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Abstract. The purpose of this work is to develop a methodology thateaelsi high order spatial discretization for com-
pressible aerodynamic flows based on the spectral finitenwelmethod for hyperbolic conservation laws. High order
methods are necessary on the analysis of complex flows toed¢lde number of mesh elements one would otherwise need
if using traditional second-order schemes. In other wotdgh order methods can potentially achieve a higher level of
accuracy than low order ones given the same computatiosalnees. The spectral finite volume method was developed
as an alternative to k-exact high order schemes, ENO/WEN{d&tontinuous Galerkin methods. Its main objective is
to allow the implementation of a simpler and more efficiehtesae, while still achieving high order spatial accuracyeTh
2-D Euler equations are solved numerically in a finite voluedl centered context on unstructured meshes. An implicit
time march algorithm is employed to advance the solutiort¢ady-state. The treatment of discontinuities is also dis-
cussed. Several applications are performed in order tosstge method capability, which is compared to data avadlabl

in the literature and also compared to results from an wesgh¢ssentially non-oscillatory (WENO) scheme. The latter
comparison data can also be used to assess the present nuatimpaitational performance.

Keywords: Spectral Finite Volume, Implicit Method, High Order Distiration, 2D Euler Equations, Unstructured
Meshes

1. INTRODUCTION

Over the past several years, the Computational Aerodyrsabaiboratory of Instituto de Aeronautica e Espaco (IAE)
has been developing CFD solvers for two and three dimenisgyséems [Scalabrin, 2002, Basso et al., 2000]. One re-
search area of the development effort is aimed at the impi&tien of high-order methods suitable for problems of
interest to the Institute, i.e., external high-speed agrathics. Some upwind schemes such as the van Leer flux vector
splitting scheme [van Leer, 1982], the Liou AUSM+ flux vecsmiitting scheme [Liou, 1996] and the Roe flux differ-
ence splitting scheme [Roe, 1981] were implemented andddet second-order accuracy with a MUSCL reconstruc-
tion [Anderson et al., 1986]. However, the nominally seconder schemes presented results with an order of accuracy
smaller than the expected in the solutions for unstructgrits. Aside from this fact, it is well known that total vatian
diminishing (TVD) schemes have their order of accuracy ceduo first order in the presence of discontinuities due to
the effect of limiters.

This observation has motivated the group to study and toampht essentially non-oscillatory (ENO) and weighted
essentially non-oscillatory (WENQ) schemes in the past f\&lotl Azevedo, 2006]. However, as the intrinsic reconstruc-
tion model of these schemes relies on gathering neighbaeiig for polynomial reconstructions for each cell at each
time step, both were found to be very demanding on comput@ti@sources for resolution orders greater than three, in
2-D, or anything greater than 2nd order, in 3-D. This factiwatéd the consideration of the spectral finite volume metho
(SFV), as proposed by Wang and co-workers [Wang, 2002, Wadd @, 2002, Wang and Liu, 2003, Wang et al., 2004,
Liu et al., 2006, Sun et al., 2006], as a more efficient altidraa Such method is expected to perform better than ENO
and WENO schemes, compared to the overall cost of the siran|atince it differs on the reconstruction model applied
and it is currently extended up to 4th-order accuracy in tesgnt work. The SFV method is already in use by the authors
and, previously, numerical results have been publisheeMBlieri et al., 2008]. Although the expect order of acayra
is obtained for the 2nd, 3rd and 4th order SFV methods, afggni deterioration in convergence rate for the fourth
order simulations is observed, especially in the presehskark waves. Hence, it is expected that such behaviourean b
overcome by the use of an implicit time march algorithm.

The numerical solver is currently implemented for the solubf the 2-D Euler equations in a cell centered finite
volume context for triangular meshes, with a lower uppermatnic Gauss-Seidel (LU-SGS) scheme for time integration.
The paper, as here organized, presents the theoreticallfmion of the spatial and temporal discretization methfods
the Euler equations. The reconstruction process of the-dnidar polynomial is described next. Afterwards, the flux
limiting formulation is presented followed by the numetigssults and conclusions.
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2. THEORETICAL FORMULATION
2.1 Governing Equations

In the present work, the 2-D Euler equations are solved iin iegral form as

Q/QdVJF/(v.ﬁ)dV:o, 1)
ot Jy %
whereP = Ei + Fj. The application of the divergence theorem to Eq. (1) yields
0 3
— | QdV+ [ (P-®)dS=0. (2)
The vector of conserved variablé€g, and the convective flux vectors, and F, are given by
P gu pU
_ ) pu _ ) pu+Ep _ puv
Q= o ([ E= o , F= w2 tp [ 3)
e (ei +p)u (ei +pJv

The system is closed by the equation of state for a perfect gas
1 2 2
p=(-1) e = 5o’ +07)], (4)
where the ratio of specific heats, is set asl.4 for all computations in this work. The flux Jacobian matrixte 7 =

(ng, n,) face-normal direction can be written as

B:nma—E or

2Q "o ®

The B matrix has four real eigenvalugs = Ay = v,, A3 = v, +a, Ay = v, —a, and a complete set of right eigenvectors
(ri,re,73,74), Wherev, = un, + vn, anda is the speed of sound. Ldt be the matrix composed of these right
eigenvectors, then the Jacobian matix,can be diagonalized as

R™'BR = A, (6)
whereA is the diagonal matrix containing the eigenvalues,

A = diag(vp, n, vy, + a, v, — a). (7)
In the finite volume context, Eq. (2) can be rewritten for tkth control volume as

0Q; 1
ot B V; Si

(P-7)dS, (8)

whereQ); is the cell averaged value ¢f at timet andV; is the volume, or area in 2-D, on tli¢h control volume.
2.2 Spatial Discretization

The spatial discretization process determinéstla order discrete approximation to the integral in the tilgand side
of Eqg. (8). In order to solve it numerically, the computaabdomain (2, with proper initial and boundary conditions, is
discretized intaV non-overlapping triangles, the spectral volumes (SVghdhat

Q=Js. 9)

One should observe that the spectral volumes could be caddnsany type of polygon, given that it is possible to
decompose its bounding edges into a finite number of line satsh x, such that

Si=Jrk. (10)
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In the present paper, however, the authors assume thatrtiutational mesh is always composed of triangular elements
Hence, although the theoretical formulation is presentedHe general case, the actual SV partition schemes are only
implemented for triangular grids.

The boundary integral in Eq. (8) can be further discretized the convective operator form

K
C(Qi)z/s (ﬁ-ﬁ)dszz/A (P - it)ds, (11)
i r=1v4r

whereK is the number of faces, or edges in 2-D,%f and A, represents the — th edge of the SV. Given the fact thait
is constant for each line segment, the integration on th sigle of Eq. (11) can be performed numerically with-a th
order accurate Gaussian quadrature formula

K J
/A (P-i)dS = > wrgP(Q(2rq, Yrg)) - fir Ar + O(ALBF). (12)

r=1q=1

where(z,q, yrq) andw,, are, respectively, the Gaussian points and the weightseontthedge ofS;, J = integer((k +
1)/2) is the number of quadrature points required onitheth edge, and: will be defined in the forthcoming discussion.
For the second-order schemes, one Gaussian point is useel iimté¢gration. Given the coordinates of the end points of
the element edge; andz., one can obtain the Gaussian point as the middle point ofep@ent connecting the two end
points,G; = %(zl + z9). For this case, the weightis; = 1. For the third and fourth order schemes, two Gaussian points
are necessary along each line segment. Their values arelgjve

V3+1 V3+1 V3+1 V3+1
Gi=—7==n+(1- and Go=——z+ (1 — — )z,
TR ( 203 )72 2T 93 2 ( 23 )2

and the respective weights; andw,, are set asv; = w, = ;. Using the method described above, one can compute
values of@; for instantt for each SV. From these averaged values, it is possible tms#iwict polynomials that represent
the conserved variableg, pu, pv ande. Due to the discontinuity of the reconstructed values ofciheserved variables
over SV boundaries, one must use a numerical flux functioppoaximate the flux values on the cell boundaries.

The above procedures follow exactly the standard finitemelunethod. For a given order of spatial accuragypr
Eqg. (11), using the SFV method, eaghelement must have at least

(13)

k(k+1
o Bk +1) (14)
2
degrees of freedom (DOFs). This corresponds to the numbendfol volumes thab; shall be partitioned into. If one
denotes byC; ; the j-th control volume ofS;, the cell-averaged conservative variabigsat timet, for C; ; is computed
as

1
i, JCy 4

Vi

whereV; ; is the volume of’; ;. Once the cell-averaged conservative variables, or DOEs\ailable for allC'V s within
S;, a polynomialp;(z,y) € P*~!, with degreek — 1, can be reconstructed to approximatedhe, i) function insides;,
ie.,

pi(,y) = q(z,y) + O(* ), (z,y) € Si, (16)

whereh represents the maximum edge length of all CVs withinThe polynomial reconstruction process is discussed in
details in the following section. For now, it is enough to #agt this high-order reconstruction is used to update the ce
averaged state variables at the next time step for all thev@én the computational domain. Note that this polynomial
approximation is valid withirt; and some numerical flux coupling is necessary across SV lawiesd

Integrating Eq. (8) irC; ;, one can obtain the integral form for the CV averaged meda staiable

K

’ .7 - 17
2 Vz—,j;/Aff 7)dS = 0, 17)

where f represents thé& and F fluxes, K is the number of edges df; ; and A, represents the — ¢th edge of the CV.
The numerical integration can be performed with & ¢th order accurate Gaussian quadrature formulation, simitarl
the one for the SV elements in Eq. (12).
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As previously stated, the flux integration across SV bouedanvolves two discontinuous states, to the left and to the
right of the edge. This flux computation can be carried outgisin exact or approximate Riemann solver, or even a flux
splitting procedure, which can be written in the form

f(q(x’l"(p yrq)) : ﬁr ~ fRie’m,ann(QL (x’rqv yrq)a QR(x7‘qa y7'q)7 ﬁr)a (18)

whereg;, is the conservative variable vector obtained bygheolynomial applied at théz,,, y-,) coordinates andz

is the same vector obtained with tlpg;, polynomial in the same coordinates of the edge. Note thahthsubscript
represents the element to the right of the edge, whereassthitescript denotes the CV to its left. As the numerical flux
integration in the present paper is based on one of the fofm&@mann solver, this is the mechanism which introduces
the upwind and artificial dissipation effects into the methmaking it stable and accurate. In this work, the authove ha
used the Roe flux difference splitting method [Roe, 1981joimpute the numerical flux, i.e.,

fRiemann = froe(qL7quﬁ) = % [f(qL) + f(qR) - |§‘ (qR - qL)} ) (19)

where|§\ is Roe’s dissipation matrix computed in the direction ndrtodhe edges as
|B|=R|A| R (20)

Here, |K| is the diagonal matrix composed of the absolute values atitenvalues of the Jacobian matrix, as defined in
Eq. (7), evaluated using the Roe averages.
Finally, one ends up with the semi-discrete SFV scheme fdatipg the DOFs at control volumes, which can be
written as
K J
dg; 1

dt — _V ZZqufRiemann(qL(xrmyrq)7qR(xrq7y'rq)7ﬁr)Ar- (21)

Jop=1 qg=1

where the right hand side of Eq. (21) is the equivalent camxeoperator((qg; ;), for the j-th control volume ofS;. It

is worth mentioning that some edges of the CVs, resultingftioe partition of the SVs, lie inside the SV element in the
region where the polynomial is continuous. For such edfesetis no need to compute the numerical flux, as described
above. Instead, one uses analytical formulas for the fluxpeaation, i.e., without numerical dissipation.

2.3 Temporal Discretization

The convergence behavior of high-order methods, such &HRkenethod, is generally poor with explicit time march-
ing approaches. In order to obtain the steady state solofitime flow from an initial condition, a relaxation scheme is
necessary. The approach typically used in the presentrofsgeoup has been to resort to explicit, multi-stage, Runge
Kutta time-stepping methods. The main advantages of suep@imach are that it is easy to implement and the memory
requirements are quite modest. Hence, the current “pramhictersion of the code uses a 3-stage TVD Runge-Kutta
scheme for time integration [Wolf and Azevedo, 2006]. Hoerewadequate solution convergence characteristics, espe-
cially for the higher-order implementations, dictate thatimplicit time integrator should be implemented. Therefan
implicit LU-SGS scheme is implemented in the context of thespnt work.

Equation (2) can be recast in the semi-discrete form as

Jq;
Vig, =R (22)
whereR; is the right-hand side residual and it tends to zero as thalation converges to a steady-state solution. Using
Euler implicit time-integration, Eq. (22) can be writtendiscrete form as

dq;

ViAt

=Rt (23)

whereAt is the time increment angy™ = ¢"+! — ¢™. The above equation can be linearized in time as

oql OR}
b= R g, 24
Viar = ~H = 504 (24)

The termdR/dq represents the Jacobian matrix. Writing the equation foelathents, one obtains the delta form of the
backward Euler scheme

Adqg=R (25)
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% OR"™
A=—I+ 26
At dq (26)

wherel is the identity matrix.
In order to reduce the number of non-zero entries in the Jagabatrix and to simplify the linearization process, only
a first-order representation of the numerical fluxes is lized. This results in the fact that the graph of the spardexna
is identical to the graph of the unstructured mesh. HeneeJélcobian matrix entries can be computed and stored over a
loop on the mesh edges. Therefore, the residual operatdyecamitten as

Rallss 0 753) = 5 a1 5) + (a5 753) = s (05 — )] (27)

for an edge that shares volurhand;. A scalar dissipation model is used,
[ Aijl = [T - i | + ag; (28)

whereri;; is the unit vector normal to the edgg, is the velocity vector normal to the edge ani the speed of sound.
One should note that the dissipation on the flux function jgreximated by the Jacobian matrix spectral radius. The
linearization of Eq. (27) yields

OR; 1
- =5 (J(@) + A1)
dq; 2
oR; 1 (29)
9, 2 (J(gz) = [Nis]1)

whereJ = 0F/0q is the Jacobian of the inviscid flux vector.
As stated before, using an edge-based data structure, ¢bbida matrix is stored in lower, upper and diagonal
components, which are computed as

L= —[-J(qi, ;) — [ Xiz|1]

N — N~

U =5 [J(g,7i;) — [Nz (1] (30)

%4 1 "
D=+ Zj:i [T (qi, i) + [Nij 1]

Note thatZ, U and D represent the strict lower, upper and diagonal matricespedtively. Equation (25) represents
a system of linear simultaneous algebraic equations tredse be solved at each time step. The iterative LU-SGS
solution method is employed, along with a mesh renumberiggrigthm [Cuthill and McKee, 1969], and the system is
solved in two steps, a forward and backward sweep

(D+L)d¢" =R

(D + U)sq = Déq". (31)

Itis found that the CPU cost of one LU-SGS step is very cldseticheaper, than that of the 3-stage Runge Kutta explicit
step for these inviscid analyses.

3. SPECTRAL FINITE VOLUME RECONSTRUCTION
3.1 General Formulation

The evaluation of the conserved variables at the quadrptings is necessary in order to perform the flux integration
over the mesh element edges. These evaluations can beeatthigveconstructing conserved variables in terms of some
base functions using the DOFs within a SV. The present woskdaaried out such reconstructions using polynomial
functions. LetP,, denote the space af-th degree polynomials in two dimensions. Then, the minindimmension of the
approximation space that allow, to be complete is

Nmzﬁtﬂ%@ia. 32)
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In order to reconstruetin P,,, it is necessary to partition the SV infg,, non-overlapping CVs, such that
N,
Si = U Ci;- (33)
j=1

The reconstruction problem, for a given continuous functioS; and a suitable partition, can be stated as finginge
P, such that

/ Do, 4)dS = / a(z, y)dS. (34)
c Cis

With a complete polynomial basis,(z, y) € Py, itis possible to satisfy Eq. (34). Hengsg,, can be expressed as

i

NWL
Pm = Z blel (337 y)7 (35)
1=1
wheree is the base function vectofe, - - - ,exn], andb is the reconstruction coefficient vectdb,,--- ,bx]?. The
substitution of Eq. (35) into Eq. (34) yields
1 Nm
b dS =7q; .. 36
Vi ; Z/CM ez, y) 4. (36)
If g denotes thég;, ,,--- ,q; n,,,]" column vector, Eq. (36) can be rewritten in matrix form as
Sb=47, (37)
where theS reconstruction matrix is given by
Vil me e1(z,y)dS - %l sz,l en(z,y)dS
S = : . : (38)
ﬁ jClN er(xz,y)dsS - ﬁ fCuv en(z,y)dS
and, then, the reconstruction coefficiehtsan be obtained as
b=S""q, (39)
provided thatS is non-singular. With the substitution of Eq. (39) into E§4), p.. iS, then, expressed in terms of shape
functionsL = [Ly,- - - , L], defined ad, = eS~!, such that one could write
N
Pm = Z Lj(z,9)q; ; = Lq. (40)
j=1

Equation (40) gives the value of the conserved state variabat any point within the SV and its boundaries, including
the quadrature point$z,.q, yrq)-

The major advantage of the SFV method is that the reconiiruptocess does not need to be carried out for every
mesh elemens;. One can compute these coefficients as a pre-processingrsieihey do not change along the simu-
lation. This is a major difference when compared to methads :s ENO and WENO, for which every mesh element
has a different reconstruction process at each time step pdlynomial base functions for the linear, quadratic and cu
bic reconstructions are listed in Table 1. Clearly, thedimeuadratic and cubic polynomial reconstructions widlgi
respectively, 2nd-, 3rd- and 4th-order spatial discrétrenumerical schemes.

3.2 Linear Reconstruction

For the linear SFV method reconstruction,= 1, one needs to partition a SV in three sub-elements, as in(E4s.
and (32) and use the base vector as defined in Table 1. Thegrasttheme is given for a standard element. The partition
for this case is uniquely defined. The structured aspectef¥is within the SVs is used to determine neighborhood
information and generate the global connectivity data ictamsg a hash table search algorithm [Knuth, 1998].

The linear partition is presented in Fig. 1-a. It yields atof 7 points, 9 edges (6 are external edges and 3 are internal
ones) and 9 quadrature points. The linear polynomial foSih¢ method depends only on the base functions and on the
partition shape. The integrals of the reconstruction matriEq. (38) are obtained analytically [Liu and Vinokur, B)9
for fundamental shapes. The shape functions, in the senke.of40), are calculated and stored in memory for the
quadrature pointsx,., y,4), Of the standard element. Such shape functions have thesarae value for the quadratures
points of any other SV of the mesh, provided they all have émespartition. There is one quadrature point located at the
middle of the every CV edge.
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Table 1. Polynomial base functions.

Reconstruction Order e
linear [1zy]
guadratic [1xya?ayy?]
cubic [12ya? xyy? o 2%y xy? v |

3.3 Quadratic Reconstruction

For the quadratic reconstructiom, = 2, one needs to partition a SV in six sub-elements and use $e\Jstor as
defined in Table 1. The partition scheme is also given in thloskwior a right triangle. The nodes of the partition are
obtained in terms of barycentric coordinates of the SV el@medes in the same manner as the linear partition. The
structured aspect of the CVs within the SVs is used to determéighborhood information and generate the connectivity
table. The ghost creation process and edge-based dattustriscthe same as for the linear reconstruction case. The
partition used in this work [van den Abeele and Lacor, 2084hown in Fig. 1-b. It has a total of 13 points, 18 edges
(9 external edges and 9 internal ones), 36 quadrature pantst has a Lebesgue constant valug 6f75. The shape
functions, in the sense of Eq. (40), are obtained as in theatipartition. The reader should note that, in this case,
the base functions have six terms that shall be integratg@inAthese terms are obtained exactly and kept in memory
[Liu and Vinokur, 1998]. In this case, two quadrature pognts required per CV edge.

3.4 Cubic Reconstruction

For the cubic reconstructiom; = 3, one needs to partition the SV in ten sub-elements and toheskatse vector as
defined in Table 1. The ghost creation process and edge-basadtructure is the same as for the linear and quadratic
reconstruction cases. As a matter of fact, the same algoritiilized to perform these tasks can be applied to higher
order reconstructions. The partition used in this work &ithproved cubic partition [van den Abeele and Lacor, 2007],
presented in Fig. 1-c and it has a total of 21 points, 30 edg2®xternal edges and 18 internal ones), 60 quadrature
points and it has a Lebesgue constant value »f46. The shape functions, in the sense of Eq. (40), are obtamauthe
linear partition in a pre-processing step. As with the gatidreconstruction, each CV edge has two quadrature points
[Breviglieri et al., 2008].

a b C

Figure 1. Triangular spectral volume partitions for (aghm, (b) quadratic, and (c) cubic reconstructions.

4. LIMITER FORMULATION

For the Euler equations, it is necessary to limit some recocted properties in order to maintain stability and con-
vergence of the simulation, if the resulting flowfield contadiscontinuities. The limiters are applied in each conapbn
of the primitive variable vectofp, u, v, p)T, derived from the conserved variable vector evaluated atiGiure points.
For each CV, the following humerical monotonicity criterits prescribed:

@anm < di.j (xrqa yrq) < qzzjax7 (41)
wherea’z’-jfj” andg;"/"* are the minimum and maximum cell averaged property valuesgrall neighboring CVs that share
a edge withC; ;. If Eq. (41) is strictly enforced, the method becomes TVDVégue, 2002]. This method, however, is
first-order accurate and it may compromise the general acgwf the solution. To maintain high-order accuracy away
from discontinuities, small oscillations are allowed i tsimulation, as in TVB methods [Shu, 1987]. If one expresses
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the reconstruction for the quadrature points as a diffexavith respect to the cell averaged mean,
AQTq =Di (.%‘Tq, yrq) - Qi,ja (42)

then no limiting is necessary j\q,,| satisfies Eq. (41) for every quadrature point of the CV edifésdoes not, then,
the solution is limited for this CV and linearly reconstredtas

¢ij(z,y) =G; ; +PVgi;-r, (43)

whereVyg; ; is the gradient at the CV centroid, ands the position vector of the quadrature point with regartheCV
centroid. The original high order polynomial in the CV is d4e compute the gradient, i.e.,

~_ (9pi Op
Vi = (9. (@)

The reconstructed property value from Eq. (43) may not fyafi§.(41) and, therefore, it is limited by multiplying the
increment in the CV average value by a scabae [0, 1], that can be computed following the general orientatiorhef t
literature, such that it satisfies the monotonicity conistrdn this work, thesuperbee limiter is used [Hirsch, 1990].

5. NUMERICAL RESULTS

The results presented here attempt to validate both theeimgattation of the data structure, temporal integration,
numerical stability and resolution of the SFV method. Therail performance of the method is compared with that
of a WENO scheme implementation. For the presented resdisity is made dimensionless with respect to the free
stream condition and pressure is made dimensionless véfiect to the density times the speed of sound squared. For
the steady case simulations, the CFL number is set as a nbmatae and the local time step is computed using the local
grid spacing and characteristic speeds. For both test,dhgeSFL number is set tb.0e + 6.

All numerical simulations were carried out on a dual-co@@Hz PC Intel64 architecture, with Linux OS. The code
is written in Fortran 95 language and the Intel Fortran coen@with optimization flag$ is used. For all performance
comparisons which are presented in this section, all rassdare normalized by the first iteration residue. Moreoves,

Lo, norm is used in all residuals here reported.

5.1 Wedge Flow

The computation of the supersonic flow field past a wedge vathdngled = 10 deg is considered. The compu-
tational mesh has 816 nodes and 1504 volumes and it is shoig.i2, along with the density contours obtained with
4th-order SFV method. For comparison purposes, the setoind,and fourth order SFV methods were utilized along
with WENO schemes. The leading edge of the wedge is locatembadinates: = 0.25 andy = 0.0. The computational
domain is bounded along the bottom by the wedge surface aad bytflow section before the leading edge. The inflow
boundary is located at the left and top of the domain, whigedhitflow boundary is located ahead of the wedge and at the
right of the domain. The analytical solution gives the chamgproperties across the oblique shock as a function of the
free stream Mach number and shock angle, which is obtaioedtined — 3 — M ach relation. For this case, a free stream
Mach number of\/; = 5.0 was used, and the oblique shock anglis obtained ag9.5 deg. For the analytical solution,
the pressure ratio is,/p; ~ 3.083 and the Mach number past the shock wav&fis~ 3.939. For these simulations the
use of the limiter was necessary in order to keep the highreedenstruction away from the shock wave.

The numerical solutions of the SFV method are in good agraewmi¢h the analytical solution. In Fig. 3 we compare
the numerical solutions of the SFV and WENO schemes, in tefmsessure coefficient values, with the analytical one.
Note that the SFV scheme is the one that better approximiageiinp in pressure on the leading edge. The pressure
ratio and Mach number after the shock wave for the fourth o8V scheme were computed as/p; ~ 3.047 and
M, =~ 3.901. As expected, the fourth order SFV scheme achieved resatisrdo the analytical one. Also, the Cp results
for the second and third order WENO solutions are very simi@n the other hand, only the SFV method achieved a
solution, for the fourth-order methods, because the 4detd?VENO scheme diverged.

5.2 NACA 0012 Airfoll

For the NACA 0012 airfoil simulation, the mesh is shown in.Fgalong with the Mach number contours. The mesh
has’414 elements and369 nodes. Flow conditions are the same as in the experimenta]iaDevitt and Okuno, 1985],
that is, freestream Mach number f,, = 0.8 and0 deg. angle-of-attack. Figure 5 shows the Cp plots of the migade
simulations for both WENO and SFV methods of different ord&teeir agreement with the experimental data, in terms of

1Compiler flags: -O3 -assume buffered_io -parallel
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Figure 3. Supersonic wedge flow analytical and numeric pressoefficient.

shock position and pressure coefficient (Cp) values, is reagonable. The main difference between the methods occurs
for the fourth order simulation where the SFV method betpgraaches the experimental data and gives more consistent
values for Cp after the shock wave. For these simulatiomsysie of limiters is also necessary.

The Cp curves indicate that the SFV method captures the shaegd, over the airfoil, usually with a single SV element
in it, as shown in Fig. 6, which validates the limiter formtida and the suitability of the method to our needs. The Cp
distributions in the post-shock region show that the infagenf the limiter operator reduced the fourth order scheme
resolution. Also, the fourth order simulation of the WENO eate presented large oscillations along the airfoil chord,
as seen in Fig. 6(c). This can be explained given the factlhigatubic polynomial reconstruction process of the WENO
scheme, which involves neighbor data processing, is lomitear boundaries and it must work with the available data.
Hence, it produces an oscillatory interpolation polyndmigais important to emphasize that the present computation
are performed assuming inviscid flow. One should obserwsetier, that the pressure rise across the shock wave, in the
experimental results, is spread over a larger region duest@tesence of the boundary layer and the consequent shock-
boundary layer interaction that necessarily occurs in #peement. For the numerical solutions, the shock presants
sharper resolution, as one can expect from an Euler solution

The performance analysis is carried out for this test. Time fior solution of the SFV 3rd order implicit and explicit
methods can be seen in Fig. 7 along with the number of iteratié-or the explicit run, a CFL value of 0.2 was used.
The total iteration number is limited to thirty thousanddtiions. Despite the relative low residual drop, for theliexp
simulation, the lift coefficient of the airfoil reached aatly value at about 10000 iterations. Next, a comparisonef th
implicit WENO and SFV schemes is presented for the third ospetial resolution case. As one can observe in Fig. 8,
the SFV method is able to reduce the residual several orddaeseas the WENO case seems to stall the convergence.
Nevertheless, for both schemes, the lift coefficient plavsha constant, or zero value for this case, after the first 500
iterations on the SFV scheme and after 1000 iterations 8&YWENO scheme.
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The performance achieved on the third order case is carviedto the fourth order simulation as numerical experi-
mentation showed. However, as should expect, for flows w#bahtinuities such as the present test case, there is & smal
performance degradation for the 4th-order scheme due tonthation process. There are more limited control volumes
which increases the overall cost of the method, since tHesgegits must be linearly reconstructed and, then, limited.
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Figure 4. Mesh and Mach number visualization for 4th-ordeé¥ &umerical simulation of flow over NACA 0012 airfolil
(M = 0.8).

6. CONCLUSIONS

The second, third and fourth order spectral finite volumeho@s$ are successfully implemented and validated with
the proposed numerical tests. The method behavior forutsnlorders greater than second order is shown to be in good
agreement with both experimental and analytical data. hEuamore, the results obtained show that the current method
can yield solutions with the same or better quality, at a moaler computational resource usage, than other high order
schemes, as demonstrated by the comparison with commgaigformed with a WENO scheme. Further improvements
in the SFV method capabilities are achieved by addition afrgoiicit time march algorithm.

The method seems suitable for the aerospace applicatianteodst to IAE in the sense that it is compact, given the
fact that the stencil for polynomial reconstruction is atw&nown, geometrically flexible, by supporting unstruetlir
meshes, and computationally efficient.
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