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Abstract.  
Appropriate control techniques can be tuned to reduce the vibrations induced in High Speed Machining (HSM) due to 
the excitation of the vibration modes. Therefore, the present work proposes an estimation procedure to obtain the 
parameters for the low frequency model and the frequency of the first resonant mode. A feed drive with ball screw, 
lineal ball guides, brushless motor and a rotational encoder was used to run the experiments. First, the motor was 
excited with two different input signals: a train of frequency variable steps and a train of steps with modulated 
amplitude and constant frequency. The measured rotational position was then used to estimate the parameters for the 
low frequency model and a coulomb friction value using the least square technique. A set of estimates was performed 
with different torque amplitude for both signals, showing the best results for the modulated amplitude signal at the 
maximum torque. Afterwards, the motor was excited with a chirp signal running from 50 Hz to 280 Hz. The Fast 
Fourier Transform from the measured position shows a resonant frequency at 155 Hz, identified as the first vibration 
mode of this system. Therefore, the procedure was successful for the estimation of the low frequency model 
complemented with the coulomb friction and the location of the first resonant mode. This model can now be used to 
tune controllers with an adequate closed-loop bandwidth for HSM. 
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1. INTRODUCTION 

 
Servo-control loops manage the axes of machine tools based on requirements of velocity, position, and acceleration. 

The success of modeling and control techniques applied to this level sets the basis for production of parts with high 
quality as well as cycle time reduction, Hecker et al. (2008). Today, High Speed Machining (HSM) is possible due to 
the advances in cutting tools and spindle speed. Particularly, the axes of a machine for HSM require tracking of high 
acceleration and high jerk trajectories, which in turn demands high bandwidth closed-loops. However, this solution can 
excite the vibration modes of the system, inducing vibrations degrading the real trajectory and causing direct 
consequences on parts precision. 

Therefore, it is convenient to have a representative model in order to apply adequate control schemes to reduce these 
negative effects. This model must represent the system with a certain degree of complexity, which could vary 
depending on the particular application. There are several methods to obtain a model, including parametric or non 
parametric models. In the case of parametric models, some parameters can be measured directly, but some others are 
difficult to measure or can vary with time, such as Coulomb or viscous friction, therefore must be identified. 

In this case, the system is a linear positioning axis, which is composed by a brushless motor connected to a ball 
screw that drives a carriage, guided by lineal ball bearings. First, a rigid model plus a coulomb friction model are 
proposed and identified. Two type of signal were used, both at different levels of motor current. The estimated 
parameters where analyzed for each set of experiments and the optimal values were proposed, based on some priori 
parameter knowledge. The first vibration mode can be identified to augment the rigid model and then to tune an 
adequate controller, like notch filter, to avoid vibrations in high bandwidth closed-loops. Previous research shows that 
the first vibration mode of this kind of feed-drive systems can go from 65 Hz (Smith, 1999) to 349 Hz (Varanasi, 1999), 
where a bandwidth of at least 100 Hz is recommended for HSM. This work proposed to excite the system with a chirp 
signal and analyze the response with a Fast Fourier transform to identify the frequency of this resonant mode. 
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2. SYSTEM DESCRIPTION 

 
The system is a linear positioning axis, as it is shown in Fig. 1. It is basically composed by a brushless motor with a 

rotational encoder, a ball screw, a moving carriage and lineal ball bearings. 
The brushless motor has a maximum speed of 3600 rpm, a nominal torque of 3.53 Nm and a maximum torque of 

12,2 Nm. This motor is attached to a lead-screw drive, with a 10 mm/rev lead, which is fixed to the base by means of 
two bearings, a rigid one in one side and a floating one in the other side. The nut of the screw-drive is preloaded, in 
order to minimize backlash, and it is connected to the moving carriage by means of the nut holding. The moving 
carriage is guided by two linear bearings, which supports the top and side loads, and allows the carriage to move in a 
straight line. 

 
carriage

guideways

ball-nut screwrigid bearing

couplingmotor

     
 

Figure 1: System outline 
 

The motor has a rotational encoder that provides, in combination with the ball screw, 2.5 µm of resolution in the 
linear position. The mechanical system is connected to a real time control system that is mounted in an industrial PC, 
and serves as the connection between the user and the system. The control system consists of a PCI expansion board 
with an onboard processor that runs a real time operating system. The control system is connected to the hardware using 
an analog output to command the motor torque (by means of its power amplifier) and a quadrature encoder input in 
order to read the angular position of the motor. The analog output has a 12 bits resolution and the quadrature decoder 
has a 16 bits counter, expandable to 32 bits by software. 

 
3. LOW FREQUENCY MODEL 

 
The motor controller tries to set, in a closed-loop configuration, a motor current proportional to the input signal. In 

general, the bandwidth of this current closed-loop is much higher than the frequency range of interest of the mechanical 
system. Therefore, this dynamics is discarded and the input to the system is directly the motor current, or in this case, 
the motor torque. 

Now, a low frequency model that includes the viscous friction is considered. First, the rotational behavior of the 
system can be represented by 

 

c m rJ T B Tθθ θ= − −&& &  (1) 
 
where Jc is the combined inertia of the motor, the screw and the coupling, θ is the angular coordinate, Bθ is the 

rotational viscous coefficient, Tm is the motor torque, and Tr is the reaction torque applied by the carriage. Similarly, the 
linear behavior of the system can be represented by 

 
r x pM x F B x F= − −&& &   (2) 

 
where M is the carriage mass, Bx is the linear viscous coefficient, Fr is the reaction to the resistant torque applied by 

the carriage to the screw, Fp is a disturbing force, and x is the linear coordinate. 
The rotational and the linear equations are coupled by the screw-nut interface considering that r rT F r= , where r is 

the screw lead, and also tacking into account that r x θ= . Using these relations, Eq. (1) and Eq. (2) can be combined to 
obtain 

 

( ) ( )2 2
m c x p

x xT J r M B r B r F
r r θ= + + + +&& &   (3) 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
The transfer function from the motor torque to the linear position is found by applying the Laplace transform to  

Eq. (3) and considering that no disturbing forces are present (Fp=0) 
 

( )
( ) ( )m

X s r
T s s s J B

=
+

  (4) 

 
where J is the system combined inertia and B represents the system combined viscous coefficient, which can be 

written in terms of the previously defined parameters as follows 
 

2 2
c xJ J r M and B B r Bθ= + = +   (5) 

 
The continuous model represented by Eq. (4) is transformed to discrete variables using a Zero Order Hold to obtain 
 

1 2( )
( ) ( 1) ( )m

k z kX z
T z z z p

+
=

− −
  (6) 

 
where 
 

( ) ( )1 21 ln , 1 ln , and
ln ln

B T
Jr T r Tk p p k p p p p e

B p B p
−

= − + = − + − =  (7) 

 
and where T is the sampling time. Now, the model can be used to know the order of the system in a parametric 

identification process. 
 

3.1. Parameters estimation method 
 
In order to obtain the parameters of the low frequency model, a similar procedure as the one proposed by Erkorkmaz 

and Altintas (2000) is followed. This approach uses the Least Squares Estimation (LSE) method, but taking into account 
the Coulomb friction of the system. Therefore, the results from the estimation process are the values for the combined 
inertia, combined viscous friction of the system, and dynamic Coulomb friction. 

From Eq. (6), subtracting the Coulomb friction (Tf) from the motor torque (Tm) to generate the total effective torque, 
and writing past values of the variables affected by different order of unitary delays (z-1), the following equation in 
differences can be formulated 

 
( ) ( )( ) ( 1) ( 2) ( 1) ( 1) ( 2) ( 2)1 2(1 )k k k k k k km f m fx p x p x k T T k T T− − − − − −− + + = − + −  (8) 

 
that can be written in terms of x(k) as 
 

( ) ( 1) ( 2) ( 1) ( 2) ( 1) ( 2)1 2 1 2(1 )k k k k k k km m f fx p x p x k T k T k T k T− − − − − −= + − + + − −  (9) 
 
Now, this equation can be simplified defining the following variable 
 

( ) ( ) ( 1)k k kx x x −Δ = −   (10) 
 
At this point, the friction torque (Tf) is an unknown function that must be defined. For simplicity, this torque is 

assumed to follow a dynamic Coulomb friction model composed of constant values of torque opposite to the direction 
of movement, which can be mathematically represented as    

 
( ) ( )( ) ( )w k w kf din dinT T VP T VN+ −= ⋅ + ⋅   (11) 

 
where dinT +  and dinT −  represent the positive and negative constant friction torque, respectively, whereas VP and VN 

are two functions that depend on the velocity as follows 
 

( ) ( )
( ) ( )min min

( ) ( )
( ) ( )min min

1 1
0 0

k k
k k

k k

if if
VP VN

if if
ω ω

ω ω ω ω
ω ω ω ω

> − < −⎧ ⎧
= =⎨ ⎨≤ ≥ −⎩ ⎩

 (12) 
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where the parameter ωmin is a minimum non-zero velocity value that defines a dead zone of velocity around zero. 

This dead zone is defined to discard experimental values around zero where the velocity can be erratic due to 
calculations errors influenced by the system resolution. Furthermore, around zero velocity, friction becomes very 
complex as is described by the Stribeck curve, Armstrong et al. (1994), which is basically defined by static values of 
friction at very low velocities and their transition to dynamic values as the velocity increases.  

This work proposes to estimate only the dynamic fiction values composed by the dynamic Coulomb friction (Tdin) 
plus the viscous friction, the later effect included in the rigid model through the combined viscous friction coefficient 
(B). The remaining friction parameters around zero velocity can be addressed by an independent set of experiment.  

Using the friction model described by Eq. (12) and the variable defined in Eq. (10), Eq. (9) can be rewritten to 
obtain 

 
( )

( ) ( ) ( )

( ) ( 1) ( 1) ( 2) ( 1)1 2 1

( 1) ( 2) ( 2)1 2 2

k k k k w km m din

w k w k w kdin din din

x p x k T k T k T VP

k T VN k T VP k T VN

+
− − − −

− + −
− − −

Δ = Δ + + − ⋅ −

− ⋅ − ⋅ − ⋅
 (13) 

 
Now, a sequence of N samples for xΔ  can be measured for a commanded sequence of motor torque ( )mT  to write 

Eq. (13) in matrix form as 
 

= ⋅Y Φ θ  
  (14 
where Y, Φ y θ are defined as 
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 (15) 

 
That resembles the structure needed to implement the LSE algorithm, which states that the vector that minimizes the 

estimation error is found by (Franklin et al, 1998) 
 

( ) 1T T−
=θ Φ Φ Φ Y   (16) 

 
Once that θ (p k1 k2) is calculated, the transfer function in Eq. (6) can be obtained by replacing the identified 

coefficients. With this equation the continuous representation represented by Eq. (4) can be found, by using the Matlab 
function D2C, from where the values of J and B can be calculated, where the screw lead (r) is a known parameter. 

On the other hand, the values of the dynamic Coulomb friction (both positive and negative) can also be obtained; 
they can be calculated by the following equations, based on the identified data 

 

1 2 1 2

1 2 1 2

din din din din
din din

k T k T k T k T
T T

k k k k

+ + − −
+ −⎛ ⎞ ⎛ ⎞− − − −
= − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (17) 

 
3.2. Experiments and results 

 
A set of experiments were conducted to get data for the identification process. Two types of exciting signals were 

used: One consisting of a series of steps of varying sign and height (as proposed by Erkorkmaz and Altintas, 2000); and 
the other consisting on a series of steps of varying sign and frequency, but with constant height. Both types of signals 
can be seen in Fig. 2. 
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Figure 2: a.Varying Height and b.Varying Frequency Exciting Signal 

 
These signals were applied to the system, with different values of maximum current, i.e.: 1 A, 1.5 A, 2 A, 2.5 A, 3 A, 

3.5 A, 4 A and 4.5 A. For each signal the continuous parameters of the system were estimated (combined inertia J and 
combined viscous friction B). The comparison for the parameters obtained with each exciting signal is shown in Fig. 3. 

 

 
Figure 3: J and B model’s parameters obtained with the exciting signal,  

varying the maximum motor current 
 

It can be seen in Fig. 3 that, for both signals, the parameters identified (J and B) seem to stabilize at a given value as 
the applied torque is increased. It can be also seen that for currents over 2.5 A (for the frequency varying signal) and 
over 3.5 A (for height varying signal) the identified values tend to increase, but this was found to correspond to a motor 
speed saturation, which introduces a non-linearity into the system, therefore, these values are not considered for 
conclusions. 

Additionally, Fig. 3.a shows the theoretical value for the combined inertia (“calculated” line), which was calculated 
using Eq. (5) and reliable data for each component from the manufacturers. However, the combined viscous friction, 
coming mainly from the viscous friction of ball screw and ball bearing guides, can not be calculated in the same way 
because it is not provided by the manufacturer.  

Therefore, from the inertia plot, it can be seen that the signal with steps of varying height is the one that best 
approaches the theoretical inertia for this system at a current of 3.5 A, so it can be concluded that this type of signal is 
the best between both signals. Consequently, the combined viscous friction was estimated from Fig 3.b using varying 
height signal with a maximum current of 3.5 A. The identified values are resumed here as 

 
4 2 4 2ˆ ˆ ˆ ˆ8,885 10 6,061 10 0,605 0,620din dinJ kg m B kg m T Nm T Nm− − + −= ⋅ = ⋅ = =  (18) 
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where the friction parameters were estimated using Eq. (17), also with the data from the signal of varying height at 

3.5 A. 
 

4. FIRST VIBRATION MODE IDENTIFICATION 
 
The system was excited with a high frequency signal to identify the first vibration mode. The signals were applied 

during a short period of time, while the position and velocity were measured. After that, a Fourier Transform analysis 
was applied to the position and velocity data, to determine the frequency of the vibration mode. 

As an excitation signal, a chirp type signal was used, commanded directly to the motor current amplifier. This kind 
of chirp signal was suggested by various authors, such as Ljung (1999) and Franklin et al. (1998), and can be generated 
using the following equation 

 

( ) ( )
max

max

max max max
max

max
max max

max

0

sin 1 (1 )

(1 )

e s
ref i i s

t t a t
a t

T T K t K a t t a t
t

t t
a t t t

a t

ω ω
ω ω ω

⎧ ≤ ≤ ⋅⎪ ⋅⎪− ⎪= = + = ⋅ < < − ⋅⎨
⎪ −⎪ − ⋅ < <

⋅⎪⎩

 (19) 

 
where Tref is the reference motor torque function, Tmax is the maximum motor torque, ωi is the instant frequency, 

which starts at ωs and ends at ωe, K is the modulation function that is defined by the total signal time (tmax) and the 
percent of the total time that the signal is modulated (a). The instant frequency (ωi) of the signal (Tref) varies linearly 
with time, and the amplitude is modulated at the beginning and the end by the saturation function K.  

This kind of signal generates a frequency window of constant excitation in the range of interest, as Fig. 4 shows.   
 

4.1. Experiments and results 
 
For the identification of the first resonant mode of the system, chirp type signals were used, as described before. To 

do this, it is necessary to define the chirp parameters like: Starting and ending frequency, maximum torque, total time, 
and modulation. 

 

 
Figure 4: a.FFT of the excitation signal, b.The angular position,  

and c.The angular speed, respectively. 
 
In order to identify the first vibration mode, the window of excitation frequency should be in the range of this 

expected resonant mode. To have some rough idea about the frequency of the vibration mode a detailed model of the 
system was simulated. This model, developed by Vicente et al. (2007), takes into account the first four axial vibration 
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modes and the first four angular vibration modes of the system, and the coupling between them. Using this model it was 
found that the frequency of the first resonant mode is about 167 Hz, for the carriage positioned at the center of the axis. 

With the approximated information of the vibration frequency, the starting and ending frequency (ωs and ωe) were 
chosen to be 50 Hz and 280 Hz respectively. The maximum torque of the signal was fixed at 3.55 Nm (5 A). The total 
length of the experiment was limited to 2.4 s, with a sampling time of 0.3 ms, and the initial and final modulation was 
about 2 % of the experiment time. Using the defined parameters in Eq. (19), a chirp type toque signal was generated 
whose frequency spectrum is shown in Fig 4.a. 

As can be seen in Fig. 4.a, the selected chirp signal has a constant excitation window between 100 Hz and 460 Hz 
approximately, and a smooth transition from these values to zero excitation. Therefore, the FFT plots of the angular 
position and angular velocity are analyzed only in this frequency window of constant excitation, on which the first 
natural mode is expected according with the model simulations.  

Clearly, the FFT plot for the angular position, Fig. 4.b, shows a peak at 155 Hz in the specified frequency window. 
The same conclusion can be drawn from the angular velocity plot, Fig 4.c. This frequency value is very close to 167 Hz 
that is predicted by the model as the first resonant mode with axial predominance. Therefore, there is enough 
confidence to confirm that this mode is at 155 Hz.  

The experiment was repeated varying some parameters, like starting and ending frequency and sampling time, and 
in all cases a peak at 155 Hz was observed. It should be note that all the experiments were made with the carriage in the 
center of the positioning system, so the resonant frequency identified will be for that position.  

In this way, the rigid model can be augmented with the information of the first natural model, to complete a model 
valid up to 400 Hz, which is enough to tune controller of axis for high speed machining. 

  
5. CONCLUSIONS 

 
A method to identify a low frequency model, including the dynamic Coulomb friction, of a linear feed drive system 

was presented. This method was tested experimentally using different excitation signal, where the best set of identified 
parameters was obtained for an excitation signal given by steps of constant frequency and modulated amplitude, at the 
maximum motor current without motor speed saturation. 

Alternatively, the frequency of the first vibration mode was obtained to augment the rigid model. The first resonant 
mode was clearly observed in the FFT of the velocity and the position signals for a convenient excitation signal. 

The augmented model of the system in this work can be used to select and tune control techniques for feed-drives 
requiring high bandwidth closed-loops. 
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