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Abstract. The development of an application to solve the unsteady, three-dimensional Navier-Stokes equations in the 
cylindrical system of coordinates is presented, aimed to analyze isothermal, one-phase, incompressible fluid flows. The 
solver uses a staggered finite volume method with second order in space and time discretizations (the plan, in the 
future, is to use the large eddy simulation). The consistence and stability were verified using a code validation in two 
parts: first, only Poiseuille annular and Couette annular were compared with its analytical solutions. In the second, 
Taylor-Couette flow is considered (i.e., with the presence of three-dimensional structures, Taylor Vortices), making use 
of experimental and numerical data in the comparison. The numerical simulation was made for many values of Taylor 
and Reynolds numbers and the quantitative and qualitative approaches allowed the evaluation of the code 
performance. 
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1. INTRODUCTION 

 
According to Taylor (1923), who studied experimentally and analytically flows between rotating concentric 

cylinders, for small gaps between them (compared with the radii of the internal cylinder), the problem simplifies and 
becomes dependent on the Taylor number. When this parameter increases above the critical value, counter-rotating 
axisymmetric vortices of toroidal shape, also referred to as Taylor-Couette instabilities, arises in the flow. Later, many 
other researches had been carried out (Davey, 1962; Eagles, 1971; Wereley and Lueptow, 1994) due to the great 
number of applications in several areas of engineering. The Taylor-Couette flow with superposed axial flow, also has 
been object of many investigations, for same reasons previously mentioned. In particular, the Taylor-Couette flow with 
superposed Poiseuille flow (Kaye and Elgar, 1957; DiPrima, 1960; Lueptow et al., 1992) as well as superposed Couette 
flow (Ludweig, 1964; Weisberg et al., 1992; Hwang and Yang, 2003), are of interest in the well drilling engineering in 
the oil and gas production. 

In real applications, the types of flows found in well drilling processes are much more complex than the flows 
presented, because there are additional problems, for instance: eccentric movement determined by the interaction of 
internal and external flows (related to internal channel) and fluids with changeable viscosity due the stress rate (non- 
Newtonian fluids). Considering, about simplified form of additional problems before mentioned, some works are found 
in literature, as in: Lockett et al. (1992) and Escudier and Gouldson (1995) for concentric configurations and  non-
Newtonian fluid, Escudier et al. (2002) and Escudier et al. (2002-b) for fixed eccentric configurations and non- 
Newtonian fluid. 

Due this complexity, mathematical approximations and physical experiments do not give sufficient detail about the 
problem, and many numerical approaches have been proposed in the literature. Recently, Hwang and Yang (2003) used 
the finite volume method with second order in space and third order in time discretizations, in cylindrical coordinates. 
In a computational application, the determined velocities are not averaged values, as experimentally by particle image 
velocimetry (PIV), whose problem (of aliasing) can be solved using mesh refinement. 

In the present work the finite volume method was utilized in the discretization using a cylindrical system of 
coordinates. Global second order was utilized: spatially, with the central difference scheme and using fractional step 
method in time. The time accuracy utilized appeared to be quite sufficient for the problems focused in this study. To 
solve the Poisson's equation for pressure correction, many methods are available, as TDMA-SOR (Three Diagonal 
Matrix Algorithm, combined with Successive Over Relaxation) and ICCG (Conjugate Gradient method, preconditioned 
using Incomplete Cholesky decomposition), Multigrid, and some combinations of these, that account for stability and 
convergence rates of the solver. For this work was applied the Strongly Implicit Procedure (SIP), of Stone (1968), that 
join together simplicity, good stability and convergence rate. 
 
2. MATHEMATICAL MODEL 
 

The fluid confined is isothermal and incompressible, with constant properties. The computational modeling requires 
solving three-dimensional flows equations, or either solving the Navier-Stokes equations. These equations in 
dimensional form and cartesian coordinates are presented as follows: 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
 

. 0u∇ = ,               (1) 
 

1.( ) . ( )ν
ρ

∂ ⎡ ⎤+∇ = − ∇ +∇ ∇ +∇⎣ ⎦∂
Tu uu p u u

t
,          (2) 

 
where the velocity vector u  has components , ,u v w  in , ,θr z  (radial, tangential and axial) directions, respectively, 
p is the pressure field, ρ  is the density and ν  is the cinematic viscosity. Introducing a scale L  for length, ν L  for 

velocity, 2ν L  for time and 
22ρν L  for pressure, the Eqs. (1-2) are transformed in dimensionless form. The refereed 

equation are solved with the following boundary conditions: in radial direction, no sleeping for v  and w  and 
impenetrability for u ; in tangential and axial directions, periodicity for all components of velocity. 
 
3. NUMERICAL PROCEDURE 
 

In order to perform the discretization of the equations, the finite volume method (Patankar, 1977) was employed on 
staggered grid, having second order schemes in space and time: central differencing an Adams-Brashforth schemes, 
respectively. The pressure velocity coupling method was done using the fractional step (Kim and Moin, 1985), where 
the steps named predictor and corrector are used. The pressure correction is evaluated by solving the Poisson equation 
using a strongly implicit procedure method, as proposed by Stone (1968). 

The time step is evaluated following the CFL stability criteria. Moreover, and non-uniform mesh (concentrated near 
the walls) is used, with 5% of  increment/decrement ratio. 

 
4. PRELIMINARY TESTS   
 

The isothermal, annular, Couette and Poiseuille flows were utilized as preliminary test cases, both having analytical 
solutions. The annular Couette flow is the steady state flow occurring between two concentric rotating cylinders, 
owning different velocities of rotation. In this case, a zero velocity of rotation is considered in the extern cylinder of 
radius eR  and the internal cylinder, of radius iR , have rotate at velocity ω , as depicted in Fig. 1. The values of the 
Reynolds number, or Ta , characteristics for this flow are lower than the critical Reynolds number cTa  (after this point 
the Taylor instabilities arise). The dimensionless parameters defining the geometrical configuration are the radius and 
aspect ratios, η e i= R R  and Γ a= C E  respectively, where aC  is the axial length of the cylinders and E  is the 
difference between the internal and external cylinders radius. Lastly, the Taylor number is defined as ω νi= R ETa  
(Wereley e Lueptow, 1999). 

 

 
 

Figure 1. Schematic drawing of the domain between two cylinders. Only the internal cylinder has 
non-zero velocity of rotation. 
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The geometrical configuration for the simulation is given by η = 1.1325 and Γ = 1, two values of the Taylor 
number and mesh dimensions of 10x3x60 in the radial, tangential e axial directions, respectively. For the value of η  
considered, the critical Taylor number is =cTa 114, in conformity to Anderek et al. (1985) and Kupferman (1998). The 
comparisons between analytical (White, 1974l; Bird et al., 2002) and numerical solutions, for the radial distributions of 
the tangential velocity are presented in Fig. 2, for =Ta 50 and 100. It's possible to observe an excellent agreement with 
the analytical solution.  

 

 
 

Figure 2. Radial distribution of the tangential velocity for annular Couette flow.  
 
On the other hand, the annular Poiseuille flow is developed due a pressure difference in the axial direction in the 

annulus between the cylinders. Thus, pressure is imposed on the inlet ( eP ) and in the outlet ( sP ) of the annulus. The 
same parameters of the last problem are utilized, beside the one governing the flow, the Reynolds number, defined as 

ν= mRe w E , where mw  is the mean velocity in the axial direction (based on the imposed pressure difference). 
 

 
 

Figure 3. Comparison of the axial velocity component for annular Poiseuille flow. 
 

For this simulation, three values of the Reynolds number, =Re 20, 50 and 100, and the parameters η = 2 and Γ = 1 
were utilized with a mesh of dimensions 20x2x2. The determined axial velocity profiles, depicted in Fig. 3, agreed  very 
well in accordance with the analytical results (White,1974, Bird et al., 2002), with differences smaller than 0,4%. 
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4. RESULTS 
 

Sequentially to the preliminary tests, the Taylor-Couette flow was utilized as a more serious test case to the 
validation of the computational code. The problem configuration is the same of the annular Couette flow (see Fig. 1), 
with a higher internal cylinder rotational velocity and the Taylor number above the critical value. The simulations has 
been realized with the following parameters: η = 1.205 (Wereley e Lueptow, 1999) e Γ = 6, Taylor numbers over the 
range =T a 103 e 124 and different mesh densities of refinement. As mentioned by Wereley e Lueptow (1999), for the 
defined value of η , the Taylor critical value is about 102, changing to between 124 and 131, when the Taylor vortices 
becomes unstable. 

The determined results are presented as: a) ,r z  planes in azimutal position θ = 3,0 rad, showing dimensionless 
tangential velocity vectors ( )ω iRv  (Figs. 4 e 6) and b) dimensionless profiles of axial velocity ( )ω iw R , in radial 

direction and of radial velocity ( )ω iu R  in axial direction z E , passing through the core of a positive vortice, using 
the right hand rule (Figs. 5, 7 e 8). The references for comparisons are: the experimental work of Wereley and Lueptow 
(1999), based on particle image velocimetry (PIV), and the numerical work of Hwang and Yang (2004), using the finite 
volume method and Γ = 32.      

The velocity vector field and non-dimensional isocontours of tangential velocity (white contours incrementing in 
0.1) for =T a 103, are presented in Fig. 4, where the bottom and upper straight lines represent the intern and extern 
cylinders surfaces respectively. In Fig. 4(a) the experimental results of Wereley e Lueptow (1999) are shown and 
compared with the ones determined in this work depicted in Fig. 4(b), for a mesh of 14x20x60 volumes, in radial 
tangential and axial direction respectively. In the whole domain, the flow is composed by three Taylor vortices pairs, 
with a characteristic wave length of 2 E , and only one pair and half of the first pair (left) are shown in Fig. 4. Some 
performed experimental characteristics are accurately reproduced: the radial flow (positive) between the vortices pairs 
is more intense than the radial flow (negative) between the adjacent vortices pairs, the radial flow direction alters the 
tangential velocity field, producing peaks and valleys and the distance between the cores of a vortices pair is smaller 
than the distance to the adjacent vortices core. 
 

 
(a) 

 

 
(b) 

 
Figure 4. Velocity vector field and tangential velocity contours for T a = 103; (a) Wereley e Lueptow (1998), (b) 

present work. 
 

Incrementing the Taylor number to T a = 124 (see Fig. 5), near the second critical value, the counter-rotating 
vortices become more strong, according Davey (1962), Wereley and Lueptow (1994), and others. Consequently, the 
velocity vector field is greater in modulus. On the other hand, the radial flow between the vortices pairs and the adjacent 
vortices is more intense, although deformed contours are derived from the tangential velocity field, when compared 
with the fields in Fig. 3. The Fig. 5(a) correspond to the experimental result of Wereley and Lueptow (1998). The result 
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obtained using a 14x40x60 mesh (Fig. 5b) is similar to the reference data and can also be observed a little pronunciated 
tangential velocity in the contours of Wereley e Lueptow (1998) when compared with the numerically determined. 

 

 
(a) 

 

 
(b) 

 
Figure 5. Velocity vector field and tangential velocity contours for =T a 124; (a) Wereley e Lueptow (1998) for, 

(b) present work. 
 
The radial velocity profiles through axial direction (Fig. 6) show suitable contours to the characteristics velocity 

fields, formed by positive-negative cell pairs (Padilla et al., 2007; Padilla e Silveira Neto, 2008; Kupferman, 1998). In 
the above mentioned figure is presented a comparison of the profiles using three different meshes, refined much more 
on the radial direction, as well as in the comparison to the experimental data of Wereley e Lueptow (1998). The profiles 
using 14x20x60 and 16x20x60 meshes are similar, with small difference in the peaks. Nevertheless, the profile using a  
12x20x60 mesh present a little higher value compared to profiles of the other meshes. Although the averaged tendency 
of the experimental data of Wereley e Lueptow (1998) can be good represented, is hard to accurately measure the 
differences. 

  

 
 

Figure 6. Radial velocity distribution in axial direction in the position ( ) 2= +o ir R R E . Comparison with 

experimental data, =T a 103. 
 
For the Taylor number of 124, the meshes used had a refinement between 10 and 14 volumes in the radial direction, 

and 20 and 120 volumes in the tangential direction. The results with few volumes, on the other hand, have minor 
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accuracy and due to the nature of the structures present in the flow is necessary to use a minimal number of volumes in 
each direction to assert a good solution. For the present configuration, this can be obtained using at least 14 volumes in 
radial direction and 40 volumes in tangential direction.       

In Figs. 7 and 8, the components of radial e axial velocities respectively, results using 12x120x60 and 14x40x60 
meshes are compared with the numeric and experimental references. Both profiles, as the results of Hwang and Yang 
(2004), present values of high magnitude than the ones of Wereley e Lueptow (1998). The difference evidenced to the 
data of Hwang e Yang (2004), in the radial velocity component (Fig. 7), can be due to the Taylor value used of 

=T a 123 and, possibly because to the use of a coarse mesh in the axial direction (approximately 8 volumes for each 
axial sub-domain of length E ). At last, according the experimental data of Wereley and Lueptow (1998), Hwang and 
Yang (2004) have obtained higher magnitudes for the peaks of each velocity component, due to the fact of the 
maximum velocity values are lightly reduced as the values on the points used to calculate the averaged values are 
smaller than the peak value (the cross correlation that PIV methodology is based). It must be considered that the 
associated errors with other experiments, and the authors reported an error of 4% in determination of the Taylor 
number. 
 

 
 

Figure 7. Radial velocity distribution in axial direction in the position ( ) 2= +o ir R R E . Comparison with 

experimental data, =T a 124. 
 

 
 

Figure 8. Comparison with experimental data of the axial velocity distribution in radial direction, passing 
through the core of the central vortice (positive), =T a 124. 
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5. CONCLUSIONS 
 

The validation process of a computational solver for the newtonian and isothermal fluid flow was realized in the 
present paper. The numerical code uses the cylindrical system of coordinates and is possible to solve one, two and 
three-dimensional problems. A few minor errors were obtained reproducing the one-dimensional annular Poiseuille and 
Couette flows. The three-dimensional Taylor-Couette flow was be characterized using many mesh refinements 
configurations, analyzing the influence over the characteristic structure, the Taylor vortices, and the velocity field. The 
satisfactory qualitative and quantitative comparisons show, evidently, the reliability of the obtained results and the 
validation of the developed numerical code. 
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