-state response of (9) and
modal characteristics, normal modes and frequencies.

If the damping is proportional (i.e., ΦT CΦ = diag(2τiωi) is diagonal) and the matrix ΦT SF Φ is also diagonal (i.e.,
if the modal-excitation terms ΦT

i F(t) in Eq. (11) are uncorrelated) then (see [Bellizzi and Sampaio, 2009]) the covariance
matrices RQ and RQ̇ of the stationary responses {Q(t), t ∈ R} and {Q̇(t), t ∈ R} are diagonal. Hence the SKLM
associated to the process {Q(t), t ∈ R} are equal to the vector of the canonical basis of Rn and the SKLV are given by
the diagonal terms of the matrix R−1

Q̇
RQ which is equal to Σ = (Ω2)−1. Now using the linear relation (10), we can

easily deduce that the SKLVs of {U(t), t ∈ R} coincide with the SKLV of {Q(t), t ∈ R} and that the SKLMs of
{U(t), t ∈ R} are given by Γ = Φ−T . This relationship is determined up to a multiplicative constant.

It is interesting to note that, as indicated in [Chelidze and Zhou, 2006], no assumption on the mass matrix M is needed
to relate the LNMs to the SKLMs whereas the KLMs coincide with the LNMs only when the mass matrix is proportional
to the identity matrix (i.e. M = cI, where c is any positive real number). Moreover, if M = cI, then the SKLMs coincide
with the KLMs, hence, they both, of course, coincide with the LNMs.

To summarize, the SKLD has the nice property to give the resonance frequencies by the inverse of the SKLVs (char-
acteristic which is not easily to obtain from the KLD) and the normal modal vectors inverting the transpose of the SKLM
matrix.

3.2 Influence of the mass inhomogeneity on the SKLM

An interesting property of the SKLM is its sensitivity to the mass-inhomogeneity. Combining the following two
equations, Γ = Φ−T and ΦT MΦ = I, the SKLM matrix reads as Γ = MΦ and in case of mass-inhomogeneity, that is

to say when the mass matrix is diagonal, M =

 d1

. . .
dn

, then Γk = D.Φk where D = (d1, · · · , dn)T and "."

denotes the element-by-element product.
Each SKLM differs from a LNM by a scaling vector factor given by the mass-inhomogeneity.
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4. MODEL-REDUCTION PROCEDURE

Consider the equation of motion of a general n degrees of freedom dynamical system in the form

MÜ(t) + CU̇(t) + KU(t) + G(U(t), U̇(t)) = F(t) (12)

where M, C, and K are symmetric square matrices with dimensions n × n, G is a non-linear n-vector function of the
generalized vector U(t) and its derivatives and {F(t), t ∈ R} is a n-vector random process.

The model-reduction technique considered here is classical and preserves the second-order structure of the original
system. It may be viewed as a projection of the n-dimensional displacement field U(t) onto a m-dimensional subspace
Em with m < n.

Let (E1, · · · ,Em) be an orthogonal basis of Em, i.e. Em = span(E1, · · · ,Em). The projection matrix, PS onto the
subspace Em is defined by PS = ET ∈ Rm×n with E = [E1 · · ·Em]. In the full space the same projection is defined by
P = PT

S PS .
An approximation of U(t) is seeked in the subspace Em as

U(t) ≈ Um(t) = EQ(t). (13)

Substituting Eq. (13) into Eq. (12) and imposing that the residueR(U(t),Q(t))

R(U(t),Q(t)) = MEQ̈(t) + CEQ̇(t) + KEQ(t) + G(EQ(t),EQ̇(t))− F(t) (14)

is orthogonal to Em, the following reduced-order system can be deduced:

ET ME Q̈(t) + ET CE Q̇(t) + ET K EQ(t) + ET G(EQ(t),EQ̇(t)) = ET F(t). (15)

Applying this reduction procedure, it is necessary to keep in mind that generally the approximation Um(t) does
not coincide with the orthogonal projection PU(t) of U(t) in Em even for a linear system (G = 0) and using modal
subspaces. The procedure (13)(15) is also used when the set of vectors (E1, · · · ,Em) is non orthogonal this is the case
applying the modal troncature based on the linear normal modes of the underlying linear system when the mass matrix
differs from the identity matrix.

5. EXAMPLES AND METHODS

We consider a finite chain of n mass points with the first one linked by a linear spring to a fixed point, the others
consecutively linked one to the other, with the last one linked only to the previous mass. All the stiffness coefficients of
the strings are equal and their common value is 1. The mass values are denotesmi (mi > 0). The system can also include
isolated nonlinearities between consecutive masses of the form λi(Ui(t) − Ui−1(t))3 for i = 2, · · · , n. The associated
equations of motion is of the form (12) with

M =



m1 0 0 . . . 0 0
0 m2 0 0 0
0 0 m3 0 0
...

...
0 0 0 mn−1 0
0 0 0 . . . 0 mn


, K =



2 −1 0 . . . 0 0
−1 2 −1 0 0
0 −1 2 0 0
...

...
0 0 0 2 −1
0 0 0 . . . −1 1


(16)

and G which only depends on U(t) is easily deduced from the form of the nonlinearity. The damping matrix is chosen
to be C = 2τ1ω1M with τ1 > 0, which assures that the damping is proportional and fixes the damping ratio of the first
linear mode. Note that the linear version of this system has been discussed in [Farooq and Feeny, 2008].

Two excitation conditions will be considered:

• uncorrelated excitation: the system is excited by a standard vector-valued white-noise process with matrix intensity

SF = S0M, (17)

with S0 > 0. This choice ensures that, for all mass values mi, ΦT SF Φ = S0I is always diagonal.

• correlated excitation: the system is excited by a white-noise scalar process applied to the mass numbered iexcit, i.e.

F(t) = (0 · · · 010 · · · 0)T f(t) = Pf(t), (18)

with {f(t), t ∈ R} being a white-noise process with intensity S0 > 0. The intensity matrix of {F(t), t ∈ R} is
given by SF = S0PPT and hence ΦT SF Φ = S0(Φ1iΦ1j) is not a diagonal matrix.
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Based on the choice of E, different reduced models can be developed. Three families of vectors will be considered in
the next section:

• LNM: ELNM = [Φ1 · · ·Φm] where Φi denotes the linear normal modes of the underlying linear system;

• KLM: EKLM = [Ψ1 · · ·Ψm] where Ψi denotes the KL modes obtained from the steady-state response;

• SKLM: ESKLM = [Γ1 · · ·Γm] where Γi denotes the SKL modes obtained from the steady-state response.

The reduced-order models have to reproduce the steady-state response of the original system. The Power Spectral
Density Matrix (PSDM) function of the steady-state response will be considered to compare the efficiency of the reduced-
order models. The PSDM function SU (f) is defined as the Fourier transform of the stationary covariance function of the
steady-state response.

6. COMPARISON OF THE REDUCED-ORDER MODELS

In all the numerical simulation, n = 10, and the damping parameter is τ1 = 0.01.

6.1 Linear case (λi = 0 for i = 2, · · · , n)

The covariance matrices RU and RU̇ have been obtained solving the associated Lyapounov equations, an advantage
of our intrinsic definitions, [Bellizzi and Sampaio, 2006].

6.1.1 Uncorrelated excitation ((17) with S0 = 1)

Case 1: Homogeneous mass (mi = 1 for i = 1, · · · , n)

For this configuration, the three vector families: SKLM, KLM, and LNM coincide giving the same reduced-order
model. The Frobenius norm of the PSDM response of the full system is shown in Fig. 1 and compared with the PSDM
response of the reduced-order models obtained with m = 1 and m = 5. The reduced-order model corresponds to the

0 0.1 0.2 0.3 0.4 0.5
−2

−1

0

1

2

3

4

5

6

f (Hz)

L
o

g
1

0
(|

|S
(f

)|
|)

0 0.1 0.2 0.3 0.4 0.5
−2

−1

0

1

2

3

4

5

6

f (Hz)

L
o

g
1

0
(|

|S
(f

)|
|)

Figure 1. Frobenius norm of the PSDM response: full system (red continuous line), reduced model with m = 1 (left), and
reduced model with m = 5 (right). (LNM: blue dotted line, KLM: green dashed line, SKLM: black dotted-dashed line).

standard modal truncation used intensively in the industry for structural dynamics problem. The justification is that higher
modes generally have much less influence in the response of the system.

Case 2: Inhomogeneous mass (mi = 1 except m4 = 3)

For this configuration, the vector family SKLM differs from the LNM but also the vector family KLM differ from the
LNM (see Fig. 2). As mentioned in Section 3.2, each SKLM differs from the corresponding LNM by a scaling vector
factor (= diag(M) (see the dashed-dotted curves Fig 2). Only the first three KLMs are similar to the first three LNMs.
It is interesting to note the modes approximated from the SKLMs coincide with the LNMs as predicted by the theoretical
results, Section 3.1.

The Frobenius norm of the PSDM response of the full system is shown in Fig. 1 and compared with the PSDM
response of the reduced-order models obtained with m = 1 and m = 5. The behavior of the LNM reduced model and
the KLM reduced model are similar and reproduce correctly the full system around the resonance frequencies taken into
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Figure 2. Linear case with inhomogeneous mass and uncorrelated excitation: the LNMs (blue dotted line), the KLMs
(green dashed line), the SKLMs (black dotted-dashed line) and the modes approximated from the SKLMs (red solid line).
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Figure 3. Frobenius norm of the PSDM response: full system (red continuous line), reduced model with m = 1 (left), and
reduced model with m = 5 (right).(LNM: blue dotted line, KLM: green dashed line, SKLM: black dotted-dashed line).

account. One rather surprising finding obtained is the behavior of the SKLM reduced model. For m = 1, the resonance
peak does not coincide with a resonance frequency of the full system. Increasing m, the different between the resonance
peaks and the resonance frequencies of the full system persist to disappear completely for m = n, since now we have two
bases of the same space.

6.1.2 Correlated excitation ((18) with S0 = 1)

Case 1: Homogeneous mass (mi = 1 for i = 1, · · · , n)

For this configuration, the results are similar to the results obtained in the case of uncorrelated excitation. The three
vectors families: SKLMs, KLM and LNM coincide (see Fig. 4) and give only one reduced models (see Fig. 5).

Case 2: Inhomogeneous mass (mi = 1 except m4 = 3)

For this configuration, the vector families SKLM, LNM, and KLM are distinct as seen from Fig. 6. As mentioned in
Section 3.2, each SKLM differs from the corresponding LNM by a scaling vector factor (= diag(M) (see the dashed-
dotted curves Fig 2). New here is that each KLM differs from the corresponding LNM. It is interesting to note the modes
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Figure 4. Linear case with homogeneous mass and correlated excitation: the LNMs (blue dotted line), the KLMs (green
dashed line), the SKLMs (black dotted-dashed line) and the modes approximated from the SKLMs (red solid line).
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Figure 5. Frobenius norm of the PSDM responses of the full system (red continuous line), the reduced models with
m = 1 (left), and the reduced models withm = 5 (right). (LNM: blue dotted line, KLM: green dashed line, SKLM: black

dotted-dashed line).

approximated from the SKLMs coincide with the LNMs as predicted by the theoretical results, Section 3.1.
The Frobenius norm of the PSDM response of the full system is shown in Fig. 7 and compared with the PSDM

response of the reduced-order models obtained with m = 1 and m = 5. The behavior of the LNM reduced model
reproduces correctly the full system behavior around the resonance frequencies taken into account. One rather surprising
finding obtained is the behaviors of the KLM reduced model. For m = 1, the resonance peak does not coincide with
a resonance frequency of the full system. Increasing m, the different between the resonance peaks and the resonance
frequencies of the full system persist and disappear completely for m = n (not show here). The same comment can be
made for the behaviors of the SKLM reduced model as already noted in case of homogeneous mass.

6.2 Nonlinear case

We consider now a configuration with an homogenous mass, a local nonlinearity between the masses m5 and m6

with λ5 = 10 and an uncorrelated excitation. Due to the nonlinearity term, Eq. (12) was solved numerically using the
Newmark method with null initial conditions and a discretized white-noise trajectory. Eq. (12) was integrated over a long
time T = 6550 sec with the sampling frequency fe = 10 Hz. From the sampling trajectories, the covariance matrices
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Figure 6. Linear case with inhomogeneous mass and correlated excitation: the LNMs (blue dotted line), the KLMs (green
dashed line), the SKLMs (black dotted-dashed line) and the modes approximated from the SKLMs (red solid line).
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Figure 7. Frobenius norm of the PSDM responses of the full system (red continuous line), the reduced models with
m = 1 (left), and the reduced models withm = 5 (right). (LNM: blue dotted line, KLM: green dashed line, SKLM: black

dotted-dashed line).

RU and RU̇ were obtained using the classical time-average estimates (valid under the ergodic assumption). The same
numerical procedure (with the null initial conditions and the same excitation trajectory) was used to solve the reduced-
order models (14). The PSDM were estimated using Welch’s averaged modified periodogram method with a window
length of 4096 points (∆f = 0.0024 Hz) and without overlap.

The KLMs and the SKLMs are shown in Fig. 8 and compared to the LNMs of the underlying linear systems. The
KLM and the SKLM are very close except for the mode vectors 8 and 9. In fact, the eighth SKM are close to the nineth
KLM and the nineth SKM are close to the eighth KLM. The KLM and SKLM vectors 10 are only influenced by the local
nonlinearity.

The Frobenius norm of the PSDM response of the full system is shown in Fig. 9 and compared with the PSDM
response of the reduced-order models obtained with m = 1 and m = 5. The KLM and SKLM reduced-order models
give similar results and they approximate better the full system than the reduced-order model obtained with the LNM
of the underlying linear system for the low-freqency range. Moreover, the KLM and SKLM reduced-order models do
not reproduce the nonlinear effect (between 0.5 and 2 Hz) whereas a nonlinear effect is present in case of reduced-order
model obtained with the LNM but out of the range 0.5 to 2 Hz.
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Figure 8. Nonlinear case with homogeneous mass and uncorrelated excitation: the LNMs (blue dotted line) of the under-
lying linear system, the KLMs (green dashed line), the SKLMs (black dotted-dashed line).
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Figure 9. Frobenius norm of the PSDM responses of the full system (red continuous line), the reduced models with
m = 1 (left), and the reduced models withm = 5 (right). (LNM: blue dotted line, KLM: green dashed line, SKLM: black

dotted-dashed line).

The nonlinear effect can be reproduced with a reduced-order model based on the following familly vectors

EmodKLM = [Ψ1 · · ·Ψm−1Ψn] (19)

where the mth KLM has been replaced by the last KLM. The KLM Ψn (see Fig. 8) contain information about the local
nonlinearity, hence the reduced-order model constructed with it reproduces the nonlinear effect (see Fig. 10).

CONCLUSIONS

It was shown that the SKLD is nicely related to LNM independent of the mass matrix and that it gives also the natural
frequencies of a conservative linear system. This property indicates that the SKLD is an important tool for modal analysis.

However the reduced-order models constructed with the SKLD are not good. Except in the case of nonhomogeneous
mass, it is better to use KLM that besides having the property of best basis when m is fixed, they work very well also for
nonlinear systems. In this case, the reduced-order models constructed with KLM give better results that the reduced-order
models constructed with the LNM of the underlying linear system. Moreover, the behaviour of the reduced-order model
can be improve including in the set of vectors a KLM with small energy but containing nonlinear information.
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Figure 10. Frobenius norm of the PSDM responses of the full system (red continuous line), the reduced models with
m = 5 (right). (LNM: blue dotted line, KLM: green dashed line, modified KLM: black dotted-dashed line).

Acknowledgments

The authors gratefully acknowledge the financial support of CNPq, Faperj, and the French National Research Agency
ANR within the ADYNO project.

7. REFERENCES

Holmes, P. Lumley, J.L., Berkooz, G., 1996, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cam-
bridge University Press.

Bellizzi, S., Sampaio, R.,2006, POMs analysis of randomly vibrating systems obt ained from Karhunen-Loève expansion,
Journal of Sound and Vibration, Vol. 297, 774–793.

Bellizzi, S., and Sampaio, R., 2007, Analysis of randomly vibrating systems using Karhunen-Loève expansion, Pro-
ceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in
Engineering Conference, Las Vegas, Nevada, USA, 2007, paper 34431.

Bellizzi, S., Sampaio, R., 2009, Karhunen-Loève modes obtained from displacement and velocity fields: evaluation and
comparison, Mechanical System and Signal Processing, Vol. 23, pp. 1218-1222.

Chelidze, D., Zhou, W., 2006, Smooth orthogonal decomposition-based vibration mode identification, Journal of Sound
and Vibration, Vol. 292, pp.461–473.

Farooq, U., Feeny, B.F., 2008, Smooth orthogonal decomposition for modal analysis of randomly excited systems, Journal
of Sound and Vibration, Vol. 316, pp.137–146.

Bellizzi, S., Sampaio, R.,2009, Smooth Karhunen-Loève decomposition to analyze randomly vibrating systems, Journal
of Sound and Vibration, to appear.

Feeny, B.F., Farooq, U., 2008, A nonsymmetric state-variable decomposition for modal analysis, Journal of Sound and
Vibration, Vol. 310, pp.792–800.

8. Responsibility notice

The author(s) is (are) the only responsible for the printed material included in this paper


