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Abstract. This paper presents a new method of data compression using the energy of the signal in specific frequency 

bands, through the Wavelet Packet Transform (WPT). For this, we use an experimental bench where we collected the 

signs of the vibration of the gearbox with and without defects. The defects inserted  in the experimetal bench were 

related to failures in the roller cage and the external race  of the bearings. The normal condition or without defects was 

used for comparison with the conditions of failure. This study shows the possibility of application of WPT as an 

alternative technique for the extraction and compression of parameters, mainly in the diagnosis of faults introduced in 

rotating machinery. The formula of the Shannon entropy is used to quantify the energy of the signal in each frequency 

band of wavelet packet. The presence of failures in the machine indicates significantly altered levels of energy related 

frequencies of the defect. The results show that the analysis based on the decomposition of a signal by wavelet packet 

and the quantification of its energy in specific frequency bands allows the extraction and acquisition of information 

rather compact. These aspects are very important to control the vibration of mechanical systems, because a signal can 

quantify the maximum energy in the form compact and relate them to the frequency of the defect or the presence of 

pulses  
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1. INTRODUCTION  

 

In a scenario of growth and competitiveness, the market requires more of the industries, complex and sophisticated 

machines that must have a high degree of reliability. These machines should support continued work under high speed 

and effort. With this high level of productivity, any non-stop scheduled cause damage. Therefore, an improvement in 

the use of appropriate techniques of maintenance becomes essential. With a reliable system and monitoring the 

conditions of the machines can reduce the number of failures and unplanned maintenance activities, so that a reduction 

in time to stop the machines, a decrease in the cost of maintenance and operation, and consequently , an increase of the 

life of the equipment and the security level of components. Knowing the techniques for monitoring existing ones, 

improve them and develop new technologies mean a better quality of maintenance and consequently less time hours of 

downtime, (Brito, 2002). 

 Many programs for Predictive Maintenance and diagnostic systems used to condition the machine to identify and 

classify failures through vibration analysis (Zhang et al., 1996). This has been widely used in diagnosing faults and 

monitoring the condition of rotating machinery. What is not so widespread is the use of the Wavelet Transform, which 

presents itself as an excellent tool in vibration analysis, with some advantages in regard to accuracy, for the Fourier 

Transform. (Mamede, 1997) shows in his work results with signals measured in a gearbox, processed with the Wavelet 

Transform (TW). The analysis of these results shows that this tool is most appropriate for the location of components of 

short duration in non-stationary signals than the Fourier Transform, moreover, are used the Continuous Wavelet 

Transform -CWT and the Discrete Wavelet Transform with the functions Morlet, Gaussian and Deubechies.  

This paper presents a methodology for data compression using the energy of the signal in specific frequency bands, 

through the Wavelet Packet Transform (WPT) using real signals to study and diagnose faults in bearings mounted on a 

gearbox. Then applies to the Wavelet Packet Transform (WPT), the analysis of stationary signals, using real data, 

acquired through an accelerometer mounted on a gearbox, properly mounted in the experimental bench. The fault were 

introduced in the roller cage and the external race of two bearings that make the gearbox. The normal condition or 

without defects was used for comparison with the conditions with fault. This study shows the possibility of application 

of WPT as an alternative technique for the extraction and compression of parameters, mainly in the diagnosis of faults 

introduced in a rotating machinery. The formula of the Shannon entropy is used to quantify the energy of the signal in 

each frequency range of the wavelet packet, which can be changed due to flaws in the machine. 

 The results show that the analysis based on the decomposition of a signal by Wavelet Packet and quantification of 

its energy in specific frequency ranges allows the extraction and acquisition of information lot compact. These aspects 

are very important in controlling the vibration of mechanical systems, because a signal can quantify the amount of 

energy and relate it with the fault frequency or presence of pulses.  

  

2. WAVELET TRANSFORM 

 

One of the goals of the analysis of signals is to extract relevant information from a signal, be it state or non-

stationary. This is usually done using some transform. For stationary signals the spectral analysis or Fourier transform 
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(FT) is extremely useful because the frequency of the signal is of great importance. The Fourier transform of a signal 

x(t) is given by Eq. (2.1). 

 

                                                                                                                                           (2.1) 

The analysis of the coefficients X(f) defines the global frequency of the signal f(x). Moreover, there are many non-

stationary signals and transients, such as impact, shock, start and end of events, etc. These signals have characteristics 

that are often the most important part of the signal and Fourier Transform is not adequate to detect them (Rioul and 

Vetterli, 1991), (Lee et al., 1999). In an effort to correct this deficiency, Dennis Gabor in 1946 made the first adaptation 

of the Fourier transform to analyze only a small part of the signal in time (Misiti et al., 1997). This technique of 

windowing the signal is known as Short Time Fourier Transform (STFT). Mathematically, the STFT can be defined as 

a Fourier transform with a window in time and is a function of frequency f of the position, as Eq. (2.2). 

 

  (2.2) 

 

Where g(t) is a window function of the signal x(t), whose position is shifted in time. The STFT transform a signal in 

time domain in a two-dimensional function in time-frequency (f, b), which can be represented by a spectrum. 

There are some limitations associated with the STFT. One relates to the width of the window, whose value is 

constant for all frequencies, as shown in Fig. 2.1 (a). A large window (more samples) allows a good resolution in the 

frequency domain, but poor resolution in time domain and vice versa (Misiti et al., 1997). Then, the STFT is not 

possible to obtain a good resolution in time domain and frequency, simultaneously. Thus, the Fourier Transform of 

short-time introduces a scale, which is given by the width of the window, and analyzes the signal from the point of view 

of the scale. If the signal has important details out of scale, have problems in the analysis.  

To resolve this problem of the Fourier Transform of short duration, you must define a transformation that is 

independent of scale. This transform not use a fixed scale in the analysis, but vary the scale to avoid commitment to a 

specific scale. This is known as Wavelet Transform (WT). It allows a signal is analyzed with good resolution in time or 

frequency, as shown in Fig. 2.1 (b). For example, to close a window, it has a good resolution in time and low resolution 

in frequency. Moreover, a large window, it has good resolution in frequency and low resolution in time. 

 

  
 

 Figure 2.1 - Time-frequency resolutions of (a) STFT and (b) CWT (Santiago, 2004).  

 

The Wavelet Transform of (WT) is an improvement on the STFT because use is a technique that scales variables. 

The wavelet analysis allows the use of a smaller scale, when you want higher resolution of the information contained in 

the high frequency signal, and a larger scale when you want higher resolution of the information contained in the signal 

at low frequency. The frequency and scale quantities are inversely related, that is, a smaller scale implies a high 

frequency and vice and it turns (Staszewski and Tomlinson, 1994) and (Satish, 1998).  

The concept of scale in WT was introduced as an alternative to frequency, leading it to a breakdown of time and 

scale. This means that a signal can be mapped according to the scale and time. This is equivalent to mapping time and 

frequency, used in the STFT, through a spectrum. In fact, there is a correlation between the scale and frequency and 

wavelet transform may be regarded as a representation in time-frequency (Mori et al., 1996), (Ruzzene et al., 1997) and 

(Adewusi and Al-Bedoor, 2001). But which would be ultimately a wavelet? A wavelet is a wave of limited duration and 

has an average value equal to zero. The inevitable comparison is the original of a wavelet with a s sinusoidal, which is 

the basis of Fourier analysis. Sinusoidal are unlimited in time - they run from - ∞ to + ∞.  

Moreover, while sinusoidal are smooth and predictable, wavelets tend to be irregular and asymmetric. Fig. 2.2 

illustrates these differences. 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
 

Figure 2.2 - Comparison between a sinusoidal and a wavelet (db10) (Misiti et al., 1997) 

 

The analysis of Fourier is to decompose a signal in sinusoidal waves of various frequencies. Similarly, the analysis 

by wavelets is the decomposition of a signal in versions "displaced" and "spread" of the original wavelet (or mother 

wavelet). To see pictures of waves and wavelets sinusoidal, as illustrated in Fig. 2.2, it appears intuitively that signals 

with abrupt changes are potentially better analyzed with a typical and irregular wavelet than with a soft sinusoidal. 

Formally speaking, the majority of wavelets functions of interest are called "localized" both in time and in scale 

(frequency).  

This is characteristic of wavelets which enables applications such as compression of the signal, the focus of analysis 

for a specific region of the spectrum variant of interest in time, or the location of areas of greatest concentration of 

energy, among others. The analytical treatment for the analysis of wavelets includes the continuous wavelet transform 

and the discrete, and their inverse transformed. The continuous transform brings a great redundancy of information on 

the signal analysis, which makes it computationally uninteresting. The discrete transform is used, whether in its simplest 

version the multiresolution analysis is the version that allows for custom detailing the spectrum, which is the analysis 

by packets. 

 

2.1. Continuous Wavelet Transform 

 

The Continuous Wavelet Transform (CWT) of a signal x(t) is defined by Eq. (2.3).  
 

  (2.3) 

Where ψ(t) is the mother wavelet, ψ * is the complex conjugate of ψ(t) and  are 

wavelets daughters. The parameter a, called the scale, spread a function of compression or expansion, and b is the same 

as the STFT called the coefficient of translational and simply advances or retards the position of the wavelet in the time 

axis. The basic difference between the STFT and CWT CWT is that the use is a scale variable instead of a variable 

frequency in the STFT. Mathematically a delay function f(t) td of means represent it by f (t-td). The factor  is 

used to ensure that the energy of the wavelets is staggered by a factor of the same mother wavelet (Chan, 1996), (Chen 

et al., 1999). 

The results of the CWT are many wavelet coefficients C, which are a function of scale and position. Multiplying it 

by each wavelet coefficient corresponds appropriately scaled and shifted, we obtain the constituent wavelets of the 

original signal, as shown in Fig. 2.3: 

 

 
 

Figure 2.3 - Decomposition of a signal into its constituent components by CWT wavelets. 

 

The analysis by wavelets produces a long-range vision of a signal. As previously mentioned, the scales have an 

inverse association with the frequency of a signal. Basically, a wavelet scaling means stretch it or compress it.  

If the wavelet function is defined as a sinusoidal of frequency ω, for example, there is easily that the scale factor is 

exactly the inverse of ω. In general, therefore, the scale is related to the frequency content of the signal analysis by 

wavelets. 

Therefore, the CWT is the sum over the entire time domain signal by multiplying the staggered and displaced 

versions of a properly chosen wavelet. This process produces wavelet coefficients C which is a function of scale and 
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position (time). The higher C is, the more the similarity. More precisely, if the signal energy and the wavelet energy are 

equal to one, C may be interpreted as a correlation coefficient. 

 More precisely, if the energy of the signal and wavelet are energy unit, C can be interpreted as a correlation 

coefficient. Obviously the results depend on the shape of the wavelet chosen. The coefficients calculated for the 

different scales in different sections of the signal should be grouped in orderly manner, particularly when you wish to 

view these results on a graph. 

 

2.2. Wavelet Packet Analysis 

 

In the calculation of the CWT parameter scale and position changes continuously. However, the calculation of the 

wavelet coefficients for every possible scale can represent a considerable effort computational and a very large amount 

of data to be analyzed later.  

Thus, the use of the Discrete Wavelet Transform (DWT) becomes important because it allows the discretization of 

the wavelet scale based of two, that is in the scale, called a dyadic scale. Use this scale makes the implementation faster 

computing and data analysis very efficient. Therefore, the parameters a and b of Eq. (2.3) is replaced by 2
j
 and k2j 

respectively, and the DWT is defined by (Chui, 1992), as Eq. (2.4). 

 

  (2.4) 

 

Where,  are functions orthogonal wavelets, which constitute a basis of L
2
 (R) 

(Daubechies, 1988). Similar to the Fast Fourier Transform (FFT), there is an algorithm for implementation of DWT 

based on the rapid decomposition of Wavelet Transform (FWT), which is normally used and known as Multiresolution 

Analysis (MRA) of Mallat pyramid algorithm or the which was developed by Mallat in 1988 (Misiti et al., 1997), 

(Mallat, 1989). This algorithm uses a special filtering process to decompose the signal, where the contents of the low 

frequency signal is called the approximation, and the high frequency is called the detail. This process of filtering 

decomposes the original signal into approximations and details, and can be interpreted as low-pass filters and high-pass, 

respectively, as shown in Fig. 2.4. 

 

 
Figure 2.4 - Schematic diagram of the multiresolution analysis (Santiago, 2003). 

 

The multiresolution analysis consists of decomposing a signal in j-th levels or resolutions. The wavelet function 

ψ(j,k)(t) is correlated with a high-pass filter to provide the detail (coefficients) of the signal at different levels. In the 

multiresolution analysis is an additional function φ(j, k) (t), called a function of scale, which is correlated with the low-

pass filter to provide approximations of the signal at different levels. When j = 0, φ(j,k)(t) is the same as the original 

signal. In this analysis, is called the approximation and detail signal as Eq. (2.5) and Eq. (2.6). 

 
  (2.5) 

  (2.6) 

 

Where,   are orthogonal functions of scale and * denotes the convolution operation. 

How, φ(j, k) (t) and ψ (j, k) (t) are correlated through a pair of filters g(t) and h(t), they can be defined by Eq. (2.7) and Eq. 

(2.8). 

 
  (2.7) 

  (2.8) 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

Solving g(t) and h(t) of Eq. (2.9) and Eq. (2.10)  combining with equations (2.7) and (2.8) is obtained by the DWT: 

 

    (2.9) 

 
  (2.10) 

Or, rewriting them with other notation is obtained by the Eq. (2.11), Eq. (2.10), and Eq. (2.13) 

 

  (2.11) 

   (2.12) 

  (2.13) 

 

The calculation of the DWT is done using these expressions of decomposition of the signal, which are obtained with 

the Mallat algorithm based on multiresolution analysis. Where, n = 1,2 ..., N and  j = 1,2, .. J, H(n) and G(n) are low-

pass filters and high-pass, respectively (Wu and Du, 1996). In short, the theory of multiresolution can decompose a 

signal as follows: first, an original discrete signal at the first level is decomposed into two components A1 and D1 for a 

low-pass filter and a high-pass, respectively.  

The A1 is called the approximation signal and D1, is called the detail signal. For the second level, the approximation 

A1, is now split into a new approximation A2, and a detail D2. This procedure can be repeated for the third level, fourth, 

etc. Figure 2.5 shows the tree of the wavelet decomposition of a signal at three levels. A type of wavelet often used in 

the calculation of DWT of a signal, based on analysis of multiresolution is the wavelet of Daubechies. 

 

 
 Figure 2.5 - Tree of the wavelet decomposition of a signal at three levels (Santiago, 2003). 

 

Furthermore, the Wavelet Packet Transform (WPT) is a generalization of the discrete wavelet transform. While the 

DWT shown in Fig. 2.6 (a) decomposes the signal only at low frequencies, the WPT shown in Fig. 2.6 (b) breaks the 

signal into low and high frequencies. Each vector Aj has Nt / 2
j
 coefficients, where Nt is the length of the signal S, and 

provides information about a frequency band of  , and is the sampling frequency of the signal . Each node 

or packet WPT is indexed by a pair of integers (j, k), where j is the corresponding level of decomposition and k is the 

order of the position of packet in a particular level. At each level j, we have 2j and your order is k = 1,2 ..., 2j-1. For 

example, at j = 3 there are three 8 knots or packets. A vector of coefficients cj, k is the wavelet packet to each packet (j, 

k) and its length is approximately Nt / 2
j
. 

 

  
Figure 2.6 - Decomposition of the original signal with, (a) DWT and (b) Wavelet Packet. 
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Looking to Figure 2.6 (b), the vectors cj, k contains information of the original signal into different frequency bands. 

For example, if the sampling frequency of the signal is 16000 Hz, then the frequency band of analysis related to the 

vector c0, 0 is 0-8000 Hz. For c1, 0, 0-4000 Hz for c1, 0, 4000 -8000 Hz and c3, 0, 0-1000 Hz, and so on. One advantage of 

the WPT for the decomposition of the signal is that it can analyze the information contained in the sign, whether 

stationary or non-stationary at different time-frequency resolutions. Another advantage of WPT concerns the 

compression of information in the signal. For example, for j=3 Nt = 1024 samples, the vector c3, 0 has Nt / 2
j
 = 128 

samples and the same frequency band of 0-1000 Hz.  

Note that each packet cj, k WPT retaining information of the original signal in a compact. This fact is very important 

in analysis and signal processing, especially in diagnosis of failures, they can retain information only on the signal 

frequency band where the frequencies of failure appear. In practice, usually choose the packets that it retains more 

information if the original signal and discards the packets containing less important information and noise. For this, we 

use some criteria for selection of optimal packets. A widely used criterion is the criterion based on the quantification of 

energy in the signal (Scheffer and Heyns, 2001).  

In this work, it used the standard formula of the Shannon entropy to estimate the energy in the signal and each node of 

wavelet packet (Misiti et al., 1997), which is given by Eq. (2.14), where s is the signal and the sample itself is the signal 

at time i:  

 
 
 (2.14) 

 

It was concluded that the implementation of the Wavelet Packet Transform based on the quantification of the 

original signal energy in specific frequency bands allows the extraction and retrieval of information rather compact. As 

we shall see below. 

 

3. EXPERIMANTAL ANALYSIS 

 

This section presents a methodology for data compression using the energy of the signal in specific frequency bands, 

through the Wavelet Packet Transform (WPT), the analysis of stationary signals, using real data. This study shows the 

possibility of application of WPT as an alternative technique for the extraction and compression of parameters, mainly 

in the diagnosis of faults introduced in rotating machinery.  

 For this study, we used the experimental bench shown in Fig. 3.1. The experimental bench consists of a gearbox  

Flender SZN – 112[3], which is driven by electric motor[1] powered by a frequency inverter WEG CFW 09 with the 

rotation frequency of about 30.32 Hz and gearbox the engine is coupled through a flexible coupling of Flender [2] the 

mechanical brake Twiflex of  Tec Tor [4] is mounted on the output shaft of the reducer and acts as system load and is 

driven manually.  
 

 

Figure 3.1 - Experimental bench. 

The signs of vibration were collected for the accelerometer CMSS2200 SKF, and processed by the acquisition card 

of National Instruments model NIcRio-9215 and were finally analyzed in the Wavelet Toolbox of Matlab software. 

Bearings 33205 (SKF) and 30211J2 (SKF), mounted on the gearbox were replaced by two others of the same model, 

but had a defect in the roller cage and the external race. The normal condition or without defects was considered, for 

purpose of comparison. Figure 3.2, Fig. 3.3 and Fig. 3.4 show the spectra in acceleration envelope of the bearing 

30211J2 (SKF) in perfect condition, with the same defect in the roller cage and roller 30211J2 (SKF) with external 

defects on external race, respectively. 
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 Figure 3.2 - Envelope of acceleration of the bearing 30211J2 (SKF) in normal (no defect). 

 

 
 Figure 3.3 - Envelope of acceleration of the bearing 30211J2 (SKF) with defects in the roller cage. 

 

 
 Figure 3.4 - Envelope of acceleration of the bearing 33205J2 (SKF) with defects in the external race. 

 

In normal condition, Fig. 3.5 (a) shows the packet 1, the original signal composed of frequencies equal to 1x, 2x, 3x, 

4x etc.. Is the packet 3, which shows only the signal shown in the high frequency components and Figure 3.5 (b) there is 

such a machine excited frequencies with little energy. Figure. 3.5 (b) shows a representation of the global distribution of 

energy in all frequency bands specific. Observe that the energy contained in packets 2, 4 and 8 are higher because they 

relate to the frequency of rotation of the gearbox. While the energy contained in paragraph 9 relates to the harmonic 2x. 
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(a)                                                                              (b) 

 

Figure 3.5 - Normal condition, (a) Wavelet Packet and (b) Power Distribution. 

 

Similarly, the Fig. 3.6 (a) and Fig. 3.6 (b) show the wavelet packet and distribution of energy to the already bearing 

30211J2 (SKF) showing failure in the roller cage. Who determines which are the deterministic frequencies of failure of 

a bearing, is frequency of rotation of equipment and their fundamental frequencies, which are provided by the 

manufacturer of bearings. These two determine which frequencies will be excited by a particular type of failure. It is in 

this case, a defect in the roller cage 30211J2 SKF, the deterministic frequency of failure are formed by the frequency of 

rotation x 0.42225, and the harmonics of the product, where 0.422252 is fundamental frequency of failure for this 

bearing in specific. The frequency of rotation that reaches the gearbox is approximately 30.38 Hz, ie, using the 

calculations above we come to the following frequencies of deterministic fault: 12.83 Hz, 25.66 Hz, 38.49 Hz and 51.31 

Hz .  

Therefore, if the level of energy present in at least one of the frequencies above are changed, there is a great sign of 

failure in the roller cage. Figure 3.6 (b) shows that the level of energy in our 4, 5, 8, 9,10 e 11, which correspond to 

packets that include the frequencies that indicate failures are relatively changed in comparison with the situation 

without defect. This shows how failures change the energy level of nodes associated with the frequency of excitation. 

 

 
(a)                                                                        (b) 

 
 Figure 3.6 - Fault of the roller cage, bearing 30211J2(SKF); (a) Wavelet Packet and (b) Power Distribution.  

 

Finally, are represented in Figures 3.7 (a) and 3.7 (b) the wavelet packet and distribution of energy due to the fault in 

external race -33205J2 SKF bearing. They determine which frequencies will be excited by a particular type of fault. 

There is this case of a defect in the external race of the bearing, the deterministic frequency of fault are formed by the 

frequency of rotation x 6.36873 and the harmonics of the product, where 6.36873 is the characteristic frequencies of 

fault in the runway for foreign bearing in question. As the frequency of rotation of the reduction of approximately 30.38 

Hz, the above calculations result in the following frequencies of deterministic fault: 193.482 Hz, 386.964 Hz, 580.446 

Hz and 773.928 Hz So if the level of energy present in at least one of frequencies above there are indications of a 

possible defect in the bearing. Figure 3.7 (b) shows that the level of energy present in our 6, 7, 12, 13,14 and 15, which 

correspond to those that include the frequencies that indicate failures are relatively high. This shows how failures 

change the energy level of packets associated with the frequency of excitation. 
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(a)                                                                              (b) 

 

Figura 3.7 - Fault external race, bearing 33205J2(SKF); (a) Wavelet Packet and (b) Power Distribution.  

 

 

3. CONCLUSION 

 

The results show that the analysis based on the decomposition of a signal through the Wavelet Packet Transform 

(WPT) and in the quantification of energy of the signal in specific frequency bands allows the extraction and retrieval of 

information rather compact. These aspects are very important, first, to monitor the vibration of mechanical systems, 

because one can quantify the maximum signal energy in the form of compact and relate them to frequency of the defect 

or the presence of pulses, second, on tasks recognition of patterns with applications in neural networks. The WPT 

retains the original signal information so compact.  

This fact is very important in analysis and signal processing, especially in the diagnosis of faults, because you can 

retain information only on the signal frequency band where the frequencies of the faults appears. In practice, usually 

choose the packets that it retains more information if the original signal and discards the packets that contain noise and 

less important information. In this work, presents a new methodology for diagnosis of faults in rotating machinery. 

Finally, was the possibility of practical applications of this work in aid, for example, the predictive maintenance of 

equipment, and through monitoring of their conditions of operation predict and diagnose possible faults not desirable. 
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