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Abstract. The need for numerical simulations of fluid flows has grown recently, both in industry and academic centers.
Many  CFD codes  are  developed  for  a  large  range  of  applications,  including  aerodynamic  flows  over  aerospace
configurations. The numerical treatment of these flows typically involves the definition of a computational domain that
is adequately discretized through refined meshes. As the need of computational resources for more complex simulations
is above the serial computer processing capability, the parallelization of such codes is of great importance. For the
partitioning procedure of the numerical meshes and for the cluster node communication, the METIS and MPI (Message
Passing Interface) libraries are used in a shared memory architecture. For the purpose of verifying the efficiency of the
parallelization procedure,  the  CPU usage is  monitored during the  parallel  execution of  the  code using the  MPE
libraries. Several tests of typical aerospace geometries are performed and the results showed the performance of the
different aspects on the node communication procedures, allowing for an evaluation of the scalability of the present
implementation.
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1. INTRODUCTION
       

The  necessary  calculations  for  simulating  fluid  flow  behavior  on  tridimensional  surfaces  normally  involve
techniques of computational fluid mechanics along with the adaptation of tridimensional meshes. These meshes are
usually unstructured and need a significant number of nodes and volumes in cases of real applications. This causes the
simulation to become unviable in most available computers, due to both the amount of time required for processing and
the need for available memory. This paper describes the first adaptations of a program conceived to solve the problem
using  the  method  of  finite  volumes  with  Navier-Stokes  equations.  The  program is  used  in  a  cluster  through  the
partitioning of an unstructured mesh, where each node processes each piece of mesh and, by using messaging protocols,
exchange information with other nodes. These nodes simultaneously process other mesh parts that border the latter so as
to mold the obtained values and reproduce the complete solution to the problem.  The approach presented in this work
only sends and receives messages with data structured into vectors, not yet contemplating the refined mesh in the most
critical regions. At the end of this paper, the results obtained with two cases that use different sized meshes are shown
with  the  processing  time  consumed  with  the  exchange  of  messages  and  its  influence  in  the  total  time  taken  for
calculating the solution. 

2.  EXISTING PROGRAM WITH SERIAL SOLUTION 

The program called BRU3D developed in FORTRAN, which is the topic of a Master’s dissertation authored by
Scalabrin (2002), uses data files to retrieve data concerning the initial parameters of the system and the unstructured
mesh, such as the number of nodes, number of volumes, type of contour surface, and number of nodes that compose the
surfaces bordering the contour volumes. The program is structured into many procedures that deal with formatting and
stating  variables,  recording  files  for  TecPlot  visualization  (www.tecplot.com),  refining  mesh  and  volume,  and
calculating both the Sparlat and Allmaras’ (1992) turbulence model and the scattered matrixes that are used in adapted
routines published in Press (2002). The program basically operates by reading files with initial conditions, mesh data
and connectivity tables, storing nodes, mesh volume and contour volumes in matrixes, calculating the residue based on
a five-stage Runge-Kutta, and checking for conversion or digression. If the predetermined levels are not yet reached, it
goes  a  step  further  in  simulation,  verifying  the  turbulence  model  and  updating  the  solution  applying  the  contour
conditions. When reaching the number of predicted iterations or when calculating a smaller residue than the specified
minimum, it records the solution, generates a visualization file for TecPlot, and records a file containing values ρ(mass),
ρ*u, ρ*v and ρ*w (momentum vectors) and the energy value.
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3.  CHANGES IN THE PARALLEL SOLUTION PROGRAM

In  order  to  implement  a  parallel  solution  for  the  problem,  we  chose  to  use  a  pre-processing  system  for  the
unstructured mesh to be partitioned, which allows the simultaneous processing of each part in a different node of the
cluster. We also opted for using the MPI protocol for exchanging messages between the nodes, also employing the MPE
library for generating a log file capable of measuring the time consumed to send and receive messages and the actual
processing time. 

 

3.1 Mesh partitioning

For the mesh to be partitioned into parts that can be processed separately in each node, we developed a program that
is able to generate new files with renumbered elements from the initial files fort.2, fort.3 and fort.5 and have the original
name plus a numerical suffix that represents the processing node that will be used. The kmetis program was used in
order to optimize unstructured mesh partitioning, generating equal-sized partitions, within a program that is responsible
for pre-processing information. Therefore, if we break up the mesh into three parts, the fort.2 file, which is responsible
for the node information, will be divided into three new files, named fort.2.0, fort.2.1 and fort.2.2. Similarly, the fort.3
and fort.5 files will also be partitioned, generating new files named according to the same criterion. Thus, the processor
identified as 0 processes the files exhibiting the numerical suffix .0, the suffix .1 by the process identified as 1, and so
forth. In addition to files fort.2, 3 and 5, other files are created containing  intercepting surfaces between the mesh
partitions so as to facilitate and optimize message exchanges between partitions, named common.0, common.1 and so
forth, depending on the number of parts into which the mesh was divided. 

3.2 MPI – Message Passing Interface

The MPI -  Message  Passing Interface  (http://www.mcs.anl.gov/research/projects/mpi/  standard.html)  is  used by
many  unshared  memory  parallel  systems.  Although  many  commands  are  able  to  facilitate  the  implementation  of
programs that employ message exchanges, it is possible, with only six basic commands, to use the protocol in relatively
complex programs (Gropp et al, 1998). For implementing programs using the MPI, the MPD daemon must be working
in every node used for processing and the machines and processors available in each machine must be configured
through the mpd.hosts file.  If we observe the programs that use MPI, we will see that it is always necessary to start with
the  MPI_INIT(ierr)  command and end with the  MPI_FINALIZE(ierr) command. It  is extremely important that the
number of  processes that  were partitioned,  the processing,  and the identification of  each process in execution are
detected. In order to do so, the command MPI_COMM_RANK(...) returns the process identification within the set of
processes involved. To evaluate the total number of processes, the MPI_COMM_SIZE(...) command is used. In addition
to these commands, we must send and receive data among the processing nodes involved in commands MPI_SEND(...)
and MPI_RECV(...). The basic syntax of these commands involves knowledge about the data being sent or received,
data type, and the communicator that is being used.

3.3  Including MPI commands

The inclusion of commands for initializing, terminating, sending and receiving messages in this first version aimed
to achieve acceptable results, whose values are very similar to the serial case. At this point, we are not yet worried with
performance optimization due to processing distribution or memory use. Thus, the line includes ‘mpif.h’, which is the
necessary MPI library for executing the protocol in FORTRAN programs. The program that is modified for distributed
functioning requires each processing node to have a set of data files that contain information about the mesh domain
that will be processed in that node, in addition to common files that will be replicated to all the nodes containing
parameters such as stop conditions, flow direction and speed, type of flow, Reynolds number, and time increment.

call MPI_INIT( ierr )
call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )
call MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr) 

Figure 1 – Basic commands for MPI initialization 

Figure 1 shows the MPI commands allocated for initialization, the identification of process numbers stored in the
variable myid, and the total number of processes stored in numprocs involved in the system. In the interboundary
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routine, after each iteration, the mesh boundary surface values are transferred to other mesh partitions until all surfaces
are used. 

call MPI_SEND(vetor_troca, ntamanho, MPI_DOUBLE_PRECISION,nother(k) , 0 ,
MPI_COMM_WORLD,ierr)

call MPI_RECV(vetor_troca, ntamanho, MPI_DOUBLE_PRECISION, nother(k) , 0,
MPI_COMM_WORLD,istatus,ierr)

Figure 2 – MPI commands responsible for sending and receiving surface data 

Figure  2  shows  the  code  lines  responsible  for  sending  and  receiving  surface  data,  stored  in  the  variable
vector_exchange, according to the hierarchy of process identification. That is, if the process rank is smaller, it first
sends and then receives data.

The  decision  of  stopping  the  processing  involves  the  residual  values.  In  case  of  distributed  processing,  the
evaluation of residual values obtained in each node is necessary. By comparing all residues, we make the decision
considering the largest of all.

If (myid .ne. master) then call MPI_SEND(aux1,1,      MPI_DOUBLE_PRECISION, 0 , 0 ,
MPI_COMM_WORLD,ierr)

else
      do n = 1,numprocs
         call MPI_RECV(aux_o,1,MPI_DOUBLE_PRECISION, n , 0 , MPI_COMM_WORLD,istatus,ierr)
         if(aux_o .gt. aux1) aux1 = aux_o
      enddo
…

Figure 3 – Logic used for evaluating maximum residue

Figure 3 shows that, in case the node is not the master node, it must send the residual value, calculated and stored in
variable  aux1, to the master node, which is responsible for receiving information from each processing node for the
evaluation of maximum residue. In order to calculate the residue of each part of the processed mesh, the five-stage
Runge-Kutta method is used, and in each stage, the boundary routine is invoked, which is responsible for updating
contour volume information between mesh partitions and between the mesh and the external means. If the maximum
residue is still out of the specified range in file fort.1, and still converges towards a solution, information is exchanged
between boundary surfaces in each iteration and the new maximum residue starts  being evaluated.  The procedure
repeats itself until the program stops and reaches the minimum required residue, diverges to values that are above the
specified values, or reaches the number of parameterized iterations in file fort.1.

3.4  Generating log files 

In order  to evaluate the amount  of  time consumed to send and receive messages,  the line  include mpef.h was
included. This automatically generates a file that is graphically visualized by the Java application jumpshot.jar, which is
part of the MPICH2 package. Since the cluster does not possess a graphic interface, the log files generated in each
processing node were transferred to a machine that executes an operational system with a graphical interface. Thus it is
possible to visualize the log file that reports when the node was processing the meshes and when and how it executed
data communication between nodes.

4. CASE STUDY

In order to verify the performance of the modified program, the consistency of the results, and the influence of
communication time within the total processing time, two simple meshes were tested: a very small 13328-volume mesh
and another medium-sized 360434-volume mesh.

For the case study, we used a computational cluster with 16 nodes with 2 processors AMD Opteron on each node
using the operating system Gentoo Linux.

4.1 Volume Mesh of 13328

By counting  the  total  processing  time  using  a  small  mesh  with  27200  nodes  and  13328  volumes,  tests  were
conducted using the program in the original (serial) and modified version, which varies from 2 to 7 processing nodes.
Figure 4 shows the time consumed for 1000 iterations. 
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Figure 4 – Processing time due to the number of processors in use

In figure 4, the horizontal axis represents the number of nodes used and the vertical axis represents the time in
seconds. The processing time obtained by the serial solution was larger than most cases of parallel processing. With two
and three processing nodes, there was no significant time gain in relation to the serial solution. However, with four
active nodes, the minimum amount of time was reached for this case. We observe that, from then on, the influence of
communication time consumed with message exchanges compensated the time saved with processing significantly
smaller mesh partitions, simultaneous in each node. 

Figure 5 – Result of simulation using the serial program 

Figure 5 shows the result obtained after 1000 iterations using the serial version of the program. One must observe
that the figure shows the behavior of the flow applied the x axis direction, and its effect when it comes across a square
bar in the middle.
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...

Figure  6 – Result of simulation with a four-node parallel program

Figure 6 shows the mesh divided into 4 parts. Slightly different colorations are observed in figure 6 in relation to
figure 5 due to the illuminating effect, which is necessary for enhancing the boundaries of mesh partitions.

In order to better assess the influence of the communication between processing nodes in the results, libraries were
included for generating logs related to the sending and receiving of data. 

....

Figure 7 – Depiction of the communication between processors obtained through MPE

Figure 7 shows the sending and receiving of data during processing distributed into 4 nodes. It is possible to observe
the disparity of time spent with communication compared to the time spent in processing, both which obviously occur
between communication blocks. The vertical axis shows nodes identified by a ID value and the horizontal axis shows
time in seconds. Arrows indicate communications and its directions, as they occur between processors.

From the label screen, overlapping the top right-hand corner of the figure, we can observe the moments when data is
sent and received between the nodes, as well as to which node the data is sent or received. In order to expressively
observe the influence of time spent, it was necessary to use a mesh with a more significant size. 

4.2  Volume Mesh of 360434 

When migrating the tests for a 360434-volume mesh, about ten times larger than the previous one, we observed that
the influence of communication in the total processing time was very large. This caused the time using 2 nodes to be
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minimum compared with the time observed with 3,4,5,6 or 7 nodes. In this case, there was no execution of the serial
program because it was impossible to execute with the available equipment. 

Figure 8 – Processing time according to the number of processors

Figure 8 shows the total time in seconds across the vertical axis and the number of nodes used for processing across
the  horizontal  axis.  The discrepancies  observed in  nodes  3  and 5  may be  attributed to  other  programs that  were
consuming resources from the cluster during the tests, but there is a clear tendency to increase processing time due to
the number of nodes used. 

Figure 9 – Communication flow between nodes using four-part mesh partitioning 

Figure 9 shows the communication between four processing nodes and, once again, it is obvious that the total time
spent with communication is substantially greater than the time spent with processing. It is worth noting that there are
cycles  composed  of  a  quick  communication  between  nodes,  followed  by  five  communication  blocks  that  repeat
themselves until the end of the processing. This can be explained by the exchange of messages needed for evaluating
the  largest  residue  found  followed  by  the  process  involving  the  five-stage  Runge-Kutta  method,  where  the
interboundary routine is invoked between and at the end of each stage.
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Figure 10 – Result of the simulation after 1000 iterations 

Figure 10 represents the mesh after 1000 iterations, processed evenly in four nodes of the cluster. For the processing
time to be more competitive, we opted for decreasing the communication between nodes, invoking the interboundary
routine communication only at the end of the five-stage Runge-Kutta method and not between each stage.

Figure 11- Communication flow between nodes without communication between Runge-Kutta stages

Figure 11 shows the program’s performance when communication was reduced during the residue calculation using
Runge-Kutta’s five stages.  The figure reveals the moments when there is  information exchange for evaluating the
maximum residue followed by a significant processing of information for the calculation via the Runge-Kutta model
and, after its conclusion, the communication between nodes for information exchange within the border surfaces, both
between mesh partitions and between the mesh and the wing profile located at the center. With this modification, the
case with 1,000 iterations using 4 processing nodes changed from 2,621.679 seconds to 914.156 seconds. The fact that
there is less information exchange between nodes during the calculation of the residue causes the number of iterations
necessary for converging a single minimum residue value to be higher.
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Figure 12 – Result of Simulation without using message exchanges between stages of the Runge-Kutta method

In tests using 2 to 10 processing nodes, time always decreased when one more node was added and the maximum
residue without communication between Runge-Kutta stages were larger. The average difference was 37% in observed
cases. 

Figure 12 shows the processing result after 1000 iterations, without data exchange between the five stages of the
Runge-Kutta  model.  The result  profile  is  identical  to  the  result  found when communication occurred through the
boundary routine between each stage of rk5s. In order to validate the thesis that the final values tend to be identical, we
applied tests that established an identical maximum residual value and evaluated the number of iterations and the total
time needed to reach the pre-established residual values. These tests concluded that, on average, 20% more iterations
are needed to achieve the pre-established results of the residue. Meanwhile, the total time required for the same number
of iterations wavered between 20% of the total time in the worst case and 10% of the total time. 

Figure 13 – Comparison between the total processing time with communication and without communication in the
Runge-Kutta model

Figure 13 represents the time obtained with two versions of the program. The horizontal axis shows time in seconds
for 1000 iterations using the 360434-volume mesh and the vertical axis shows the number of processing nodes in use.
The upper curve shows the performance of the solution with message exchanging between Runge-Kutta stages, while
the lower part reflects the time spent by the version that only exchanges information once after processing the five
stages. 
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...

Figure 14 – Comparing the convergence curves within approaches 

Figure 14 shows the convergence curve between the serial solution, a parallel solution with communication between
stages, and another that only communicates once, in each iteration, during the execution of the five Runge-Kutta stages.
The vertical axis contains the maximum residue observed in each iteration and the horizontal axis contains the number
of iterations. 

It should be highlighted that the number of iterations employed, which is 1000 for the 13328-volume mesh, is still
far from the expected solution with the minimum specified residual value and consequent solution convergence.  

5. CONCLUSION

We can therefore sustain that the initial results for processing using message-sending protocols for CFD problems
with medium-sized tridimensional meshes are highly satisfactory. This leads us to consider extending the solution of
processing distribution to mesh refinement routines, in hope of rendering the processing of real simulation problems
viable by spending substantially less processing time than the initially spent in the beginning of the research. 

Since the undergone tests have not yet contemplated the convergence of residual values into acceptable values, that
is,  a  value with an order  of  magnitude 0.00001,  we will  provide new tests  with various-sized meshes,  seeking to
establish and validate the above-mentioned distributed processing in all value spectrums, which are research topics of
problems involving correlated situations.  
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