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Abstract. The purpose of this work is to develop a methodology that achieves high order spatial discretization for com-
pressible aerodynamic flows based on the spectral finite volume method for hyperbolic conservation laws. High order
methods are necessary on the analysis of complex flows to reduce the number of mesh elements one would otherwise need
if using traditional second-order schemes. In other words,high order methods can potentially achieve a higher level of
accuracy than low order ones given the same computational resources. The spectral finite volume method was developed
as an alternative to k-exact high order schemes, ENO/WENO and discontinuous Galerkin methods. Its main objective is
to allow the implementation of a simpler and more efficient scheme, while still achieving high order spatial accuracy. The
2-D Euler equations are solved numerically in a finite volume, cell centered context on unstructured meshes. An implicit
time march algorithm is employed to advance the solution to steady-state. The treatment of discontinuities is also dis-
cussed. Several applications are performed in order to assess the method capability, which is compared to data available
in the literature and also compared to results from an weighted essentially non-oscillatory (WENO) scheme. The latter
comparison data can also be used to assess the present methodcomputational performance.

Keywords: Spectral Finite Volume, Implicit Method, High Order Discretization, 2D Euler Equations, Unstructured
Meshes

1. INTRODUCTION

Over the past several years, the Computational Aerodynamics Laboratory of Instituto de Aeronáutica e Espaço (IAE)
has been developing CFD solvers for two and three dimensional systems [Scalabrin, 2002, Basso et al., 2000]. One re-
search area of the development effort is aimed at the implementation of high-order methods suitable for problems of
interest to the Institute, i.e., external high-speed aerodynamics. Some upwind schemes such as the van Leer flux vector
splitting scheme [van Leer, 1982], the Liou AUSM+ flux vectorsplitting scheme [Liou, 1996] and the Roe flux differ-
ence splitting scheme [Roe, 1981] were implemented and tested for second-order accuracy with a MUSCL reconstruc-
tion [Anderson et al., 1986]. However, the nominally second-order schemes presented results with an order of accuracy
smaller than the expected in the solutions for unstructuredgrids. Aside from this fact, it is well known that total variation
diminishing (TVD) schemes have their order of accuracy reduced to first order in the presence of discontinuities due to
the effect of limiters.

This observation has motivated the group to study and to implement essentially non-oscillatory (ENO) and weighted
essentially non-oscillatory (WENO) schemes in the past [Wolf and Azevedo, 2006]. However, as the intrinsic reconstruc-
tion model of these schemes relies on gathering neighboringcells for polynomial reconstructions for each cell at each
time step, both were found to be very demanding on computational resources for resolution orders greater than three, in
2-D, or anything greater than 2nd order, in 3-D. This fact motivated the consideration of the spectral finite volume method
(SFV), as proposed by Wang and co-workers [Wang, 2002, Wang and Liu, 2002, Wang and Liu, 2003, Wang et al., 2004,
Liu et al., 2006, Sun et al., 2006], as a more efficient alternative. Such method is expected to perform better than ENO
and WENO schemes, compared to the overall cost of the simulation, since it differs on the reconstruction model applied
and it is currently extended up to 4th-order accuracy in the present work. The SFV method is already in use by the authors
and, previously, numerical results have been published [Breviglieri et al., 2008]. Although the expect order of accuracy
is obtained for the 2nd, 3rd and 4th order SFV methods, a significant deterioration in convergence rate for the fourth
order simulations is observed, especially in the presence of shock waves. Hence, it is expected that such behaviour can be
overcome by the use of an implicit time march algorithm.

The numerical solver is currently implemented for the solution of the 2-D Euler equations in a cell centered finite
volume context for triangular meshes, with a lower upper symmetric Gauss-Seidel (LU-SGS) scheme for time integration.
The paper, as here organized, presents the theoretical formulation of the spatial and temporal discretization methodsfor
the Euler equations. The reconstruction process of the high-order polynomial is described next. Afterwards, the flux
limiting formulation is presented followed by the numerical results and conclusions.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

2. THEORETICAL FORMULATION

2.1 Governing Equations

In the present work, the 2-D Euler equations are solved in their integral form as

∂

∂t

∫

V

QdV +

∫

V

(∇ · ~P )dV = 0 , (1)

where~P = Eı̂ + F ̂. The application of the divergence theorem to Eq. (1) yields

∂

∂t

∫

V

QdV +

∫

S

(~P · ~n)dS = 0 . (2)

The vector of conserved variables,Q, and the convective flux vectors,E andF , are given by
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The system is closed by the equation of state for a perfect gas

p = (γ − 1)

[

ei −
1

2
ρ(u2 + v2)

]

, (4)

where the ratio of specific heats,γ, is set as1.4 for all computations in this work. The flux Jacobian matrix inthe~n =
(nx, ny) face-normal direction can be written as

B = nx

∂E

∂Q
+ ny

∂F

∂Q
. (5)

TheB matrix has four real eigenvaluesλ1 = λ2 = vn, λ3 = vn +a, λ4 = vn−a, and a complete set of right eigenvectors
(r1, r2, r3, r4), wherevn = unx + vny and a is the speed of sound. LetR be the matrix composed of these right
eigenvectors, then the Jacobian matrix,B, can be diagonalized as

R−1BR = Λ, (6)

whereΛ is the diagonal matrix containing the eigenvalues,

Λ = diag(vn, vn, vn + a, vn − a). (7)

In the finite volume context, Eq. (2) can be rewritten for thei-th control volume as

∂Qi

∂t
= − 1

Vi

∫

Si

(~P · ~n)dS , (8)

whereQi is the cell averaged value ofQ at timet andVi is the volume, or area in 2-D, on thei-th control volume.

2.2 Spatial Discretization

The spatial discretization process determines ak-th order discrete approximation to the integral in the right-hand side
of Eq. (8). In order to solve it numerically, the computational domain,Ω, with proper initial and boundary conditions, is
discretized intoN non-overlapping triangles, the spectral volumes (SVs), such that

Ω =

N
⋃

i=1

Si. (9)

One should observe that the spectral volumes could be composed by any type of polygon, given that it is possible to
decompose its bounding edges into a finite number of line segmentsΓK , such that

Si =
⋃

ΓK . (10)
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In the present paper, however, the authors assume that the computational mesh is always composed of triangular elements.
Hence, although the theoretical formulation is presented for the general case, the actual SV partition schemes are only
implemented for triangular grids.

The boundary integral in Eq. (8) can be further discretized into the convective operator form

C(Qi) ≡
∫

Si

(~P · ~n)dS =

K
∑

r=1

∫

Ar

(~P · ~n)dS, (11)

whereK is the number of faces, or edges in 2-D, ofSi, andAr represents ther− th edge of the SV. Given the fact that~n
is constant for each line segment, the integration on the right side of Eq. (11) can be performed numerically with ak− th
order accurate Gaussian quadrature formula

∫

Ar

(~P · ~n)dS =

K
∑

r=1

J
∑

q=1

wrq
~P (Q(xrq, yrq)) · ~nrAr + O(Arh

k). (12)

where(xrq, yrq) andwrq are, respectively, the Gaussian points and the weights on ther-th edge ofSi, J = integer((k +
1)/2) is the number of quadrature points required on ther− th edge, andh will be defined in the forthcoming discussion.
For the second-order schemes, one Gaussian point is used in the integration. Given the coordinates of the end points of
the element edge,z1 andz2, one can obtain the Gaussian point as the middle point of the segment connecting the two end
points,G1 = 1

2
(z1 +z2). For this case, the weight isw1 = 1. For the third and fourth order schemes, two Gaussian points

are necessary along each line segment. Their values are given by
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3
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and the respective weights,w1 andw2, are set asw1 = w2 = 1

2
. Using the method described above, one can compute

values ofQi for instantt for each SV. From these averaged values, it is possible to reconstruct polynomials that represent
the conserved variables,ρ, ρu, ρv ande. Due to the discontinuity of the reconstructed values of theconserved variables
over SV boundaries, one must use a numerical flux function to approximate the flux values on the cell boundaries.

The above procedures follow exactly the standard finite volume method. For a given order of spatial accuracy,k, for
Eq. (11), using the SFV method, eachSi element must have at least

m =
k(k + 1)

2
(14)

degrees of freedom (DOFs). This corresponds to the number ofcontrol volumes thatSi shall be partitioned into. If one
denotes byCi,j thej-th control volume ofSi, the cell-averaged conservative variables,q, at timet, for Ci,j is computed
as

qi,j(t) =
1

Vi,j

∫

Ci,j

q(x, y, t)dxdy, (15)

whereVi,j is the volume ofCi,j . Once the cell-averaged conservative variables, or DOFs, are available for allCV s within
Si, a polynomial,pi(x, y) ∈ P k−1, with degreek− 1, can be reconstructed to approximate theq(x, y) function insideSi,
i.e.,

pi(x, y) = q(x, y) + O(hk−1), (x, y) ∈ Si, (16)

whereh represents the maximum edge length of all CVs withinSi. The polynomial reconstruction process is discussed in
details in the following section. For now, it is enough to saythat this high-order reconstruction is used to update the cell-
averaged state variables at the next time step for all the CVswithin the computational domain. Note that this polynomial
approximation is valid withinSi and some numerical flux coupling is necessary across SV boundaries.

Integrating Eq. (8) inCi,j , one can obtain the integral form for the CV averaged mean state variable

dqi,j

dt
+

1

Vi,j

K
∑

r=1

∫

Ar

(f · ~n)dS = 0, (17)

wheref represents theE andF fluxes,K is the number of edges ofCi,j andAr represents ther − th edge of the CV.
The numerical integration can be performed with ak − th order accurate Gaussian quadrature formulation, similarly to
the one for the SV elements in Eq. (12).
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As previously stated, the flux integration across SV boundaries involves two discontinuous states, to the left and to the
right of the edge. This flux computation can be carried out using an exact or approximate Riemann solver, or even a flux
splitting procedure, which can be written in the form

f(q(xrq, yrq)) · ~nr ≈ fRiemann(qL(xrq, yrq), qR(xrq, yrq), ~nr), (18)

whereqL is the conservative variable vector obtained by thepi polynomial applied at the(xrq, yrq) coordinates andqR

is the same vector obtained with thepnb polynomial in the same coordinates of the edge. Note that thenb subscript
represents the element to the right of the edge, whereas thei subscript denotes the CV to its left. As the numerical flux
integration in the present paper is based on one of the forms of a Riemann solver, this is the mechanism which introduces
the upwind and artificial dissipation effects into the method, making it stable and accurate. In this work, the authors have
used the Roe flux difference splitting method [Roe, 1981] to compute the numerical flux, i.e.,

fRiemann = froe(qL, qR, ~n) =
1

2

[

f(qL) + f(qR) −
∣

∣B
∣

∣ (qR − qL)
]

, (19)

where
∣

∣B
∣

∣ is Roe’s dissipation matrix computed in the direction normal to the edges as
∣

∣B
∣

∣ = R
∣

∣Λ
∣

∣ R−1. (20)

Here,
∣

∣Λ
∣

∣ is the diagonal matrix composed of the absolute values of theeigenvalues of the Jacobian matrix, as defined in
Eq. (7), evaluated using the Roe averages.

Finally, one ends up with the semi-discrete SFV scheme for updating the DOFs at control volumes, which can be
written as

dqi,j

dt
= − 1

Vi,j

K
∑

r=1

J
∑

q=1

wrqfRiemann(qL(xrq, yrq), qR(xrq, yrq), ~nr)Ar. (21)

where the right hand side of Eq. (21) is the equivalent convective operator,C(qi,j), for thej-th control volume ofSi. It
is worth mentioning that some edges of the CVs, resulting from the partition of the SVs, lie inside the SV element in the
region where the polynomial is continuous. For such edges, there is no need to compute the numerical flux, as described
above. Instead, one uses analytical formulas for the flux computation, i.e., without numerical dissipation.

2.3 Temporal Discretization

The convergence behavior of high-order methods, such as theSFV method, is generally poor with explicit time march-
ing approaches. In order to obtain the steady state solutionof the flow from an initial condition, a relaxation scheme is
necessary. The approach typically used in the present research group has been to resort to explicit, multi-stage, Runge
Kutta time-stepping methods. The main advantages of such anapproach are that it is easy to implement and the memory
requirements are quite modest. Hence, the current “production” version of the code uses a 3-stage TVD Runge-Kutta
scheme for time integration [Wolf and Azevedo, 2006]. However, adequate solution convergence characteristics, espe-
cially for the higher-order implementations, dictate thatan implicit time integrator should be implemented. Therefore, an
implicit LU-SGS scheme is implemented in the context of the present work.

Equation (2) can be recast in the semi-discrete form as

Vi

∂qi

∂t
= −Ri (22)

whereRi is the right-hand side residual and it tends to zero as the simulation converges to a steady-state solution. Using
Euler implicit time-integration, Eq. (22) can be written indiscrete form as

Vi

δqn
i

∆t
= −Rn+1

i (23)

where∆t is the time increment andδqn = qn+1 − qn. The above equation can be linearized in time as

Vi

δqn
i

∆t
= −Rn

i − ∂Rn
i

∂q
δqn

i . (24)

The term∂R/∂q represents the Jacobian matrix. Writing the equation for allelements, one obtains the delta form of the
backward Euler scheme

Aδq = R (25)
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where

A =
V

∆t
I +

∂Rn

∂q
(26)

whereI is the identity matrix.
In order to reduce the number of non-zero entries in the Jacobian matrix and to simplify the linearization process, only

a first-order representation of the numerical fluxes is linearized. This results in the fact that the graph of the sparse matrix
is identical to the graph of the unstructured mesh. Hence, the Jacobian matrix entries can be computed and stored over a
loop on the mesh edges. Therefore, the residual operator canbe written as

Ri(qi, qj , ~nij) =
1

2
[f(qi, ~nij) + f(qj , ~nij) − |λij |(qj − qi)] (27)

for an edge that shares volumei andj. A scalar dissipation model is used,

|λij | = |~vij · ~nij | + aij (28)

where~nij is the unit vector normal to the edge,~vij is the velocity vector normal to the edge anda is the speed of sound.
One should note that the dissipation on the flux function is approximated by the Jacobian matrix spectral radius. The
linearization of Eq. (27) yields

∂Ri

∂qi

=
1

2
(J(qi) + |λij |I)

∂Ri

∂qj

=
1

2
(J(qj) − |λij |I)

(29)

whereJ = ∂F/∂q is the Jacobian of the inviscid flux vector.
As stated before, using an edge-based data structure, the Jacobian matrix is stored in lower, upper and diagonal

components, which are computed as

L =
1

2
[−J(qi, ~nij) − |λij |I ]

U =
1

2
[J(qj , ~nij) − |λij |I ]

D =
V

∆t
I +

∑

j

1

2
[J(qi, ~nij) + |λij |I ] .

(30)

Note thatL,U andD represent the strict lower, upper and diagonal matrices, respectively. Equation (25) represents
a system of linear simultaneous algebraic equations that needs to be solved at each time step. The iterative LU-SGS
solution method is employed, along with a mesh renumbering algorithm [Cuthill and McKee, 1969], and the system is
solved in two steps, a forward and backward sweep

(D + L)δq∗ = R

(D + U)δq = Dδq∗.
(31)

It is found that the CPU cost of one LU-SGS step is very close, if not cheaper, than that of the 3-stage Runge Kutta explicit
step for these inviscid analyses.

3. SPECTRAL FINITE VOLUME RECONSTRUCTION

3.1 General Formulation

The evaluation of the conserved variables at the quadraturepoints is necessary in order to perform the flux integration
over the mesh element edges. These evaluations can be achieved by reconstructing conserved variables in terms of some
base functions using the DOFs within a SV. The present work has carried out such reconstructions using polynomial
functions. LetPm denote the space ofm-th degree polynomials in two dimensions. Then, the minimumdimension of the
approximation space that allowsPm to be complete is

Nm =
(m + 1)(m + 2)

2
. (32)
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In order to reconstructq in Pm, it is necessary to partition the SV intoNm non-overlapping CVs, such that

Si =

Nm
⋃

j=1

Ci,j . (33)

The reconstruction problem, for a given continuous function in Si and a suitable partition, can be stated as findingpm ∈
Pm such that

∫

Ci,j

pm(x, y)dS =

∫

Ci,j

q(x, y)dS. (34)

With a complete polynomial basis,el(x, y) ∈ Pm, it is possible to satisfy Eq. (34). Hence,pm can be expressed as

pm =

Nm
∑

l=1

blel(x, y), (35)

wheree is the base function vector,[e1, · · · , eN ], and b is the reconstruction coefficient vector,[b1, · · · , bN ]T . The
substitution of Eq. (35) into Eq. (34) yields

1

Vi,j

Nm
∑

l=1

bl

∫

Ci,j

el(x, y)dS = qi,j . (36)

If q denotes the[qi,1, · · · , qi,Nm]T column vector, Eq. (36) can be rewritten in matrix form as

Sb = q, (37)

where theS reconstruction matrix is given by

S =







1

Vi,1

∫

Ci,1
e1(x, y)dS · · · 1

Vi,1

∫

Ci,1
eN (x, y)dS

... · · ·
...

1

Vi,N

∫

Ci,N
e1(x, y)dS · · · 1

Vi,N

∫

Ci,N
eN (x, y)dS






(38)

and, then, the reconstruction coefficientsb can be obtained as

b = S−1q, (39)

provided thatS is non-singular. With the substitution of Eq. (39) into Eq. (34),pm is, then, expressed in terms of shape
functionsL = [L1, · · · , LN ], defined asL = eS−1, such that one could write

pm =

Nm
∑

j=1

Lj(x, y)qi,j = Lq. (40)

Equation (40) gives the value of the conserved state variable, q, at any point within the SV and its boundaries, including
the quadrature points,(xrq, yrq).

The major advantage of the SFV method is that the reconstruction process does not need to be carried out for every
mesh elementSi. One can compute these coefficients as a pre-processing stepand they do not change along the simu-
lation. This is a major difference when compared to methods such as ENO and WENO, for which every mesh element
has a different reconstruction process at each time step. The polynomial base functions for the linear, quadratic and cu-
bic reconstructions are listed in Table 1. Clearly, the linear, quadratic and cubic polynomial reconstructions will yield,
respectively, 2nd-, 3rd- and 4th-order spatial discretization numerical schemes.

3.2 Linear Reconstruction

For the linear SFV method reconstruction,m = 1, one needs to partition a SV in three sub-elements, as in Eqs.(14)
and (32) and use the base vector as defined in Table 1. The partition scheme is given for a standard element. The partition
for this case is uniquely defined. The structured aspect of the CVs within the SVs is used to determine neighborhood
information and generate the global connectivity data considering a hash table search algorithm [Knuth, 1998].

The linear partition is presented in Fig. 1-a. It yields a total of 7 points, 9 edges (6 are external edges and 3 are internal
ones) and 9 quadrature points. The linear polynomial for theSFV method depends only on the base functions and on the
partition shape. The integrals of the reconstruction matrix in Eq. (38) are obtained analytically [Liu and Vinokur, 1998]
for fundamental shapes. The shape functions, in the sense ofEq. (40), are calculated and stored in memory for the
quadrature points,(xrq, yrq), of the standard element. Such shape functions have the exact same value for the quadratures
points of any other SV of the mesh, provided they all have the same partition. There is one quadrature point located at the
middle of the every CV edge.
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Table 1. Polynomial base functions.

Reconstruction Order e
linear [ 1 x y ]

quadratic [ 1 x y x2 xy y2 ]
cubic [ 1 x y x2 xy y2 x3 x2y xy2 y3 ]

3.3 Quadratic Reconstruction

For the quadratic reconstruction,m = 2, one needs to partition a SV in six sub-elements and use the base vector as
defined in Table 1. The partition scheme is also given in this work for a right triangle. The nodes of the partition are
obtained in terms of barycentric coordinates of the SV element nodes in the same manner as the linear partition. The
structured aspect of the CVs within the SVs is used to determine neighborhood information and generate the connectivity
table. The ghost creation process and edge-based data structure is the same as for the linear reconstruction case. The
partition used in this work [van den Abeele and Lacor, 2007] is shown in Fig. 1-b. It has a total of 13 points, 18 edges
(9 external edges and 9 internal ones), 36 quadrature pointsand it has a Lebesgue constant value of3.075. The shape
functions, in the sense of Eq. (40), are obtained as in the linear partition. The reader should note that, in this case,
the base functions have six terms that shall be integrated. Again, these terms are obtained exactly and kept in memory
[Liu and Vinokur, 1998]. In this case, two quadrature pointsare required per CV edge.

3.4 Cubic Reconstruction

For the cubic reconstruction,m = 3, one needs to partition the SV in ten sub-elements and to use the base vector as
defined in Table 1. The ghost creation process and edge-baseddata structure is the same as for the linear and quadratic
reconstruction cases. As a matter of fact, the same algorithm utilized to perform these tasks can be applied to higher
order reconstructions. The partition used in this work is the improved cubic partition [van den Abeele and Lacor, 2007],
presented in Fig. 1-c and it has a total of 21 points, 30 edges (12 external edges and 18 internal ones), 60 quadrature
points and it has a Lebesgue constant value of4.2446. The shape functions, in the sense of Eq. (40), are obtained as in the
linear partition in a pre-processing step. As with the quadratic reconstruction, each CV edge has two quadrature points
[Breviglieri et al., 2008].

a b c

Figure 1. Triangular spectral volume partitions for (a) linear, (b) quadratic, and (c) cubic reconstructions.

4. LIMITER FORMULATION

For the Euler equations, it is necessary to limit some reconstructed properties in order to maintain stability and con-
vergence of the simulation, if the resulting flowfield contains discontinuities. The limiters are applied in each component
of the primitive variable vector(ρ, u, v, p)T , derived from the conserved variable vector evaluated at quadrature points.
For each CV, the following numerical monotonicity criterion is prescribed:

qmin
i,j ≤ qi,j(xrq, yrq) ≤ qmax

i,j , (41)

whereqmin
i,j andqmax

i,j are the minimum and maximum cell averaged property values among all neighboring CVs that share
a edge withCi,j . If Eq. (41) is strictly enforced, the method becomes TVD [Leveque, 2002]. This method, however, is
first-order accurate and it may compromise the general accuracy of the solution. To maintain high-order accuracy away
from discontinuities, small oscillations are allowed in the simulation, as in TVB methods [Shu, 1987]. If one expresses
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the reconstruction for the quadrature points as a difference with respect to the cell averaged mean,

∆qrq = pi(xrq, yrq) − qi,j , (42)

then no limiting is necessary if|∆qrq| satisfies Eq. (41) for every quadrature point of the CV edges.If it does not, then,
the solution is limited for this CV and linearly reconstructed as

qi,j(x, y) = qi,j + Φ∇qi,j · r , (43)

where∇qi,j is the gradient at the CV centroid, andr is the position vector of the quadrature point with regard tothe CV
centroid. The original high order polynomial in the CV is used to compute the gradient, i.e.,

∇qi,j =

(

∂pi

∂x
,
∂pi

∂y

)

. (44)

The reconstructed property value from Eq. (43) may not satisfy Eq.(41) and, therefore, it is limited by multiplying the
increment in the CV average value by a scalarΦ ∈ [0, 1], that can be computed following the general orientation of the
literature, such that it satisfies the monotonicity constraint. In this work, thesuperbee limiter is used [Hirsch, 1990].

5. NUMERICAL RESULTS

The results presented here attempt to validate both the implementation of the data structure, temporal integration,
numerical stability and resolution of the SFV method. The overall performance of the method is compared with that
of a WENO scheme implementation. For the presented results, density is made dimensionless with respect to the free
stream condition and pressure is made dimensionless with respect to the density times the speed of sound squared. For
the steady case simulations, the CFL number is set as a constant value and the local time step is computed using the local
grid spacing and characteristic speeds. For both test cases, the CFL number is set to1.0e + 6.

All numerical simulations were carried out on a dual-core 1.6 GHz PC Intel64 architecture, with Linux OS. The code
is written in Fortran 95 language and the Intel Fortran compiler R©with optimization flags1 is used. For all performance
comparisons which are presented in this section, all residuals are normalized by the first iteration residue. Moreover,the
L2 norm is used in all residuals here reported.

5.1 Wedge Flow

The computation of the supersonic flow field past a wedge with half-angleθ = 10 deg is considered. The compu-
tational mesh has 816 nodes and 1504 volumes and it is shown inFig. 2, along with the density contours obtained with
4th-order SFV method. For comparison purposes, the second,third and fourth order SFV methods were utilized along
with WENO schemes. The leading edge of the wedge is located at coordinatesx = 0.25 andy = 0.0. The computational
domain is bounded along the bottom by the wedge surface and byan outflow section before the leading edge. The inflow
boundary is located at the left and top of the domain, while the outflow boundary is located ahead of the wedge and at the
right of the domain. The analytical solution gives the change in properties across the oblique shock as a function of the
free stream Mach number and shock angle, which is obtained from theθ−β−Mach relation. For this case, a free stream
Mach number ofM1 = 5.0 was used, and the oblique shock angleβ is obtained as19.5 deg. For the analytical solution,
the pressure ratio isp2/p1 ≈ 3.083 and the Mach number past the shock wave isM2 ≈ 3.939. For these simulations the
use of the limiter was necessary in order to keep the high order reconstruction away from the shock wave.

The numerical solutions of the SFV method are in good agreement with the analytical solution. In Fig. 3 we compare
the numerical solutions of the SFV and WENO schemes, in terms of pressure coefficient values, with the analytical one.
Note that the SFV scheme is the one that better approximates the jump in pressure on the leading edge. The pressure
ratio and Mach number after the shock wave for the fourth order SFV scheme were computed asp2/p1 ≈ 3.047 and
M2 ≈ 3.901. As expected, the fourth order SFV scheme achieved results closer to the analytical one. Also, the Cp results
for the second and third order WENO solutions are very similar. On the other hand, only the SFV method achieved a
solution, for the fourth-order methods, because the 4th-order WENO scheme diverged.

5.2 NACA 0012 Airfoil

For the NACA 0012 airfoil simulation, the mesh is shown in Fig. 4, along with the Mach number contours. The mesh
has8414 elements and4369 nodes. Flow conditions are the same as in the experimental data [McDevitt and Okuno, 1985],
that is, freestream Mach number ofM∞ = 0.8 and0 deg. angle-of-attack. Figure 5 shows the Cp plots of the numerical
simulations for both WENO and SFV methods of different orders. Their agreement with the experimental data, in terms of

1Compiler flags: -O3 -assume buffered_io -parallel
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Figure 2. Supersonic wedge flow unstructured mesh with density distribution obtained with 4th order SFV.
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Figure 3. Supersonic wedge flow analytical and numeric pressure coefficient.

shock position and pressure coefficient (Cp) values, is veryreasonable. The main difference between the methods occurs
for the fourth order simulation where the SFV method better approaches the experimental data and gives more consistent
values for Cp after the shock wave. For these simulations, the use of limiters is also necessary.

The Cp curves indicate that the SFV method captures the shockwave, over the airfoil, usually with a single SV element
in it, as shown in Fig. 6, which validates the limiter formulation and the suitability of the method to our needs. The Cp
distributions in the post-shock region show that the influence of the limiter operator reduced the fourth order scheme
resolution. Also, the fourth order simulation of the WENO scheme presented large oscillations along the airfoil chord,
as seen in Fig. 6(c). This can be explained given the fact thatthe cubic polynomial reconstruction process of the WENO
scheme, which involves neighbor data processing, is limited near boundaries and it must work with the available data.
Hence, it produces an oscillatory interpolation polynomial. It is important to emphasize that the present computations
are performed assuming inviscid flow. One should observe, however, that the pressure rise across the shock wave, in the
experimental results, is spread over a larger region due to the presence of the boundary layer and the consequent shock-
boundary layer interaction that necessarily occurs in the experiment. For the numerical solutions, the shock presentsa
sharper resolution, as one can expect from an Euler solution.

The performance analysis is carried out for this test. The time for solution of the SFV 3rd order implicit and explicit
methods can be seen in Fig. 7 along with the number of iterations. For the explicit run, a CFL value of 0.2 was used.
The total iteration number is limited to thirty thousand iterations. Despite the relative low residual drop, for the explicit
simulation, the lift coefficient of the airfoil reached a steady value at about 10000 iterations. Next, a comparison of the
implicit WENO and SFV schemes is presented for the third orderspatial resolution case. As one can observe in Fig. 8,
the SFV method is able to reduce the residual several orders,whereas the WENO case seems to stall the convergence.
Nevertheless, for both schemes, the lift coefficient plot shows a constant, or zero value for this case, after the first 500
iterations on the SFV scheme and after 1000 iterations for the WENO scheme.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

The performance achieved on the third order case is carried over to the fourth order simulation as numerical experi-
mentation showed. However, as should expect, for flows with discontinuities such as the present test case, there is a small
performance degradation for the 4th-order scheme due to thelimitation process. There are more limited control volumes,
which increases the overall cost of the method, since these elements must be linearly reconstructed and, then, limited.
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Figure 4. Mesh and Mach number visualization for 4th-order SFV numerical simulation of flow over NACA 0012 airfoil
(M∞ = 0.8).

6. CONCLUSIONS

The second, third and fourth order spectral finite volume methods are successfully implemented and validated with
the proposed numerical tests. The method behavior for resolution orders greater than second order is shown to be in good
agreement with both experimental and analytical data. Furthermore, the results obtained show that the current method
can yield solutions with the same or better quality, at a muchlower computational resource usage, than other high order
schemes, as demonstrated by the comparison with computations performed with a WENO scheme. Further improvements
in the SFV method capabilities are achieved by addition of animplicit time march algorithm.

The method seems suitable for the aerospace applications ofinterest to IAE in the sense that it is compact, given the
fact that the stencil for polynomial reconstruction is always known, geometrically flexible, by supporting unstructured
meshes, and computationally efficient.
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Figure 5. Experimental and numerical Cp distribution for NACA 0012 airfoil.
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Figure 6. Detail of shock region.
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Figure 7. Convergence history for NACA 0012 airfoil with implicit and explicit 3rd-order SFV methods.
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Figure 8. Convergence history for NACA 0012 airfoil simulation with implicit 3rd-order schemes.
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