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Abstract. Robust control deals with differences between the real system and the mathematic model explicitly during the
design stage. Such differences can be caused, for example, by modeling simplifications and faults in the system. In the case
of plants with uncertainties, on the assumption of a nominal model plant and a controller, it can be defined the concepts
of nominal stability and robust stability. In the nominal stability case, the controller only stabilizes the nominal model,
on the other hand, in the robust stability case, it stabilizes all possible process realizations within an uncertainty region.
The term "fault" designates any impairment of system components that may result in performance degradation or even a
complete stop of system functions. System faults can be classified as sudden, abrupt faults, or incipient faults. In the latter
case the system suffers a slow degradation. Implementing a fault tolerant system, that keeps its dynamic response inside
acceptable limits even under fault occurrence, is not trivial. In such case, the system can have its performance degraded
but must continue to be operational. There have been several proposal solutions to the fault tolerant control problem. The
proposal of this paper is to apply the TFL/LTR (Target Feedback Loop/Loop Transfer Recovery) robust control design to
a 3DOF hover didactic system with uncertainty model and abrupt faults caused, for example, by power loss. TFL/LTR
is a two step design procedure. In the first step, desired dynamics are defined for the controlled system (TFL). In this
paper a linear quadratic regulator technique that considers a control signal gain will be used to ensure stability margins.
These margins shall be defined so as to make the system robust to the abrupt faults. In the second step, a loop transfer
recovery method (LTR) is used so that the controlled real system has characteristics close to those of the target feedback
loop. Simulation results show that the control system under study has the intended robustness and fault tolerance.

Keywords: Robust control, Fault tolerant control, Model uncertainty

1. INTRODUCTION

The robust control problem has several proposed solutions, it consists of defining a control strategy that is capable
to tolerate mismatches between the nominal model and the real plant caused by, for example, modeling simplifications
and faults in the system. Then, the concepts of nominal stability and robust stability can be define as: in first case, the
controller only stabilizes the nominal model, and in second case, it stabilizes all possible process realizations within an
uncertainty region. Faults may introduce differences between the nominal design model and the real plant, such faults
can be sudden, abrupt, or incipient, in which the system suffers a slow degradation. A possible solution for the fault
tolerant control problem, it keeps its dynamic response inside acceptable limits even under fault occurrence, can be the
incorporation of robust stability.

There are various applications of robust control design available in the literature, it can be cited, for example, spacecraft
attitude control (Lahdhiri and Alouani, 1993), VSTOL flight control system (Zarei, 2006) and direct current motor control
(Gargouri et al., 2002). The objective of this paper is to apply TFL/LTR (Target Feedback Loop/Loop Transfer Recovery)
strategy presented in Prakash (1990), that consists of the combination of Amplified Linear Quadratic Regulator (ALQR)
and Kalman Filter to recovery the system, witch has favorably guaranteed stability margins.

This paper is organized as follow. Section 2 contains the system description. Section 3 presents the robust control
methodology. Section 4 describes problem formulation and control design. Section 5 shows the results. Finally, section 6
contains conclusion and proposed future work.

2. 3DOF HOVER DIDACTIC PLANT MODEL DESCRIPTION

The 3DOF Hover didactic plant, presented in Fig. 1, is formed by a frame with four propellers. Such system is
assembled on a pivot joint that enables rotations about the yaw, roll and pitch axes. The plant base is fixed to the
workbench, having sliprings which allow the free movement on the yaw axis with low friction. Each propeller generates a
lift force which is used to control the roll and pitch angles. Consequently, the torque resulting from the propellers rotation
causes the movement of the structure around the yaw axis. In the case of a controlled environment, with the four forces
balanced, the torque total is matched. In this study will be considered a simplified model of this system, as presented in
Quanser manual. When a positive voltage is applied to any motor, a lift force is generated causing a lifting of the whole
propellant system. The group formed by front and back motors (supply voltages given by vf and vb) causes the movement
on the pitch and yaw axes, while the lateral motors (analogously vr and vl) move the roll and yaw axes. The system has
three encoders which can measure the angular displacement in the three freedom axes of the plant from an initial position.
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Figure 1. 3DOF Hover didactic plant.

Assuming the system decoupled and linear (with the equilibrium point in which the propellants are aligned with the axes
X, Y and Z, Fig. 2), the pitch movement can be described as:

Jp
∂2p

∂t2
= lKf (vf − vb) (1)

where, Jp is the equivalent moment of inertia about the pitch axis, p is the pitch angle, l is the distance between pivot to
each motor and Kf is the propeller force-thrust constant.

In a similar manner, for the roll movement:

Jr
∂2r

∂t2
= lKf (vr − vl) (2)

in which, Jr is equivalent moment of inertia about the roll axis and r is the roll angle.
The torque generated by the front and back propellants is called τf and τb, and similarly, the torque generated by right

and left propellants are τr and τl. As shown in Fig. 2, the torque generated by lateral propellants has a reverse direction
in relation to the torque generated by front and back propellants. The yaw movement is given by:

Jy
∂2y

∂t2
= τf + τb + τr + τl (3)

Jy
∂2y

∂t2
= Kt,c(vf + vb) +Kt,n(vr + vl) (4)

in which Jy is the equivalent moment of inertia about the yaw axis, y is the yaw angle, Kt,n and Kt,c are constants that
relate the torque generated by propellant when a voltage is applied on the motor.

In short, the presented linear model is given by:

ẋ(t) = Ax(t) +Bu(t) (5)

z(t) = Cx(t) +Du(t) (6)

with

x(t)T = [y(t), p(t), r(t), ẏ(t), ṗ(t), ṙ(t)] (7)

and

u(t)T = [vf (t), vb(t), vr(t), vl(t)] (8)

Finally, the model matrices are:

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (9)
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Figure 2. 3DOF Hover dynamic system (based in Matos (2008)).

B =



0 0 0 0
0 0 0 0
0 0 0 0
Kt,c

Jy

Kt,c

Jy

Kt,n

Jy

Kt,n

Jy

l
Kf

Jp
−lKf

Jp
0 0

0 0 l
Kf

Jr
−lKf

Jr


(10)

C =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (11)

D =

 0 0 0 0
0 0 0 0
0 0 0 0

 (12)

The 3DOF Hover plant parameters are presented in Tab. 1 (Matos, 2008).

Table 1. 3DOF Hover parameters.

Symbol Value Unit
Kt,n 0.0036 N.m/V
Kt,c −0.0036 N.m/V
Kf 0.1188 N/V
l 0.197 m
Jy 0.110 kg.m2

Jp 0.0552 kg.m2

Jr 0.0552 kg.m2

3. CONTROL DESIGN METHODOLOGY: TFL/LTR TECHNIQUES

TFL/LTR ("Target Feedback Loop" and "Loop Transfer Recovery"’) is a general class of robust control design pro-
cedures (Prakash, 1990). It consists of two steps: firstly, the design of a feedback closed loop system (TFL step), with
the calculation of the constant TFL gain matrix Kr that specifies stability and robustness performance; and then, the LTR
step, the determination of the constant LTR gain matrix, Kf , to recovery the loop transfer.
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This work applies the PRI-version (“perturbation-reflected-to-input") design procedure presented in Prakash (1990)
that uses an amplified linear quadratic regulator (TFL step) and a Kalman filter (LTR step). The final control structure is
given by:

K(s) ≡ Ck(sI −Ak)−1Bk (13)

with

Ak = A−KfC −BKr (14)

Bk = −Kf (15)

Ck = −Kr (16)

3.1 Amplified Linear Quadratic Regulator (TFL step)

Considering a system described by:

ẋ(t) = Ax(t) +Bu(t) (17)

z(t) = Cx(t) +Du(t) (18)

For the case in which (A,B) is stabilizable and B is full rank, given a QTFL = QTTFL ≥ 0 matrix, with (A,
√
QTFL)

detectable and RTFL = RTTFL > 0, the regulator algebraic Riccati equation is given by:

PA+ATP +QTFL − PBR−1TFLB
TP = 0 (19)

this equation has only one solution P = PT ≥ 0. The square root of the matrix QTFL, a symmetric and positive
semidefinite (or positive definite) matrix, is obtained by:

QTFL = (
√
QTFL)

T (
√
QTFL) (20)

Finally, the amplified linear quadratic regulator (ALQR) gain, Kr, is:

Kr = (1/β)R−1TFLB
TP (21)

with 0 < β < 1. Therefore, the control signal is obtained by the amplification of the nominal controller LQR. The
guaranteed multivariable margins of ALQR can be established, which correspond to the gain/phase perturbations that can
be considered in all the inputs simultaneously or in an independent manner (Prakash, 1990).

For the particular case with QTFL > 0, Prakash (1990) demonstrates that the ALQR loop will be stable inside certain
margins, even if the system has poles in imaginary axis. Moreover, for this case, the guaranteed multivariable margins are
given by:

GGM = β/2,∞ (22)

GPM = ±cos−1(β/2) (23)

in which, GGM is the guaranteed gain margin and GPM is the guaranteed phase margin. This means that controlled
system can tolerate a complex perturbation diag(kiejθi) providing β/2 ≤ ki < ∞ and |θi| ≤ cos−1(β/2) with i =
1, ...,m and m the numbers of plant inputs (Prakash, 1990) (Skogestad and Postlethwaite, 1996).

3.2 Kalman Filter (LTR step)

In this study is used the LTR technique defined by Doyle and Stein (1981) apud Prakash (1990). In such case, the
LTR gain, Kf , is given by the Kalman filter gain, with the Kalman filter matrices QKF and RKF selected to recover the
system output, using QKF = q2BV BT and V an arbitrary symmetric positive definite matrix. For q → ∞ and if the
system model is minimum phase, the recovery tends to be exact.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 3. Singular values of the 3DOF Hover transfer function.

4. PROBLEM FORMULATION AND CONTROL DESIGN

The plant requirements asked by the ALQR method are considered: the pair (A,B) is stabilizable, the B matrix is full
rank and the system model is minimum phase. The singular values of the transfer function are shown in Fig. 3.

Conjecturing that exists dynamics disconsidered in high frequency, it is defined the following characterization model
for input uncertainties in the plant:

G(s) = Gnom(s)
1

1 + T1s
(24)

G(s) = Gnom(s)[I + E(s)] (25)

E(s) =
1

1 + T1s
− 1 =

−T1
1 + T1s

(26)

Gnom(s) = C(sI −A)−1B (27)

For T1 = 0.01, the error characterization is:

σmax[E(jw)] < em(w) =

∣∣∣∣ −0.01s1 + 0.01s

∣∣∣∣ (28)

To agree with the requirement of robust stability:

σmax[K(jw)G(jw)] <
1

em(w)
(29)

The control objectives are: to obtain an offset free system and to guarantee the robust stability for the defined model
uncertainty and abrupt faults caused by motor power loss. For the ALQR method it was defined the QTFL and RTFL
matrices:

QTFL =


1000 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.01 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01

 (30)

RTFL = 0.05×


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (31)
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So that (A,
√
QTFL) is detectable. Considering, for example, a power loss up to 60%, must be imposed a gain

multivariable margins of at least 0.4. So, it can arbitrate β = 0.8. The solution of the algebraic Riccati equation is:

P =


465.7728 0 0 108.4672 0 0

0 4.8697 −0.0000 0 1.1807 0.0000
0 −0.0000 4.8697 0 −0.0000 1.1807

108.4672 0 0 50.5211 0 0
0 1.1807 −0.0000 0 0.5750 −0.0000
0 0.0000 1.1807 0 −0.0000 0.5750

 (32)

Therefore, the gain Kr is

Kr = (1/β)R−1TFLB
TP =


−88.3883 12.5000 −0.0000 −41.1689 6.0871 −0.0000
−88.3883 −12.5000 0.0000 −41.1689 −6.0871 0.0000
88.3883 0.0000 12.5000 41.1689 −0.0000 6.0871
88.3883 −0.0000 −12.5000 41.1689 0.0000 −6.0871

 (33)

In LTR technique, it was selected q = 500, V as the identity matrix andRKF = 0.001I3 (I3 is a 3×3 identity matrix),
which results in the Kf matrix:

Kf =


2.4516 0 0

0 22.5221 0
0 0 22.5221

3.0051 0 0
0 253.6222 0
0 0 253.6222

 (34)

The control strategy was tested by simulations using MatLab 6.5 software, with the only mismatch between the design
model and the real plant is caused by power loss.

5. RESULTS AND DISCUSSIONS

The singular values of the 1
em

constraint (Eq. (29)) and the controlled system are shown in Fig. 4.

Figure 4. Robust stability requirement.

The performance of the system without and with a 60% power loss fault in all four motors, using the presented
TFL/LTR method controller (ALQR and Kalman filter), is shown in Fig. 5 and Fig. 6. In both cases, the steady-state error
converges to zero as required in the design procedures.
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Figure 5. Step response without power loss fault.

Finally, in the Quanser manual is proposed an LQR control strategy with a second order filter to estimate ẏ(t), ṗ(t)
and ṙ(t). The vector control gain and the filter are given by:

KLQR =


−61.2 111.8 0 −30.6 27.6 0
−61.2 −111.8 0 −30.6 −27.6 0
61.2 0 111.8034 30.6 0 27.6
61.2 0 −111.8034 30.6 0 −27.6

 (35)

H(s) =
ω2
cs

s2+2ζωcs+ω2
c

(36)

with ωc = 40π and ζ = 0.6.
To compare the robust stability performance of both techniques, in the case of multiplicative input uncertainty, it is

necessary to analyze their input complementary sensibility TI given by (Skogestad and Postlethwaite. 1996):

TI(s) = KcontrollerGnom(I +KcontrollerGnom)−1 (37)

Figure 7 shown that the proposed strategy has the input complementary sensitivity maximum value lower than Quanser
LQR one, which implies a better robust stability performance.

6. CONCLUSIONS

The method ALQR with the recovery method based on Kalman filter were applied to 3DOF Hover didactic plant and
fulfill the design requirements of robust stability performance. Moreover, this approach is favorably compared with the
a LQR strategy using second order filters to estimate the velocity variables. A proposal for future work is to applies this
control strategy in the real didactic plant.
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Figure 6. Step response with power loss fault .
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Figure 7. Singular value diagram for robustness analysis.


