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Abstract. The ability to develop complex products is a feature commonly required from modern engineering. The increasing 

complexity and size of some projects requires a suitable tool to address the subject effectively. Some authors define “engineering” as 

the application of mathematical and scientific principles. In this context, the ability to propose, execute and improve complex 

planning schedules is of paramount importance. A basic schedule is a general guidance for preparing and releasing various types of 

technical plans. These documents include technical management plans (such as hardware development plans, software development 

plans, configuration and data management plans, and risk management plans), supporting technical plans (such as system safety 

plans, manufacturing plans, and system support plans) and test plans (such as system integration, test, and verification plans and 

hardware and software test plans), to cite some. Due the relevance of the theme when dealing with complex projects, in this paper a 

methodology for task planning, analysis and optimization is proposed. A draft planning containing task dependence, time duration 

and used resource may be provided by the manager. The proposed framework is able to import such information from commercially 

available management software. The schedule is then translated as an optimization problem, where the overall time is the objective 

to be minimized. Resource allocation and risk management are considered by means of weighting factors. Pareto framework is 

considered in order to provide visibility of alternative scenarios. The proposed formulation considers different task priorities of the 

optimal planning. As a result, relevant information about optimal scheduling and sensitivity of alternative scenarios is provided. 

Numerical results show the viability of the proposed methodology.  
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1. INTRODUCTION   
  

Nowadays, more than ever, companies want to deliver products and services better, faster, and cheaper. At the same 

time, in the high-technology environment of the twenty-first century, nearly all organizations have found themselves 

building increasingly complex products and services. 

In this context, a single company usually does not develop all the components that compose a product or service. 

More commonly, some components are built in-house and some are acquired; then all the components are integrated 

into the final product or service. Organizations must be able to manage and control this complex development and 

maintenance process. 

A key point to achieve better performance is the project planning. 

According to Capability Maturity Model Integration for development (CMMI, 2006), at maturity level 2, the 

projects of the organization have ensured that processes are planned and executed in accordance with a given policy. 

The process discipline reflected by maturity level 2 helps to ensure that existing practices are retained during times of 

stress. At the last level, the maturity level 5, an organization continually improves its processes based on a quantitative 

understanding of the common causes of variation inherent in processes. Maturity level 5 focuses on continually 

improving process performance.  

Quantitative process improvement objectives for the organization are established, continually revised to reflect 

changing business objectives, and used as criteria in managing process improvement.  

It motivates the development of a tool for fast analysis of changes in planning. The current paper proposes a new 

formulation for optimization of an arbitrary planning project. Based on a linear programming model, the current 

purpose ensures the global optimality independent of the initial configuration. Low CPU time is another attractive 

feature of the current purpose. 

The remainder of the paper is organized as follows. Section 2 reviews some works in this field and presents a widely 

adopted classification for planning and scheduling problems. Linear programming framework, multiple objective 

optimization and the proposed model to scheduling problems are presented in section 3. Section 4 analyses performance 

results of the proposed strategy. Concluding remarks and directions for future works are given in section 5. 

 

2. PROJECT PLANNING  
 

The theory of scheduling is characterized by large number of problem types (Baker, 1974), (Blazewicz et al., 1996), 

(Coffman, 1976), (Conway et al., 1967), (French, 1982), (Lenstra, 1977), (Pinedo, 1995), (Rinnooy Kan, 1976), 

(Tanaev et al., 1994), (Tanaev et al., 1994). A classification scheme widely used in the literature is presented by (Lawler 

et al., 1993).  
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Suppose that n jobs Ji (i=1,...,n) have to be processed on m machines Mj (j=1,…,m). It is admitted that each machine 

can process one job at a time and that each job can be processed on at most one machine at a time. Job, machine and 

scheduling characteristics are reflected by a 3-field problem classification α | β | γ (Graham et al, 1979). 

The job data Ji is usually specified through a number of operations mi, processing time pi, a release date ri, on which 

Ji becomes available for processing, a due date di, by which Ji should ideally be completed and a weight wi, indicating 

the relative importance of Ji. 

The measuring the cost fi(t) incurred if Ji is completed at time t is given by a nondecreasing real cost function fi. In 

general, mi, pi, ri, di and wi are integer variables. 

A batch processing machine is one that can handle up to B jobs simultaneously all the time. The jobs that are 

processed together form a batch, and all jobs contained in the same batch start and complete at the same time since the 

completion time of a job is equal to the completion time.  

The works of Santos and Magazine (1985) and Tang (1990) purpose integer programming formulations and some 

procedures to determine optimal batches of jobs for a single-stage production. Ikura and Gimple (1986) address the 

problem of scheduling batch processing machines from a deterministic scheduling perspective. Ahmadi, al et. (1992) 

examine a class of problems defined by a two or three machine flowshop where one of the machines is a batch 

processing machine. Another works on batching and scheduling includes Coffman, Nozari and Yannakakis (1989), 

Julien and Magazine (1989), to cite some. 

The Job-Shop Scheduling Problem (JSP) is one of the most popular manufacturing optimization models (Jain and 

Meeran, 1999).  

The interest is partially justified by its wide applicability and inherent difficulty (Carlier and Pinson, 1989), 

(Kolonko, 1999), (Nowicki and Smutnicki, 1996), (Yamada and Nakano, 1996). 

It is known also that the JSP is NP-hard (Garey et al., 1976), and hence generally difficult to solve as the problem 

size grows larger. 

The � × � classical JSP involves n jobs and m machines. Each job is to be processed on each machine in a pre-

defined sequence, and each machine processes only one job at a time. 

Some features of the JSP significantly increase the complexity of finding optimal solutions (Pinedo and Chao, 

1999). 

Heuristics search methods, such as Genetic Algorithms (Kacem et al., 2002), Simulated Annealing (Kolonko, 1999) 

and Tabu Search (Nowicki and Smutnicki, 1996) are some approaches to overcome such difficulty. The counterpart of 

such approach is the expense of a big computational cost, particularly when the problem is large in size. 

A kind of dispatching rule has been proposed to reduce the computational cost (Panwalkar and  Iskander, 1977), 

(Blackstone et al., 1982), (Holthaus and Rajendran, 1997). Although the quality of solutions produced by dispatching 

rules is usually no better than the local search methods, they are attractive due to their ease of implementation and low 

CPU time. 

The shop scheduling problems, such as open shop problems, flow shop problems, job shop problems, and mixed 

shop problems, are widely used for modeling industrial production processes. All of these problems are special cases of 

the general shop problem. 

The general shop problem may be defined as follows. Consider n jobs i = 1, ..., n and m machines M1, ..., Mm. Each 

job i consists of a set of operations Oij (j = 1, . . . , ni) with processing times pij . Each operation Oij must be processed on 

a machine µij ∈ {M1, ..., Mm}. There may be precedence relations between the operations of all jobs. Each job can only 

be processed only by one machine at a time and each machine can only process one job at a time. The objective is to 

find a feasible schedule that minimizes some objective function of the finishing times Ci of the jobs i = 1, ... , n. The 

objective functions are assumed to be regular. 

Some scheduling problems can be solved efficiently by reducing them to well-known combinatorial optimization 

problems, such as linear programs, maximum flow problems, or transportation problems. Others can be solved by using 

standard techniques, such as dynamic programming and branch-and-bound methods. 

In the current paper is proposed a linear programming formulation to solve the scheduling problem, as presented in 

the following. 

 

3. OPTIMIZATION 
 

3.1 Linear programming 
 

A linear program (LP) is an optimization problem in which the objective function is linear in the unknowns and the 

constraints consist of linear equalities and linear inequalities. Any linear program can be transformed into the following 

standard form: 

 

min c	x	 + c�x� + ⋯ + c�x� (1) 

 

Subject to 
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a		x	 + a	�x� + ⋯ + a	�x� = b	  (2) 

a�	x	 + a��x� + ⋯ + a��x� = b�  

… 

a�	x	 + a��x� + ⋯ + a��x� = b� 

x	 ≥ 0, x� ≥ 0, … , x� ≥ 0  (3) 

 

where aij, bi, and ci are real constants and xi are the design variables. 

In the present context design variable is time for completing each task. Objectives are the time when the project is 

finished and the associated cost.  

Since multiple objectives will be analyzed in a unified formulation, a theory about multiple objectives is considered. 

 

3.2 Multi-objective optimization 

 
A multi-objective optimization problem can be written in the form  

 

min[�	���, �����, … , �����]  (4) 

 

for k objective functions ��: ℝ! → ℝ subject to equality and inequality constraints. For the vector of decision variables, 

� = [�	, ��, … , �!]#, the task is to determine the set F of all vectors which satisfy the constraints and the particular set 

of optimal values �∗ = [�	
∗, ��

∗, … , �!
∗ ]#. 

Since there are several objectives to be optimized simultaneously, usually there is no longer a single optimal 

solution but rather a whole set of solutions. When several objectives are optimized at the same time the search space 

becomes partially ordered. To obtain the optimal solution there will be a set of optimal trade-offs between the 

conflicting objectives. 

In this context, best solution means a solution not worst in any of the objectives and at least better in one objective 

than the other. An optimal solution is the solution that is not dominated by any other solution in the search space. Such 

an optimal solution is called a Pareto-optimal and the entire set of such optimal trade-offs solutions is called a Pareto- 

optimal set. 

The publication of Kuhn–Tucker (1951) is one of the first rigorous mathematical treatments about Pareto 

Optimality. The work of Koopmans (1951) initiated the use of Pareto optimality in operations research. Today a number 

of papers and books on the subject are found. 

Even though there are several ways to approach a multi-objective optimization problem, most work is concentrated 

on the approximation of the Pareto set. 

Given a set of alternatives, the problem of choosing the best alternative depends on the way the data is classified. 

One of the most popular evaluation methods is to associate to each alternative a real value, and the best alternative is 

chosen as the one with the largest or the smallest value. 

In a higher dimension the notion of the smallest and the largest values is not available. In this case, the concept of 

partial order in a multidimensional space can be applied. 

An up-to-date discussion about this subject is presented in Pardalos and Du (2008). 

 

3.3 Weighting objective formulation 
 

     To formulate the performance criterion that takes into account all the objective functions in such a way that an 

overall multi-criterion objective function can be written, the Weighting Objective Method is used. The minimization 

process leads to a Pareto optimal solution or, alternatively, to a set of optimal solutions. The scalar objective function 

that represents the performance criteria altogether is written as:      

 

%��� = ∑ '�������
�(	  (5) 

    

where α
i 
≥ 0 are weighting coefficients that represent the relative importance of each separate criterion. From the 

numerical point of view the minimization process depends also on the numerical values that express the objective 

functions. Due to scaling problems, the numerical values that express the objective functions should be adjusted. 

Otherwise, α
i
 will not represent the relative importance of the objective functions (Deb, 2001). Consequently, Eq. (5) 

should be rewritten as follows: 
 

%��� = ∑ )�������
�(	  (6) 
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where )�
  are scaling factors. Usually, satisfactory results are obtained if )� =

*+

,+
-, where ��

. represents the minimum of 

the objective function fi calculated separately (Eschenauer et al, 1990). Eq. (6) was used in the optimization processes 

shown in this paper. 

 

3.4 Proposed formulation 

 
Suppose that m resources Mj(j = 1, ..., m) have to perform n tasks Ji(i = 1, ..., n). A schedule is for each task an 

allocation of one or more time intervals to one or more resources. Schedules may be graphically represented by Gantt 

charts, which may be resource-oriented or task-oriented. The corresponding scheduling problem is to find a schedule 

satisfying certain constraints. 

Each task has a start time ts and a time duration td. It is supposed that an amount of resource r is required to perform 

the task in a given period. 

Furthermore, precedence between tasks are also taken into account, that is, /0,� ≥ /0,1 + /2,1 for some indexes i and j. 

All these facts can be modeled through the equations 

 

min /0,!3	 (7) 

 

Subject to 

 

/0,� ≥ /0,1 + /2,1 ,  for some : and < (8) 

/0,!3	 > /0,1 + /2,1, < = 1, … , � (9) 

/0,1 ≥ 0, < = 1, … , �  (10) 

 
By considering the cost wc of each task inversely proportional to its time duration, that is,  

 

)?,1 =
�@

AB,@
  (11) 

 

it is possible to reduce the cost by increasing its time duration. The parameter kj is a given constant. Such expression 

means that larger the time, smaller the cost, and on the other hand, smaller the time, bigger the cost. The optimization 

problem can be rewritten as 

 

min /0,!3	 − ∑ /2,1
!
1(	    (12) 

 

Subject to 

 

/0,� ≥ /0,1 + /2,1 ,  for some : and <   (13) 

/0,!3	 > /0,1 + /2,1, < = 1, … , �   (14) 

/0,1 ≥ 0, < = 1, … , �   (15) 

 
This multi-objective formulation considers two conflicting objectives in a single equation. The first objective 

 

�	 = /0,!3	  (16) 

 

represents the project termination and will be minimized. Simultaneously, the second objective 

 

�� = ∑ /2,1
!
1(	   (17) 

 

compute the duration of individual tasks and will be maximized. This quantity is maximized to implicitly reduce the 

associated cost. 

From objective functions f1 and f2 follows that the design variable is the time td to perform each task. They are 

bounded by the early time, te, and the late time, tl. As a result, /D ≤ /2 ≤ /F, and the optimization problem is 

 

min /0,!3	 − ∑ /2,1
!
1(	    (18) 

 

Subject to 

 

/0,� ≥ /0,1 + /2,1 ,  for some : and <   (19) 
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/0,!3	 > /0,1 + /2,1, < = 1, … , �   (20) 

/0,1 ≥ 0, < = 1, … , �  (21) 

/D,1 ≤ /2,1 ≤ /F,1 , < = 1, … , �  (22) 

 

It is necessary to include scaling factors in the objective function because values may have different magnitudes. 

Priority of some tasks may also be considered in a similar fashion. According to Eq. (6), these parameters can be taken 

into account through a weighing factor w. Then, the optimization problem is  

 

min )!3	/0,!3	 − ∑ )1/2,1
!
1(	     (23) 

 

Subject to 

 

/0,� ≥ /0,1 + /2,1 ,  for some : and <  (24) 

/0,!3	 > /0,1 + /2,1, < = 1, … , �   (25) 

/0,1 ≥ 0, < = 1, … , �  (26) 

/D,1 ≤ /2,1 ≤ /F,1 , < = 1, … , �  (27) 

 

The proposed formulation is in the field of linear program with real variables.  

 

4. NUMERICAL RESULTS 
 

Numerical simulations were carried out to evaluate the viability of the proposed formulation. An extra weighting 

factor α was included in the formulation to set different priorities to project conclusion time 

 

�	 = )!3	/0,!3	  (28) 

 

and project cost  

 

�� = ∑ )1/2,1
!
1(	   (29) 

 

The corresponding objective function is 

 

% = '�	 − �1 − '���  (30) 

 

The optimization problems were solved by means of a lp_solve software (lp_solve, 2009). Customizations where 

included by using a GNU C++ compiler. A PC Core Duo ® 1.6 GHz computer running Linux was used. 

Three sets of experiments were carried out. In the first case, 10 test problems of dimension n=500 and 10 test 

problems of dimension n=1000 were generated with arbitrary precedence relationship, cost and priorities. Objective 

function f1 and f2 have the same weight α=0.5. Results are shown in Tab. 1. 

According to Tab. 1, columns “Initial” and “Optimal” shows the values of f1 and f2 before and after the optimization, 

respectively. Column “Deviation” indicates the improvement achieved by f1 and f2, respectively. A deviation of 0.3 

indicates that f1 was decreased to 30% of its initial value. A deviation of 0.7 indicates that f2 was decreased to 70% of its 

initial value.  

This data shows that a reduction about 70% in the total time required to finish the project can be achieved while the 

cost (or resource) is decreased by 30%.  

A problem with n=500 tasks was evaluated in 5 seconds, while a problem with n=1000 tasks was evaluated in 20 

seconds. 
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Table 1. Numerical experiments where cost and time have the same priority.

 

 Initial 

N f1 f2

500 1084135 3511.6

500 1096060 3646.4

500 1070226 3401.5

500 1066090 3286.7

500 1087743 3560.7

500 1085918 3373.6

500 1087486 3549.3

500 1091314 3683.9

500 1097285 3574.9

500 1144058 3544.6

1000 4338819 7120

1000 4427215 6946.9

1000 4168668 6966.4

1000 4296253 6827.4

1000 4059817 6542.2

1000 4064180 6834.9

1000 4030020 6785.3

1000 4165613 6864

1000 4289263 6913.5

1000 4178773 6646.1

 

In the second set of experiments, the effect of changes on the weighting factor 

from 100 experiments, where n=500 and 

 

Figure 1. 

Figure 1 shows that better optimization is achieved if 

all the problems evaluated by the authors, that is, optimization is more effective when the value of 

the parameter can be tuned in the interval (0, 1) 

different parameters also gives a macroscopic view that may support decisions of a manager.

A third set of experiments was proposed to evaluate the CPU time required to solve problems of different 

dimensions. Problems of size between n
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Table 1. Numerical experiments where cost and time have the same priority.

Optimal Deviation 

f2 f1 f2 f1 f2  

3511.6 323622.3 2381.0 0.30 0.68 

3646.4 273764.3 2369.5 0.25 0.65 

3401.5 374383.0 2424.1 0.35 0.71 

3286.7 374083.9 2359.1 0.35 0.72 

3560.7 327005.2 2478.3 0.30 0.70 

3373.6 342365.9 2358.5 0.32 0.70 

3549.3 324435 2365.8 0.30 0.67 

3683.9 281564 2344.9 0.26 0.64 

3574.9 306978.6 2326.1 0.28 0.65 

3544.6 327508.7 2311.6 0.29 0.65 

7120.0 1206007 4763.6 0.28 0.67 

6946.9 1384693 4752.8 0.31 0.68 

6966.4 1086398 4555.4 0.26 0.65 

6827.4 1308107 4708.0 0.30 0.69 

6542.2 1221632 4470.7 0.30 0.68 

6834.9 1082149 4622.0 0.27 0.68 

6785.3 1111422 4619.5 0.28 0.68 

6864.0 1127778 4590.4 0.27 0.67 

6913.5 1263862 4784.2 0.29 0.69 

6646.1 1278270 4597.2 0.31 0.69 

In the second set of experiments, the effect of changes on the weighting factor α is considered.

=500 and ' ∈ �0,1�, are presented in Fig. 1. 

 

Figure 1. f1 and f2 deviation for ' ∈ �0,1�. 

 

Figure 1 shows that better optimization is achieved if α has a value greater or equal 0.6. This behavior was found in 

all the problems evaluated by the authors, that is, optimization is more effective when the value of 

in the interval (0, 1) to adjust the relevance of each objective. Furthermore,

also gives a macroscopic view that may support decisions of a manager. 

A third set of experiments was proposed to evaluate the CPU time required to solve problems of different 

n=100 and n=2000 were considered. Results are shown in Fig. 2.

0,4 0,6 0,8 1
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Table 1. Numerical experiments where cost and time have the same priority. 

  

α CPU [s] 

0.5 4.960 

0.5 4.970 

0.5 4.960 

0.5 5.010 

0.5 4.970 

0.5 4.980 

0.5 4.970 

0.5 4.990 

0.5 4.970 

0.5 4.960 

0.5 19.610 

0.5 19.620 

0.5 19.750 

0.5 19.740 

0.5 19.650 

0.5 19.620 

0.5 19.740 

0.5 19.760 

0.5 19.720 

0.5 19.750 

 is considered. Results obtained 

 

This behavior was found in 

all the problems evaluated by the authors, that is, optimization is more effective when the value of α is near 1. However, 

Furthermore, the evaluation of 

 

A third set of experiments was proposed to evaluate the CPU time required to solve problems of different 

=2000 were considered. Results are shown in Fig. 2. 

f1

f2
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According Fig. 2, a problem of dimension n=500 is solved in 5 seconds. A problem of dimension n=2000 is solved in 

82 seconds. The CPU time is closely related to the size of the problem and does not have a large deviation, since a 

deterministic algorithm is used. 

 

5. CONCLUSION 
 

In this paper a new formulation for task scheduling was proposed. Initially, a brief discussion about the importance 

of task scheduling and a review of related papers was presented. Next, the general formulation of linear program and a 

theory to deal with multiple objectives where addressed.  

The proposed formulation considers two objectives: total time required to finish a project and cost associated to the 

execution of all tasks. It was supposed cost is inversely proportional to time spend in a task. This assumption permits 

the representation of the optimization as a linear programming problem. The absence of integer variables means that 

this formulation can be solved by a standard simplex method. 

A strong point of the presented methodology is the low CPU time required to solve a problem with a large number 

of tasks. Due the simplicity of the formulation the global minimum is always found through a deterministic procedure, 

which is inherent to linear models in a convex set. 

Numerical results demonstrated the effectiveness of the proposed methodology in reducing the overall time required 

to conclude the scheduling and simultaneously reducing the cost of the project. Better performance of time or cost can 

be manually tuned by adjusting weighting factors. This behavior is a feature of multiple objective problems, in 

agreement with Pareto theory. 

Later, a comparative study about CPU time and problem size was shown. A problem with 2000 variables was solved 

in less than 2 minutes. The reasonable time required to solve a given problem enables the use of the proposed 

methodology as an interactive tool for scheduling. Furthermore, optimal solution does not depend of the initial 

configuration. Optimization process finds the optimal task duration independently of its initial value. Key information is 

the minimal and maximal time to perform each task (the early and late times, respectively). 

Through changes in the value of the cost it is also possible to set different priorities to the realization of each task or 

a group of tasks. It enables the avoidance of undesired scenarios and a fine tuning of preferred situations. 

Finally, further research directions are extending the analysis to deal with stochastic information, as uncertainty in 

parameters, and explicit constraint on resource usage. 

Due the low computational cost, interactive behavior and quality of the answer, the authors believe this is a useful 

tool for scheduling analysis. 
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