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Abstract. Helping humans with automated, semi-autonomous and autonomous systems is the trend that results of
technological developments. Mobile robots and driver assistance are some examples of such systems. From an explicit
or emerging need, the autonomous or semi-autonomous systems have come to replace or assist drivers. In this paper,
the study of Kohonen Self-organizing Maps for Environments and States Mapping of an Autonomous Navigation
System based on Monocular Vision is proposed. With the aim of mapping the environment to further aid the completion
of tasks, in an exploration-training stage supervised by the user, a neural network was trained for internal
representation of the environment, taking as input information from a local sensing system (monocular system)
aggregating global information (time information), collected by the TH Finder algorithm (Threshold and Horizon
Finder), and the time sequence of events/commands related to each stage of the original route. This visual memory
results into the autonomy of the navigation system to support the completion of tasks. It uses a robust system which is
inherent to the simplicity of a monocular-based solution. Whether for the exploring/training stage or for the task, the
Discarding Redundant Information process was used as controller and weight to the states of the system (stationary or
moving) and also as a tool to reduce the computational cost.

Keywords: Mobile Robots, Driver-assistance Systems, Neural Networks, Self-organizing Maps, Monocular Vision.
1. INTRODUCTION

Helping humans from automated, semi-autonomous amgnomous systems is a trend which results in
technological developments. However, in fulfillitige task, there is a variable of great importanu immpact that is
the environment. Because, even if an environmeptéasiously mapped by a global positioning systém, constant
randomness and repositioning on the course of piantally or totally undistinguishes it.

Currently, research in the area of autonomous @&nti-autonomous navigation has motivated many rebees
from different groups because of the challengepresents. Several proposals have been studiedlyrbaised on the
multidisciplinary and development of computer sgsewith biological inspiration. The number of pwahliions in
recent years is noteworthy, incorporating the dgwelents in the area of telematics (Miranda Net0,/20

In this scenario, the role of the environment ia thsk completion is highlighted, so the generatibmacro routes
may be classified into two broad categories, hatfreggenvironment as the main element; determingsiit known; or
unknown and dynamic (Mendeleck et al., 2005).

Common to the autonomous and semi-autonomous systerrder to obtain information about the envimamt,
sensors and actuators are needed, which in maeg casy be limited in scope and subject to noiseveder, when
incorporating several types of sensors, there iseease of autonomy and "intelligence" degreggeeially in relation
to navigation in unknown environments. On the ottend, the type and quantity of sensors deterntieesdlume of
data for processing and composition of the "imaafethe environment, requiring, in most cases, d ligmputational
cost. This cost may often rule out projects thateguipment that has little capacity and/or reaktapplications.

Regarding the task performance, if the navigatamk tis carried out in a static and known environiproblems
may be first reduced for the environment modeling aearch for roads following some optimizatiortezion, e.g.,
distance, energy, processing, number of movemeguntdjty of travel, and so on. For unstructured ssvinents, the
scenario for study is dynamic, with several eleméant motion. Thus, running an automated or senawnhous
navigation system from a starting point to a desiim, or assisting a driver with this task, inwedvcarrying out
complex and non-deterministic operations, suchiragsraction with the environment, identification efvironmental
elements and decision making. In this case, théergeneration requires that a number of unknowtofacby the
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planning software be addressed, such as the vabfite work area as well as the mobile and fixedreints. Without
this information, the computational cost for getiag the route becomes quite high, especially acergig the
conventional ways of programming robots (Mendeletcal., 2005).

For some years, interested in the individual stofigensors, fusion of sensors, completion of tasics, a research
agency known as DARPA (Defense Advanced Reseamjed®s Agency) has been promoting excellent resualthe
area of autonomous navigation. Within this objestisince 2002, they have been stimulating univessitolleges and
businesses from within and outside the U.S.A. tefg autonomous vehicles, since one of the objestihat the U.S.
government has is to turn a third of its militalget into autonomous vehicles before 2015.

As a consequence, in 2004 and 2005, a challengd@&dsknown as the Grand Challenge. However, Bi42@one
of the teams completed the course set out for dhepetition. But in 2005 five teams completed thellemge. During
the 2005 Grand Challenge, the challenge was tes¢hesMojave Desert. The winning team completeddce with an
average speed of 30.7 km/h. The last challengehetasin November 2007. Known as the DARPA Urbanliéhge, it
was characterized by autonomous vehicles which gexhtheir tasks in a fake urban area.

In recent years, research on Human Factors hasenhevigh research of intelligent vehicles, but inaito create a
new generation of Driver-Assistance Systems, whiges beyond the automated control to attempt tokwor
harmoniously with a human operator. Emerging systemhich monitor the state of the driver, foresee driver’s
intention, warn and help them to drive the veh{8fiecall and Trivedi, 2006).

Especially with the use of the self-organizing map®avigation systems, Nagrath et al. (1997) hanaposed a
navigation method for mobile robots using the Kadorself-organizing maps for the topology conseovatior
navigation in unknown environments. The mobile rtoluzalization was discretely kept using a two-disienal
Kohonen network. The network was used for planmmges and was well suited to solve the problemavigation in
real time. The authors point out that, once thecepasas discretized in weight and was tuned to tbéilm robot
orientation, the system was able to navigate ssfagisin new tasks. For the experiments, a robith w ultrasound
sensors was used, divided into three subgroups$it Rienter, Left. The tasks were carried out iea environment of
4m x 6m. In figure 2 the layout of the environmantl the topological map generated are shown.
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Figure 2 — (a) Environment Layout; (b) Topologio#p generated (Nagrath et al., 1997).

In Huosheng and Dongbing (1999), a navigationesydtased on landmarks was shown. From the ideattdit of
landmarks by a laser scanner sensor, for each mepaisitioning in the environment, its manual rébcation was
necessary, which, according to the authors, wasmuiething that should be used for a practicaliegibn. For this,
they used a Kohonen self-organizing map, which lzdinput, the laser measurements, which, in toonjd only
measure the angles of different milestones anddcoot distinguish among them. Thus, the networkukhdetermine
the correlation between angles and landmarks iardadprovide coordinate triangulation.

In Dimakov and Golovko (2000), a common problem fiaobile robots was discussed, which, accordingh® t
authors, usually require prior and detailed infatiora about the route map, requiring a detailed deson of all
possible roads. So, they describe a neural neteumthitecture to solve the problem of shortest mufdis architecture
has a Kohonen network as the only single memorgllef/the storage system of the environment maintpoAs the
system inputs, Current Robot Coordinate, DirectibiMovement; Nearest Point from the current robogifion were
used. Figure 3 shows the results of the experimeragsimulated environment.

Yamada (2004) presents a mobile robot that usesaupervised learning system for recognition ofiemments
from the sequence of actions. The sequence ofrectierformed were converted into vectors and usedpait to self-
organizing the map. According to the author, thlereg enabled the robot to identify different enmiments. For the
experiments, a robot with an infrared proximity senwas used. Figure 4 shows the robot, an envieohmand the
outcome of a sensing vector.
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Figure 3 — (a) Route 1; (b) Route 2 (Dimakov andio@ko, 2000).
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Figure 4 — (a) Environment; (b) Generated Vectar(éda, 2004).

Finally, Ishikawa et al. (2007) classifies the genb to teach each action to a mobile robot as bdifigult and
suggests, as an option, to apply the technologiéshahas the brain as inspiration. Figure 5 shdvesautcomes of a
route mapped in movements in a self-organizing map.

Figure 5 — (a) Environment; (b) Mapping of movensdshikawa (2007).

Basically, the problem of autonomous or semi-autemies navigation systems involves the recognitiorthef
environment, self-location, trajectory planning acahtrol of movements of the system in the space previously
mentioned, a series of sensors can be used tecaedt maintain an environment representation, firouvhich the
navigation system, with some level of autonomy,idiedy a movement. In this context, with a selfariging map, a
phase of exploration-supervised training can si@ave) the information inherent to the explored iremment,
contributing at a later stage, named as task cdiple

Regarding the characterization of a system as autons or (semi)-autonomous, it should be in mirat #gach
system has its own level of autonomy. Differenttted previously applications (above), the robotiatferm and the
monocular vision system selected characterize b with a low level of autonomy. However, thehidoen neural
network model is applied as an autonomous and aetoiromous navigation aid tool bringing greateustbess to the
system.

The research written here is limited to the dewvedept of internal topological maps generated from tieural
network. Furthermore, this project does not addaspgcts which are inherent to different typesofsrs applicable to
current robotics, but is limited to extract infoiioa from images captured by the camera sensamjnigithem into
neural network input. The information extractednfrémages, using the TH Finder (Threshold and HariEinder)
method of segmentation offered by Miranda Neto Ritther (2006), is limited to identifying the naeigpn area.

However, the different states of navigation systeuth as stationary or in movement, and the peeno® of tasks
in real time are highlighted. For this, the DiséagdRedundant Information method was proposed naivia Neto et
al. (2007) and Miranda Neto et al. (2008).
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2. AUTONOMOUS AND SEMI-AUTONOMOUS NAVIGATION SYSTEM AND THE ROBOT PROTOTYPE

Here the use of self-organizing maps is proposeabsist the task completion, for autonomous or serfonomous
navigation systems. In this case, it is highlightiealt, in many occasions, it will not be possildedtspose of human
beings, which leads to autonomous and semi-autonsragstems having the same relevance. Accordifigiyre 6
emphasizes that, on the threshold of the autonomawugation systems research, the semi-autonomstisnss (SAC)
may be found, where, basically, the main differeisdiat, for an autonomous system, it is necessatythe kinematic
and dynamic model of the vehicle be known, whiled®@AC, it is a Human-Machine Interface and/oridul Reality
System. Thus, for an autonomous system, the re$utie sensory analysis generates movement comntantie
vehicle actuators, while for a SAC warnings to thever are generated, which, in turn, interactshviite vehicle
actuator (Miranda Neto and Zampieri, 2008). Tharefit can be concluded that both systems opergtmamously,
differing only in the performance of movements, ethis executed either by a robot actuator or byradn user, which
would allow the implementation of what is propogethis document.

Still it is important to notice that for both auttmous and semi-autonomous navigation systems, ftask
completion in general, one seeks to know the worp world from information that identifies a gloh@dsitioning,
including the information that allows the recogmitiof the local space. This sequence of percemiah control is
presented in figure 7. From the extraction of infation of the environment, the localization maghisn formed, from
a sequence of learned commands, which intervertett robot decisions through commands sent tcatmti or for
the driver’s decision. After these movements ameegated, the cycle restarts so that, through péorem new image
and positioning is formed in the navigation process
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Figure 6 — Main components of the Autonomous andigeitonomous Systems (Miranda Neto and Zampiefg}.

The robot shown in figure 7, used in Miranda Ne206Q7), is classified as non-holonomic in this papemich,
along with its embedded system of monocular visioas a level of autonomy below expected for autanemm
navigation. As for the sensing system (video canéras classified as being exteroceptive and pasnce it has
already captured external information from a camera

Embedcked

5 imgge

Figure 7 — Prototype: (a) Computer-Server; (b) Wss-Bluetooth Communication; (c) Video Camera-Nmbi
phone; (d) Computer connection-Control; (e) Rentuetrol; (e) Original Remote Control Car (Mirandatty, 2007).

3. SEGMENTATION AND DISCARDING REDUNDANT INFORMATIO N METHOD
3.1. The Segmentation Method - TH Finder

In Miranda Neto and Rittner (2006), a techniquéntdiges segmentation called Threshold and Horizadd¥i (TH
Finder) was presented, based on the method propys@tsu (1978). This algorithm searches a threstiat discards
the image above of the horizon line. For this, ithage is divided into two parts. The division doeg necessarily
occur in equal parts, but in two complementary iesad-igure 8 shows an example of this division pdnd Down,
respectively, the vision of the horizon (which nwntribute for future decisions) and the visiorpodximity or closed
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vision (which contributes for the instantaneousislen-movements). For the study in question, thénnobjective of
using the TH Finder method is the extraction ofdata from the segmented images to the neural miefwout.

E)

Figure 8 — Original Image (Up and Down); ResulTéf Finder segmentation (Miranda Neto et al., 2007).
3.2. Discarding Redundant Information
In Miranda Neto et al. (2007), an automatic metluddDiscarding Redundant Information based on Pegsso
Coefficient of Correlation method was considere€@p. According to Eugene and Johnston (1996), t6€ ke
coefficient r, is used for statistical analysig;agnition of standards pattern and image proces¥ifii this intention, it

includes the comparison between two images, theulzion of disparity and the object recognitionorF
monochromatic digital images, the PCC is descrihdtle Equation (1):

Z(Xi - Xm )(y| - ym)
r= '
\/Z(& —xm)ZJZ(yi =Y )’

@

wherex; is the intensity of an"ipixel in image 1y; is the intensity of an"ipixel in image 2x. is the average of
intensities of image 1, angl, is the average of intensities in image 2. The R&kes value 1 if images are absolutely
identical, O if they are completely uncorrelatedq al if they are completely anti-correlated.

Miranda Neto et al. (2008) propose to replace thpidcal search to find a suitable PCC thresholthwi threshold
value found from the non-deterministic criterioror Rhis task, the Discarding Redundant Informatwocess uses
information from the TH Finder segmentation method.

For this study, and as shown in figure 9, the dibgaocess will act as a weight for the task cotique because it
allows the disposal of images during exploratoryigation, regardless of the robot state, statiormarin motion (be it
at different speeds). For further performance efsame or very similar task, preserving the maaratteristics of the
environment, it is expected a similar number ofge®mto be found, which, in turn, will suggest tlenposition of the
route already performed. In the chart of figuresY@presented the number of selected frames oDARPA video
versus the correlation coefficient (PCC) betweem fihbst image with its subsequent until the lastr Each image
analyzed, a lower value of correlation is achiewdrbn it is closer to the vehicle (obstacle detejti©nce a vehicle
pass occurs, there is a return to the stabilization
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Figure 9 — (a) Discarding Redundant Information Meterministic process with weight of system stédesask
completion. (b) Number of selected frames of theRPA video versus the correlation coefficient (PCC).

4. KOHONEN SELF-ORGANIZING MAPS
In addition to what has already been shown in tivduction of this paper, the choice of the seffamizing maps

to navigation tasks or sub-tasks was made in cetntvathe supervised training and the training togrggthening, since
there is not any explicit desired output for theteyn or any external evaluation of the output fheinput data, even
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during the exploration/training stage. Furthermane, system does not have a feedback data, whieh wiat allow, for
example, the use of a Genetic Algorithms & Classiystems or others neural networks models.

According to Haykin (2001), the main objective os@f-organizing map is to turn an incident sigs@ndard of
arbitrary dimension into a discrete map, in thiscase, two-dimensional, and perform this transfdionain an
adaptative form and in topological order.

Characteristics of the map used in this paper ssepted herebelow, as well as the compositioheofrfput data.

4.1. Map Characteristics

As it may be seen in figure 10 (a) and (b), therakestructure used in this paper has, respectivelyywo-
dimensional arrangement of 5x5 neurons, with neighlg of 2. Each neuron of the grid is totally cented with all
knots at entry layer. This grid represents a femdfd structure, with a single computational layemsisting of neurons
arranged in lines and columns.

() Winning ,, ) 2
Neuron

.9 & @ 0
| 9,0 9|0

two-dimensional
array of neurons Dl S| O
synaptic = ) = ) @ O = ]

connections

X input @ @ O O 9

Figure 10 — (a) Two-dimensional array of neurob};pdate of weights by windowing of neighboring 2.

For each input pattern, the network neurons caeulzir respective values from a discriminatingchion, which
provides the basis for competition among neurohg. feuron with the largest discriminating functi@tue is declared
the winner of the competition. In this paper, theliflean distance was used for this competition.

Looking at the neighboring 2, using a Gaussiantian¢figure 11 (b), a winning neuron determines kbcation of
neighboring neurons, figure 11 (a), thus providimg basis for cooperation among them.

According to Haykin (2001), Equations (2) and (Bjesented below, allow excited neurons to incradas&
individual values of the discriminant function ialation to the pattern of the input through appietpradjustments
applied to their synaptic weights. The adjustmentxde are such that the winning neuron responsatiseguent
application of a pattern with similar input is inoped.

The known discriminant function is written as,

W (t+1) =w, () +a(t)h, t)[x-w, )] 2)

wherew; (t+1) is the updated weight vectov, (t) is the previous weight vectai(t) is the rate of learnindy, (t) is the
neighborhood andk[- w; (t)] is the adjustment.
The rate of learning is written as,

a(t) =a, exp(—rij :

©)

wheret2 is the total number of iterations.

For the performance of the algorithm, other impatrtaformation is cited:

« At Start Up : vector of weights initiated with values = 0;

» Vector of weightsv with values between [- 1, 1];

e 2 stages of iteration — 1st: number of standarts;*2nd: number of standards * 5;
e Tax of learning: 0.8/phase (defined above);

e 50 steps by iteration - adapting process of topod@rdinance;
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Figure 11 — (a) Clustering of Neurons; (b) Gaus$isction based on cooperation.
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4.2. Input Data

Input data of the neural network are extracted friw results of the TH Finder segmentation of eimcage
obtained from the sensory camera. The data are:

* Maximization vector: Equation (4): See Maximizatigactor - representation of the distribution of igation
points versus not navigable points in the imageydfiqn (3.21) in Section 3.5 in Miranda Neto (2Q07)

» Depth and Depth Vector: Equations (5) and (6): Speed v — speed calculated from Depth Vector, Enuat
(3.19) in Section 3.4; Depth Vector - variable émalysis of the depth of the navigation area, EqndB.9) in
Section 3.2 in Miranda Neto (2007);

e Center of Mass: Equation (7): See Alignment Anglethe Navigation Area Center - angle of direction
correction to the navigation area center, Equgi®oh?) in Section 3.3.3 in Miranda Neto (2007);

WM => M (x,Y;)
=1 (4)

10 CJPii ) *10

<YMl -
Vb, = NP, *100 )
(H*W),
a = ((arc.cos( [(¥0 = ¥) | )) * 180) / PI
\/(Xocl - x)%+(yo, — y)? )

Given the adequacies, the values must be withimtnval [- 1, 1], as previously mentioned. Equasd4) to (7)
allow the generation of the input data of the nenedwork. Making a parallel thought with figure,li2 could be said
that: Equation (4) generates the values representéidure 12 (b); Equation (5) generates the valtgpresented in
figure 12 (c); Equation (7) generates the valugsesented in figure 12 (d), thus forming the ingata of the neural
network, represented in figure 12 (e). The figuBid the final composition of the input data présdnto neural
network for each interaction with the environmdntthis case, as global information, one can uridadsthe time of
information in which the sensing system acquiresitiiages of the environment. The main purposeisfptocedure is
to aggregate sequencing information for each nétivgrut, making this information to work for furtheompletion of
tasks. It would be emphasize the predominance adllmformation with the global one, which ensuthat the
immediate features of the environment prevail Iatien to the task.

5. RESULTS

The experiments were performed using sets of im&ges videos, one from the team of Stanford in EReRPA
Gran Challenge, and other generated from the wdetera embedded in the robot shown in figure 7uriderstand the
system sequence, see the macro-flowchart showiguiref14.

For the exploration-training stage, whether it ysabset of images from a video that is ready, ainduthe robot
navigation shown here, by observing figure 14, gbguence for mapping the environment was: (b) Bnuient; (c)
Discard Redundant Information; (d) TH Finder; (&hdnen; (f) Movement.

It may be noticed that in the exploration-trainsigge the Movement was not included (f), sincéhéfsequence of
images were obtained from the camera of the rébwtuld being led by a human operator throughraat control.
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Figure 12 — (a) Original Image; (BH Finder Result;(c) Calculated Depth; (d) Calculated Center of MésyT'stage

of generation of Input data from the Neural Network
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Figure 13 — Input Data of 1st stage of generafiofigure 12, aggregate global information.

Since the Kohonen map has been generated, thiéeigxploring/training stage has already been cetagland,
consequently, the system has memorized the maiatstes of the environment, then, the sequencpddbrming the
task is presented. It is important to know that riego will be frozen, except for the competition dtian, which will
seek to find, in the map, the neuron that bestditsach data (image + sequence) of the environmbate the task is
being performed.

Now it is noticed that the Movement (f) was insdrte perform the task. So, it is important to hight that,
whether the task is autonomously accomplished bydbot or semi-autonomously driven by the useraitput of the
commands will always be generated from the winmegron of the Kohonen map (environment), regardbédsow
much this information is similar to the originaput data. Therefore, (b) to (d) are defined adrtiementation stage
of the task, in which the input data for the netware prepared. In (e), however, there is a comipetamong all the
neurons, and in (f) there is the movement for animig neuron.

In the first case of the experiment, shown in fegab, (a) introduces the mapping of the environnhgriKohonen
for the sequence of images. In (a), there is tipdoeation/training stage, what demonstrates goodjng for the input
data. For figure 15 (b) the task is performed, atinmal case. Suppose that the robot runs exacdystime task
performed during the exploration/training stagdaslobserved that the same set of images of th@ngawas used to
simulate the task performance. In this case, theahaetwork output yielded 100% of hits for thekacompletion,
allowing that the trajectory shown in (b), in theploration/training stage, be exactly the samehateénd of the task
performance.

For figure 16, there has been a task performanca $emi-optimal case, which reflects a set of iesagenerated by
the camera of the robot, during navigation in afoor environment. Suppose that the robot had chaig exactly the
same task performed during the exploration/trairstagye. It is observed that a similar set of imageke training was
used to simulate the task performance. Notice:laiméxcept for the number of images, since the® Redundant
Information module was disabled. In this case,neral network output produced 88% of hits for tdek completion,
allowing that, for the route shown in (a. Red)he exploration/training stage, it is similar to fireal route of the task
carried out which is shown in (a. Green). (a. Blsig)ws the preferential route of the monocularovisystem without
the neural network.
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(b)Environment %29 (c) Discarding Redundant Information '%29 (d)TH Finder
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Figure 14 - (a) Macro flowchart of the considereal/iation System; (b) Environment representingitipeit of
images; (c) Discarding Redundant Information; (&) Hinder; (e) Neural Network: Kohonen self-organgimap; (f)
Movements generated from the Neural Network outfm)tContinued learning - not implemented.

)

Figure 15 — (a) Exploration/training Stage; (b) H & mpletion - optimal case.

(a) b)

Figure 16 - (a) Actual environment; (b) Image gated by the camera of the robot & Calculated Cerftétass; (c)
TH Finder Result & Calculated Center of Mass; (a. Red) Routéng the Exploration/Training Stage; (a. GreRplte
during the task completion; (a. Blue) shows thdgyemtial route of the monocular vision system withthe neural
network.

6. CONCLUSION

As seen in this paper, an autonomous or (semiyramous system have its level of autonomy. The folpdatform
selected and the monocular vision system charaetethe system with a low level of autonomy. Howetlee self-
organizing maps have been applied to the navigatyjstems. The experiments conducted here have stawvthe use
of neural network may provide a more robust nawgasystem based on the monocular vision to taskpbetion.
Some initial experiments were performed so thatrift®t, shown in figure 7, runs tasks autonomouafier the
exploration/training stage. These results weremtided in this paper due to the absence of ankéties model of the
robot, which did not allow the movements to be ilygaerformed (controlled), hindering the colleatiof results.

However, the experiments simulated with a set ciges demonstrated that the method considered heyeben
promising for the learning of the navigation amaring the performance of the robot movements fidher study, the
figure 14 (g) shows a model of continued learnifigis learning would allow the neural network to ttoune learning
during the task performance, since the study faradyic environments is of paramount importance toreamous or
semi-autonomously navigation.

Another important point is to simulate the explamattraining stage, with different parameters te $elf-organizing
map, as herein it was decided to let them to bedfiSome changes were made, but there was no iepemt in the
results.

Finally, in the experiments of autonomous navigatiowhether for the exploration/training stage, or the task
completion, a robot replacement is suggested.
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