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Abstract.  This paper studies the effect of laminar flow on multiscale heated rotating cylinders in cross-flow. The 

objective is to maximize the heat transfer rate density of the assembly, under a given pressure drop and subject to the 

constraint of materials and volume. This problem is solved numerically, with two main configurations: i) Both cylinders 

share a common centre-line, and ii) Both cylinders share a leading edge to the advancing coolant. Results are reported 

for two types of configurations; firstly, counter-rotating cylinders in cross-flow and then co-rotating cylinders in cross 

flow. The spacing between these two types of configuration is optimized. Results shows that the counter-rotating 

cylinders is more effective than the co-rotating cylinders at a higher pressure drop, while the difference is less 

noticeable at lower pressure drop. 
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1. INTRODUCTION 
 

Due to the need for more efficient removal of heat from heat transfer generating equipment, research is currently 

being conducted in this area with the aim of accommodating more and more heat generating devices within a given 

volume. This will help in the design, manufacture and operation of such equipment. Modern electronic systems do 

produce high amounts of heat due to the power to volume or weight ratio employed in such systems. The heat produced, 

if not removed could lead to failure of parts of the system and in some cases failure of the whole system. 

Effects of heat transfer from cylinders as well as the optimisation of design of such material have been conducted by 

a long list of researchers such as Badr and Dennis (1985), Mahfouz and Badr (1999), Gschwendtner (2004), Misirlioglu 

(2006), Paramane and Sharma (2009) amongst others. Optimisation of the spacing between cylinders have been 

conducted by Stanescu et al (1996) who found that with an increase in the Reynolds number the spacing between the 

cylinders consequently decreases. Mohanty et al (1995) compared the effect of rotation against pure cross flow with the 

same set of Reynolds numbers; they reported that at equal rotational and free stream Reynolds numbers, the localised 

heat transfer at the stagnation point of the rotational cylinder is lower than that of the pure cross flow. This view is 

somewhat supported by Tzeng et al (2007) where they found that at higher Reynolds’ number the cooling efficiency is 

increased on high-velocity rotating machines. 

According to Jones et al (1988), the heat transfer from a cylinder is governed by three mechanisms viz.: forced 

convection due to the bounding volume within which the cylinder is located forced convection due to rotation and 

natural convection. Part of the assumptions made in this work disregards the third mechanism mentioned above. It was 

further stated by Jones et al (1988) and confirmed by Joucaviel et al (2008) that rotation does enhance heat transfer, 

“viscous forces acting in the fluid due to rotation cause mixing of the fluid and augment heat transport in a way similar 

to turbulence” 

In the words of Bello-Ochende and Bejan (2004), “Strategy and systematic search mean that architectural features 

that have been found beneficial in the past can be incorporated and compounded into more complex flow structures of 

the present”.  This work involves the addition of more length scales to those of Joucaviel et al (2008). The length scales 

are the number of cylinders, the difference in diameters of subsequent cylinders and the spacing between the cylinders. 

This paper builds on prior research conducted by Bello-Ochende and Bejan (2004) and more recently added to by 

Joucaviel et al (2008), in which it is proved that rotational effects increase the heat-transfer-rate density for single scale 

cylinders. This paper focuses on the optimisation of the heat-transfer-rate density of multiscale cylinders cooled by 

cross flow fluid in the laminar regime. The flow is driven by a fixed pressure difference across the domain in 

consideration. Applications of heat transfer from rotating cylinders are found in rotating machineries, heat exchangers, 

viscous pumps, rotating electrodes, spinning projectiles as well as contact cylinder dryers in the paper industry. 
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2. MODEL 

  

2.1. Cylinders aligned along the same centre-line 

We start by considering a case when the cylinders are aligned along the same centre-line. Figure 1 depicts the model 

which represents a multi-scale array of cylinders set along the same centre-line, and due to the repetitive nature of the 

stack a domain containing two different size cylinders is chosen to represent the numerical region of interest. The figure 

further shows the flow across the domain is driven by a fixed pressure drop ∆P, the tip to tip distance between the 

cylinder is S and are assumed equal for a case with no eccentricity. The cylinders rotate with an angular velocity ω . 

The fluid inlet temperature T∞ is fixed and lower than the temperature of the wall of the cylinders, Tw which are 

assumed constant. 
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Figure 1 Both cylinders have a common centre-line. 

 

Additional assumptions include steady, laminar, incompressible and two dimensional flow. All the thermo-physical 

properties are assumed constant. In this setup two configurations are investigated, that is, the cylinders rotating in the 

same direction (case I) and secondly both cylinders rotating in counter directions (case II) to each other. The domain 

upper and lower walls are chosen as periodic with the rotational direction reversed for cases of counter-rotation. The 

heat flux q′ removed from the assembly per unit length perpendicular to the above figure can be written in the following 

form, 
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The volume per unit height of interest occupied by the modeled assembly is D(D + d + 2S) , where D is the diameter of 

the bigger cylinder, d is the diameter of the small cylinder, and qw is the heat transfer from the cylinder. The heat 

transfer rate density is given as 
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And this represents the total heat per unit volume. 

 

2.2.Mathematical Formulation 

 

The governing equations of the fluid flow through the multi-scale rotating cylinders are the conservation of mass, 

momentum and energy equations. The computational domain is in two dimensions as shown in figure 2 and the 

assumptions made with respect to its solution have been given in the previous section. 

 



 
 

Figure 2 Discretized domain of cylinders with the same centre-line. 

 

The equations, which represent the conservation of mass, momentum and energy equation in the primitive forms are 
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Where u and v represent the velocity components in the Cartesian coordinate directions, x and y. ρ is the density, µ 

is the viscosity, k is the thermal conductivity, cP is the heat capacity, P is the pressure, and T is the temperature
 
. 

Additional assumptions include constant solid and fluid properties and the heat transfer due to radiation is negligible. 

Equations (3) – (6) in dimensionless forms are, 
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  The non-dimensionalized variables used are: 
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Where the Bejan and Prandtl numbers are  2
Be = D P/µα∆∆∆∆  and Pr = ν/α. 

 

The flow boundary conditions are: P� = 1 at the inlet plane and zero normal stress at the outlet plane. The thermal 

boundary conditions are T% = 0 at the inlet plane and T% = 1 on the cylinders surfaces. The horizontal surfaces of the 

domain correspond to periodic conditions due to the rotations of the multi-scale cylinders. The cylinders are rotating at 

ω and therefore an angular velocity is imposed as a boundary condition on the cylinder surfaces,  
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The objective function (i. e. heat transfer rate density), Eq. 2, can be written in dimensionless form as 
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2.3. Numerical solution 

 
 The finite volume code software FLUENT™ was employed to solve Eqs. (7) - (10). The domain was  discretized 

using a second order discretization scheme. The pressure-velocity coupling was done with the SIMPLE algorithm. 

Numerical convergence was obtained in two ways, firstly convergence was obtained when the scaled residuals for mass 

and momentum equations were smaller than 10
-4

 and the energy residual was less than 10
-7

. In the second option 

numerical convergence was obtained when there was no further change in the value of residuals for consecutive 

iterations in terms of the specified criteria such as conservation of mass flow rate in the domain.  

An additional method used to ensure accuracy of the results was to perform grid refinement tests. The key quantity 

monitored in this regard was the overall heat transfer rate density. Figure 2 shows that the grid was refined by placing or 

concentrating the mesh in the region closest to the cylinders, where the thermal gradient was high. Virtual extensions,
 

uL
~

 and dL
~

 had been added to the numerical domain downstream and upstream of the physical domain to adequately 

handle the pressure boundary conditions. The length of the virtual extension was chosen long enough so that with any 

further increase in length, the change in the heat transfer rate density between two iterations, i and i+1 is smaller than 

1%. 

Table 1a and 1b shows how the virtual extension was chosen. For Be = 10
3
 and S

~
 = 1, and ω~  = 0, the virtual 

extensions is uL
~

= 5, dL
~

= 10. 

 

Table 1a. Keeping L�d constant, �� = 0, S� = 1 and Be = 1000 

 

uL
~

 
q~  

i
q~

1-i
q~  - 

i
q~  

3 17.5492 - 

5 17.5788 0.0017 

10 17.4778 0.0057 

15 17.4218 0.0032 

 

Table 1b. Keeping L�u constant, �� = 0, 	
 = 1 and Be = 1000 

 

dL
~

 
q~  

i
q~

1-i
q~  - 

i
q~  

5 17.4174 - 

10 17.4778 0.0035 

15 17.4587 0.0011 

20 17.3673 0.0052 

 

2.4.Optimal cylinder spacing 

 

In order to obtain the optimized heat transfer rate density, the cylinder to cylinder distance is varied for a specified 

Bejan number, Prandtl number and dimensionless angular velocity. We proceeded with the optimisation by using the 

following criteria, the diameter of the bigger cylinder D was set at 1, while that of the smaller was fixed at d% = 0.25, 

these values were obtained from previous work of Bello-Ochende and Bejan (2004) where it was found that for a multi-

scale cylinder in cross-flow the optimal diameter of the second cylinder is robust and equal to 0.25. The range of 

parameter consider for this study is 10
3
 ≤ Be ≤  10

5
, 0 ≤ ω%  ≤ 0.1 and Pr = 0.71.

 
The Reynolds number equivalence is in 

the laminar region of 10 – 10
3
. Figures 3, 4 and 5 illustrate the heat transfer rate density obtained as a function of 

various rotational velocities and cylinder to cylinder spacing, S% . 

In the first case of cylinders on the same centre line with Be = 10
3
 as seen in figure 3, it is observed that co-rotating 

cylinders provide better heat transfer rates with respect to the optimisation of the distance between the cylinders and the 

optimum distances between cylinders are smaller when compared to the optimal distance of the stationary cylinders. 



The effect of counter rotating cylinders on the heat transfer rate densities is less when compared to stationary 

cylinders. For the co-rotating cylinders, an increase in the angular velocity translates to an increase in the heat transfer 

rate density. 

Figure 4, shows the effect of rotation and cylinder to cylinder spacing on the maximum heat transfer rate density for 

Be = 10
4
. The best configuration is that of the stationary flow, for both velocities used the co-rotating cylinders dissipate 

more heat than the counter rotating cylinders with a wide margin seen between 0.01 and 0.1, a possible explanation for 

this phenomenon is the entrainment of heated fluid due to the rotational direction of the cylinders. 

Figure 5 shows the effect of rotation and the tip to tip spacing between the cylinders on the heat transfer rate 

density for Be = 10
5
. At a lower dimensionless rotational velocity of 0.01 as shown in Figure 5, the effect of co-

rotating cylinders on the heat transfer rate density is more noticeable when compare to the other two cases, that is there 

is heat transfer enhancement when the cylinders are co-rotating at that velocity. For other dimensionless rotational 

velocity their effect on the heat transfer rate density is insignificant when compared to that of a stationary cylinder. 

 

                               
Figure 4 Heat Transfer Rate Density at Be = 10

4
 for cylinders located inline. 

 

 
Figure 3 Optimal heat transfer rate density at Be = 10

3
 for cylinders located inline. 
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Figure 5 Heat transfer rate density for Be = 10

5
 for cylinders located inline. 

 

3. CYLINDERS ALIGNED ALONG THE LEADING EDGE 

 

In the second type of configuration, we considered the case in which the cylinders share the same leading edge as is 

shown in figure 6 that is, both cylinders experience effect of the incoming coolant at the same time. The numerical 

procedure is the same as those of the case considered in Section 2 (when the cylinders are aligned along the same centre 

line) and described in Section 2.3. Figure 6 shows the computational domain while figure 7 shows the discretized 

domain for the second configuration.  

We start the optimization procedure by setting the Bejan number to 10
2
  and diameter of the smaller cylinder to 0.25 

as obtained from Bello-Ochende and Bejan (2005) and  shown in Figure 8. The result shows that there is no major 

improvement in heat transfer rate density by adding rotation to the array of cylinder, furthermore, the optimal distance 

is approximately equal to 1 for all the cases considered. The results also show for all the cases considered  the heat 

transfer rate densities are identical and therefore all the curves in Figure 8 coalesce to a single curve at the optimal 

point. 

 
 

Figure 6 The cylinders with a common leading edge 
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Figure 7 Discretized Domain of cylinders aligned along the leading edge 

 

 
Figure 8 Heat transfer rate density at Be = 100 for cylinders sharing the same leading edge. 

From Figure 9 we notice that the heat transfer rate density increases for both cases of co-rotating and counter-

rotating cylinders when compared to the stationary cylinder for ω~ = 0.01. Whereas, there is a significant difference in 

heat transfer rate density when compared to a stationary cylinder at a higher ω~  of 0.1. This might be due to the 

entrainment of heated fluids around the cylinder due to increase of rotation and the imposed pressure drop. 

 

 
Figure 9 Heat transfer rate density at Be = 1000 for cylinders having the same leading edge. 

0 0.2 0.4 0.6 0.8 1

ω~  = 0 

ω~  = 0.01 co-rotating 

ω~  = 0.1 co-rotating 

 ω~ = 0.01 counter 

ω~  = 0.1 counter 
0 

1 

2 

3 

4 

5 

6 

7 

8 

Qopt

S

0 0.5 1 1.5

 ω~ = 0 

ω~  = 0.01 co-rotating 

ω~  = 0.1 co-rotating 

ω~  = 0.01 counter 

ω~  = 0.1 counter 
0

0.5

1

1.5

2

2.5

3

Qopt

S 



Figure 10 shows that with rotation at a higher rotational speed there is a beneficial increase in the heat transfer and 

the optimal lower spacing is smaller as the Bejan number increases.  From figure 10 it is seen that the heat transfer rate 

density at a higher angular velocity is higher than that of the lower angular velocity for both cases of co-rotating 

cylinders and counter-rotating cylinders. A further explanation for this is that the velocity of the incoming coolant fluid 

is more than that of the rotating cylinder hence a faster transfer of heat from the cylindrical surfaces. 

 

 
Figure 10 Heat transfer rate density at Be = 10

4
 for cylinders having the same leading edge. 

 

Figures 11 shows the velocity contours when the cylinders are aligned at the leading edge with the red region 

indicating the region of high velocity and blue indicates the region of low velocity and the colours between indicating 

the transition from the high velocity to the low velocity. In figure 12, the temperature contours of both stationary 

cylinders and co-rotating cylinders with the red region marking the points of high temperature, that is at the cylinder 

surface, Tw = 1 and the blue region marking places of low temperature, T∞ = 0 corresponding to  the freestream coolant. 
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Figure 11 Velocity contour of i) stationary cylinders, ii) co-rotating cylinders with the same leading edge and 

iii) counter-rotating cylinders with the same leading edge 

 

i ii iii 

Figure 12 Temperature contours of i) stationary cylinders, ii) co-rotating cylinders with the same leading edge and 

iii) counter-rotating cylinders with the same leading edge  
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4. CONCLUSION 

 

Rotation is beneficial to the heat transfer at certain velocities for an imposed Bejan number and at lower velocities 

the heat transfer is not significant when compared to that of a stationary cylinder. What is more salient in this work is 

that at higher pressure drop numbers the optimal spacing between the cylinders decreases, the heat transfer rate density 

also increases with increase in pressure drop number, that is the Bejan number.  
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