
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

DEVELOPMENT OF A PARALLEL EXPLICIT CFD CODE FOR THREE-
DIMENSIONAL FLOW SIMULATIONS OVER COMPLEX

CONFIGURATIONS
Jose Nilton C. Gil, jniltongil@gmail.com
UBM – Centro Universitário de Barra Mansa, Rua Vereador Pinho de Carvalho, 267, Centro
27330-550, Barra Mansa, Rio de Janeiro, Brazil
Edson Basso, basso@iae.cta.br
CTA/IAE/ALA – Instituto de Aeronáutica e Espaço, Comando Geral de Tecnologia Aeroespacial
12228-903, São José dos Campos, São Paulo, Brazil
Nei Yoshihiro Soma, soma@ita.br
CTA/ITA/IEC – Instituto Tecnológico de Aeronautica, Comando Geral de Tecnologia Aeroespacial
12228-900, São José dos Campos, São Paulo, Brazil
João Luiz F. Azevedo, azevedo@iae.cta.br
CTA/IAE/ALA – Instituto de Aeronáutica e Espaço, Comando Geral de Tecnologia Aeroespacial
12228-903, São José dos Campos, São Paulo, Brazil

Abstract. The need for numerical simulations of fluid flows has grown recently, both in industry and academic centers.
Many CFD codes are developed for a large range of applications, including aerodynamic flows over aerospace
configurations. The numerical treatment of these flows typically involves the definition of a computational domain that
is adequately discretized through refined meshes. As the need of computational resources for more complex simulations
is above the serial computer processing capability, the parallelization of such codes is of great importance. For the
partitioning procedure of the numerical meshes and for the cluster node communication, the METIS and MPI (Message
Passing Interface) libraries are used in a shared memory architecture. For the purpose of verifying the efficiency of the
parallelization procedure, the CPU usage is monitored during the parallel execution of the code using the MPE
libraries. Several tests of typical aerospace geometries are performed and the results showed the performance of the
different aspects on the node communication procedures, allowing for an evaluation of the scalability of the present
implementation.

Keywords: Parallelization, CFD, computer cluster, MPI

1. INTRODUCTION

The necessary calculations for simulating fluid flow behavior on tridimensional surfaces normally involve
techniques of computational fluid mechanics along with the adaptation of tridimensional meshes. These meshes are
usually unstructured and need a significant number of nodes and volumes in cases of real applications. This causes the
simulation to become unviable in most available computers, due to both the amount of time required for processing and
the need for available memory. This paper describes the first adaptations of a program conceived to solve the problem
using the method of finite volumes with Navier-Stokes equations. The program is used in a cluster through the
partitioning of an unstructured mesh, where each node processes each piece of mesh and, by using messaging protocols,
exchange information with other nodes. These nodes simultaneously process other mesh parts that border the latter so as
to mold the obtained values and reproduce the complete solution to the problem. The approach presented in this work
only sends and receives messages with data structured into vectors, not yet contemplating the refined mesh in the most
critical regions. At the end of this paper, the results obtained with two cases that use different sized meshes are shown
with the processing time consumed with the exchange of messages and its influence in the total time taken for
calculating the solution.

2. EXISTING PROGRAM WITH SERIAL SOLUTION

The program called BRU3D developed in FORTRAN, which is the topic of a Master’s dissertation authored by
Scalabrin (2002), uses data files to retrieve data concerning the initial parameters of the system and the unstructured
mesh, such as the number of nodes, number of volumes, type of contour surface, and number of nodes that compose the
surfaces bordering the contour volumes. The program is structured into many procedures that deal with formatting and
stating variables, recording files for TecPlot visualization (www.tecplot.com), refining mesh and volume, and
calculating both the Sparlat and Allmaras’ (1992) turbulence model and the scattered matrixes that are used in adapted
routines published in Press (2002). The program basically operates by reading files with initial conditions, mesh data
and connectivity tables, storing nodes, mesh volume and contour volumes in matrixes, calculating the residue based on
a five-stage Runge-Kutta, and checking for conversion or digression. If the predetermined levels are not yet reached, it
goes a step further in simulation, verifying the turbulence model and updating the solution applying the contour
conditions. When reaching the number of predicted iterations or when calculating a smaller residue than the specified
minimum, it records the solution, generates a visualization file for TecPlot, and records a file containing values ρ(mass),
ρ*u, ρ*v and ρ*w (momentum vectors) and the energy value.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

3. CHANGES IN THE PARALLEL SOLUTION PROGRAM

In order to implement a parallel solution for the problem, we chose to use a pre-processing system for the
unstructured mesh to be partitioned, which allows the simultaneous processing of each part in a different node of the
cluster. We also opted for using the MPI protocol for exchanging messages between the nodes, also employing the MPE
library for generating a log file capable of measuring the time consumed to send and receive messages and the actual
processing time.

3.1 Mesh partitioning

For the mesh to be partitioned into parts that can be processed separately in each node, we developed a program that
is able to generate new files with renumbered elements from the initial files fort.2, fort.3 and fort.5 and have the original
name plus a numerical suffix that represents the processing node that will be used. The kmetis program was used in
order to optimize unstructured mesh partitioning, generating equal-sized partitions, within a program that is responsible
for pre-processing information. Therefore, if we break up the mesh into three parts, the fort.2 file, which is responsible
for the node information, will be divided into three new files, named fort.2.0, fort.2.1 and fort.2.2. Similarly, the fort.3
and fort.5 files will also be partitioned, generating new files named according to the same criterion. Thus, the processor
identified as 0 processes the files exhibiting the numerical suffix .0, the suffix .1 by the process identified as 1, and so
forth. In addition to files fort.2, 3 and 5, other files are created containing intercepting surfaces between the mesh
partitions so as to facilitate and optimize message exchanges between partitions, named common.0, common.1 and so
forth, depending on the number of parts into which the mesh was divided.

3.2 MPI – Message Passing Interface

The MPI - Message Passing Interface (http://www.mcs.anl.gov/research/projects/mpi/ standard.html) is used by
many unshared memory parallel systems. Although many commands are able to facilitate the implementation of
programs that employ message exchanges, it is possible, with only six basic commands, to use the protocol in relatively
complex programs (Gropp et al, 1998). For implementing programs using the MPI, the MPD daemon must be working
in every node used for processing and the machines and processors available in each machine must be configured
through the mpd.hosts file. If we observe the programs that use MPI, we will see that it is always necessary to start with
the MPI_INIT(ierr) command and end with the MPI_FINALIZE(ierr) command. It is extremely important that the
number of processes that were partitioned, the processing, and the identification of each process in execution are
detected. In order to do so, the command MPI_COMM_RANK(...) returns the process identification within the set of
processes involved. To evaluate the total number of processes, the MPI_COMM_SIZE(...) command is used. In addition
to these commands, we must send and receive data among the processing nodes involved in commands MPI_SEND(...)
and MPI_RECV(...). The basic syntax of these commands involves knowledge about the data being sent or received,
data type, and the communicator that is being used.

3.3 Including MPI commands

The inclusion of commands for initializing, terminating, sending and receiving messages in this first version aimed
to achieve acceptable results, whose values are very similar to the serial case. At this point, we are not yet worried with
performance optimization due to processing distribution or memory use. Thus, the line includes ‘mpif.h’, which is the
necessary MPI library for executing the protocol in FORTRAN programs. The program that is modified for distributed
functioning requires each processing node to have a set of data files that contain information about the mesh domain
that will be processed in that node, in addition to common files that will be replicated to all the nodes containing
parameters such as stop conditions, flow direction and speed, type of flow, Reynolds number, and time increment.

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

Figure 1 – Basic commands for MPI initialization

Figure 1 shows the MPI commands allocated for initialization, the identification of process numbers stored in the
variable myid, and the total number of processes stored in numprocs involved in the system. In the interboundary

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

routine, after each iteration, the mesh boundary surface values are transferred to other mesh partitions until all surfaces
are used.

call MPI_SEND(vetor_troca, ntamanho, MPI_DOUBLE_PRECISION,nother(k) , 0 ,
MPI_COMM_WORLD,ierr)

call MPI_RECV(vetor_troca, ntamanho, MPI_DOUBLE_PRECISION, nother(k) , 0,
MPI_COMM_WORLD,istatus,ierr)

Figure 2 – MPI commands responsible for sending and receiving surface data

Figure 2 shows the code lines responsible for sending and receiving surface data, stored in the variable
vector_exchange, according to the hierarchy of process identification. That is, if the process rank is smaller, it first
sends and then receives data.

The decision of stopping the processing involves the residual values. In case of distributed processing, the
evaluation of residual values obtained in each node is necessary. By comparing all residues, we make the decision
considering the largest of all.

If (myid .ne. master) then call MPI_SEND(aux1,1, MPI_DOUBLE_PRECISION, 0 , 0 ,
MPI_COMM_WORLD,ierr)

else
 do n = 1,numprocs
 call MPI_RECV(aux_o,1,MPI_DOUBLE_PRECISION, n , 0 , MPI_COMM_WORLD,istatus,ierr)
 if(aux_o .gt. aux1) aux1 = aux_o
 enddo
…

Figure 3 – Logic used for evaluating maximum residue

Figure 3 shows that, in case the node is not the master node, it must send the residual value, calculated and stored in
variable aux1, to the master node, which is responsible for receiving information from each processing node for the
evaluation of maximum residue. In order to calculate the residue of each part of the processed mesh, the five-stage
Runge-Kutta method is used, and in each stage, the boundary routine is invoked, which is responsible for updating
contour volume information between mesh partitions and between the mesh and the external means. If the maximum
residue is still out of the specified range in file fort.1, and still converges towards a solution, information is exchanged
between boundary surfaces in each iteration and the new maximum residue starts being evaluated. The procedure
repeats itself until the program stops and reaches the minimum required residue, diverges to values that are above the
specified values, or reaches the number of parameterized iterations in file fort.1.

3.4 Generating log files

In order to evaluate the amount of time consumed to send and receive messages, the line include mpef.h was
included. This automatically generates a file that is graphically visualized by the Java application jumpshot.jar, which is
part of the MPICH2 package. Since the cluster does not possess a graphic interface, the log files generated in each
processing node were transferred to a machine that executes an operational system with a graphical interface. Thus it is
possible to visualize the log file that reports when the node was processing the meshes and when and how it executed
data communication between nodes.

4. CASE STUDY

In order to verify the performance of the modified program, the consistency of the results, and the influence of
communication time within the total processing time, two simple meshes were tested: a very small 13328-volume mesh
and another medium-sized 360434-volume mesh.

For the case study, we used a computational cluster with 16 nodes with 2 processors AMD Opteron on each node
using the operating system Gentoo Linux.

4.1 Volume Mesh of 13328

By counting the total processing time using a small mesh with 27200 nodes and 13328 volumes, tests were
conducted using the program in the original (serial) and modified version, which varies from 2 to 7 processing nodes.
Figure 4 shows the time consumed for 1000 iterations.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

Figure 4 – Processing time due to the number of processors in use

In figure 4, the horizontal axis represents the number of nodes used and the vertical axis represents the time in
seconds. The processing time obtained by the serial solution was larger than most cases of parallel processing. With two
and three processing nodes, there was no significant time gain in relation to the serial solution. However, with four
active nodes, the minimum amount of time was reached for this case. We observe that, from then on, the influence of
communication time consumed with message exchanges compensated the time saved with processing significantly
smaller mesh partitions, simultaneous in each node.

Figure 5 – Result of simulation using the serial program

Figure 5 shows the result obtained after 1000 iterations using the serial version of the program. One must observe
that the figure shows the behavior of the flow applied the x axis direction, and its effect when it comes across a square
bar in the middle.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

...

Figure 6 – Result of simulation with a four-node parallel program

Figure 6 shows the mesh divided into 4 parts. Slightly different colorations are observed in figure 6 in relation to
figure 5 due to the illuminating effect, which is necessary for enhancing the boundaries of mesh partitions.

In order to better assess the influence of the communication between processing nodes in the results, libraries were
included for generating logs related to the sending and receiving of data.

....

Figure 7 – Depiction of the communication between processors obtained through MPE

Figure 7 shows the sending and receiving of data during processing distributed into 4 nodes. It is possible to observe
the disparity of time spent with communication compared to the time spent in processing, both which obviously occur
between communication blocks. The vertical axis shows nodes identified by a ID value and the horizontal axis shows
time in seconds. Arrows indicate communications and its directions, as they occur between processors.

From the label screen, overlapping the top right-hand corner of the figure, we can observe the moments when data is
sent and received between the nodes, as well as to which node the data is sent or received. In order to expressively
observe the influence of time spent, it was necessary to use a mesh with a more significant size.

4.2 Volume Mesh of 360434

When migrating the tests for a 360434-volume mesh, about ten times larger than the previous one, we observed that
the influence of communication in the total processing time was very large. This caused the time using 2 nodes to be

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

minimum compared with the time observed with 3,4,5,6 or 7 nodes. In this case, there was no execution of the serial
program because it was impossible to execute with the available equipment.

Figure 8 – Processing time according to the number of processors

Figure 8 shows the total time in seconds across the vertical axis and the number of nodes used for processing across
the horizontal axis. The discrepancies observed in nodes 3 and 5 may be attributed to other programs that were
consuming resources from the cluster during the tests, but there is a clear tendency to increase processing time due to
the number of nodes used.

Figure 9 – Communication flow between nodes using four-part mesh partitioning

Figure 9 shows the communication between four processing nodes and, once again, it is obvious that the total time
spent with communication is substantially greater than the time spent with processing. It is worth noting that there are
cycles composed of a quick communication between nodes, followed by five communication blocks that repeat
themselves until the end of the processing. This can be explained by the exchange of messages needed for evaluating
the largest residue found followed by the process involving the five-stage Runge-Kutta method, where the
interboundary routine is invoked between and at the end of each stage.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

Figure 10 – Result of the simulation after 1000 iterations

Figure 10 represents the mesh after 1000 iterations, processed evenly in four nodes of the cluster. For the processing
time to be more competitive, we opted for decreasing the communication between nodes, invoking the interboundary
routine communication only at the end of the five-stage Runge-Kutta method and not between each stage.

Figure 11- Communication flow between nodes without communication between Runge-Kutta stages

Figure 11 shows the program’s performance when communication was reduced during the residue calculation using
Runge-Kutta’s five stages. The figure reveals the moments when there is information exchange for evaluating the
maximum residue followed by a significant processing of information for the calculation via the Runge-Kutta model
and, after its conclusion, the communication between nodes for information exchange within the border surfaces, both
between mesh partitions and between the mesh and the wing profile located at the center. With this modification, the
case with 1,000 iterations using 4 processing nodes changed from 2,621.679 seconds to 914.156 seconds. The fact that
there is less information exchange between nodes during the calculation of the residue causes the number of iterations
necessary for converging a single minimum residue value to be higher.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

Figure 12 – Result of Simulation without using message exchanges between stages of the Runge-Kutta method

In tests using 2 to 10 processing nodes, time always decreased when one more node was added and the maximum
residue without communication between Runge-Kutta stages were larger. The average difference was 37% in observed
cases.

Figure 12 shows the processing result after 1000 iterations, without data exchange between the five stages of the
Runge-Kutta model. The result profile is identical to the result found when communication occurred through the
boundary routine between each stage of rk5s. In order to validate the thesis that the final values tend to be identical, we
applied tests that established an identical maximum residual value and evaluated the number of iterations and the total
time needed to reach the pre-established residual values. These tests concluded that, on average, 20% more iterations
are needed to achieve the pre-established results of the residue. Meanwhile, the total time required for the same number
of iterations wavered between 20% of the total time in the worst case and 10% of the total time.

Figure 13 – Comparison between the total processing time with communication and without communication in the
Runge-Kutta model

Figure 13 represents the time obtained with two versions of the program. The horizontal axis shows time in seconds
for 1000 iterations using the 360434-volume mesh and the vertical axis shows the number of processing nodes in use.
The upper curve shows the performance of the solution with message exchanging between Runge-Kutta stages, while
the lower part reflects the time spent by the version that only exchanges information once after processing the five
stages.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

...

Figure 14 – Comparing the convergence curves within approaches

Figure 14 shows the convergence curve between the serial solution, a parallel solution with communication between
stages, and another that only communicates once, in each iteration, during the execution of the five Runge-Kutta stages.
The vertical axis contains the maximum residue observed in each iteration and the horizontal axis contains the number
of iterations.

It should be highlighted that the number of iterations employed, which is 1000 for the 13328-volume mesh, is still
far from the expected solution with the minimum specified residual value and consequent solution convergence.

5. CONCLUSION

We can therefore sustain that the initial results for processing using message-sending protocols for CFD problems
with medium-sized tridimensional meshes are highly satisfactory. This leads us to consider extending the solution of
processing distribution to mesh refinement routines, in hope of rendering the processing of real simulation problems
viable by spending substantially less processing time than the initially spent in the beginning of the research.

Since the undergone tests have not yet contemplated the convergence of residual values into acceptable values, that
is, a value with an order of magnitude 0.00001, we will provide new tests with various-sized meshes, seeking to
establish and validate the above-mentioned distributed processing in all value spectrums, which are research topics of
problems involving correlated situations.

6. REFERENCES

Scalabrin, Leonardo Costa, Numerical Simulation of Three-Dimensional Flows Over Aerospace Configurations, M.S.
Dissertation, Aeronautics Engineering Department, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao
Paulo, Brazil, 2002.

Press, W.H., Flannery, B.P.,Teukolsky, S.A.,Vetterling, W.T., Numerical Recipes in Fortran 77- The art of the scientific
computing, Cambridge University Press, 2nd. ed, 1992.

Gropp, W. et. al., MPI - The Complete Reference. The MPI Extensions, 2nd ed. MIT, 1998.
Spalart, P.R. e Allmaras S.R., A One-Equation Turbulence Model for Aerodymics Flows, Proceedings of the 30th AIAA

Aerospace Science Meeting and Exhibit, Reno, NV, 1992.

7. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

