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Abstract. The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting the 
variation in neutron density during the operation of a nuclear reactor in subcritical systems. With the conception of a 
new generation of nuclear reactors, guided by ppaper accelerators (ADS), it is necessary to have a fast and accurate 
prediction of power and reactivity transients due to the variation of external sources. In this paper, an analytical 
solution for point kinetics equations in subcritical systems, which differ substantially from the conventional equations 
for critical systems is presented. The results obtained proved to be precise when applied to a subcritical nuclear 
reactor through the linear increase of the external neutron source.  
 
Keywords: Point kinetics; Subcritical systems; ADS 

 
1. INTRODUCTION  
 

The analytical solution of point kinetics equations with a group of delayed neutrons is useful to predict neutron 
density variation during the start-up of a nuclear reactor (Stacey, 2001). With the conception of a new generation of 
accelerator driven system nuclear reactors (ADSs) (Schikorr, 2001), it becomes necessary to rapidly and accurately 
predict power and reactivity transients in the event of a possible variation in the intensity of external sources.  
        Considering the time-dependent neutron transport equation, 
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and an importance function associated to equation 
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This importance function is the same proposed by Gandini and Salvatores (2002), albeit with a slightly different 

notation and taking the angular dependency into account. 
Weighing Eq. (1) with vector no

+  results in: 
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Suppose now the system os disturbed as follows: 
 

oA A Aδ− → − +                                                                                                                                                          (4) 
 

oF F Fδ→ +                                                                                                                                                             (5) 
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where oA− , oF  and ( )o
extq  correspond to the non-disturbed stationary states. 

Replacing these disturbances in Eq. (3) and adding and subtracting 
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On the right side of the resulting equation one has 
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where in the calculations above the relation of source reciprocity ( ) 1o

o extn q+ = was used. 

Weighing Eq. (2) with vector Ψ  and adequately manipulating it, taking into account the properties of the linear 
operators, one has: 
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Replacing the right side of Eq. (9) in Eq. (8), one finds 
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where, 
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Considering the following factorization, 
 

0( )n t φΨ ≈ ⋅                                                                                                                                                                 (12) 
 

and replacing Eq. (12) in Eq. (10) one finds that 
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where we considered identity,  
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Dividing all the member of Eq. (13) by a normalization factor 
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, one has 
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Applying the following definitions of the integral parameters 
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Eq. (15) can be written thus: 
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The equation for the delayed neutron precursors is: 
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Multiplying Eq. (23) by ( ), 4o d in χ π+ , applying the factorization as represented by Eq. (12) and dividing by 

the normalization factor I , one has 
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where, given the definitions for the integral parameters, one has the following equation: 
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The point kinetics equation system formed by Eq. (22) and (25) is similar to the equation system defined by 

Gandini and Salvatores, being different, however, in the integral parameter α  which, albeit present in the reference 
equation system (2002), is not found in the equation system (22) and (25) presented here (Palma et. al., 2009). 

The set of Eq. (22) and (25) is subjected to the initial conditions: 
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The goal of this paper is to study the variations in neutron density in subcritical systems in the presence of an 

external neutron source that varies in a linear manner in time according to the expression: 
 

    ( ) 0 ,qq t q r t= +                                                                                                                                                (28) 
 

where 0q  is the initial intensity of the source of neutrons inserted in the system and  qr  is the linear insertion rate for 
external neutrons. 

 
Let us also consider an insertion of reactivity in the system that linearly varies according to the expression: 

   
  ( ) 0 ,t r tρρ ρ= +                                                                                                                                          (29) 
 

where 0ρ  is the initial reactivity in the system and rρ  is the linear reactivity insertion rate. 
 
2. MATHEMATICAL FORMULATION 
 

Deriving Eq. (22) in relation to time one can write: 
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 Considering a group of precursors and replacing Eq. (25) in Eq. (22) one obtains, following the elimination of the 

dependency of precursor concentration, the following expression: 
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subjected to the initial conditions: 
 

( ) 00n n=                                                                                                                                                                      (32) 
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Disregarding term 
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  in relation to all the other in Eq. (31) and replacing Eq (28) and (29) as well as its 

derivates in Eq. (31) one obtains the following differential equation: 
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where these are defined: 
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The differential equation that rules the neutron density in the system can be written thus: 
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and may be solved with the use of the integrating factor method (Arfken, 2001), providing solutions represented by: 
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where the integration constant Ω  can be determined from the initial condition as expressed by Eq. (32). 

Identifying functions ( )f t  and ( )g t  in Eq. (34): 
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and replacing it in Eq. (40) one can write the following expression for neutron density: 
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In replacing variables u t= ∆ − and defining ( )1kθ λ= ∆ −  one can re-write Eq. (43) thus: 
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Both integrals in Eq. (44) are tabled (Gradshteyn and Ryzhik, 2007) and produce the following expression for 

function ( )n t : 
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where in Eq. (45) one can find the incomplete gamma functions. 

Imposing the initial condition ( ) 00n n= and grouping the terms in a convenient manner, one obtains the following 
expression for neutron density: 
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where constants 1A , 2A and 3A are defined thus: 
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 The results obtained from Eq. (46) are presented in the next section. 
 
3. RESULTS 

 
As a reference in the validation of the analytical approximation for neutron density obtained in this paper, the 

method of finite differences will be used for the numerical solution of point kinetics equations in sub-critical systems 
considering a group of delayed neutron precursors, Eq (22) and (25). The following expressions were used to implement 
the implicit temporal integration method (Hashimoto et. al., 2000): 
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The following nuclear parameters were used in the numerical simulations carried out in this paper: 0.00127λ = , 
0.0493ς = , 0.00009β = , 56.25 10effl −= × , ( ) 0.06 0.001t tρ = − +  and ( ) 0.5 0.1tq t= + . Figure 1 shows the neutron 

density obtained from the analytical approximation proposed in this paper, Eq. (46), and from the numerical reference 
method. 
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Figure 1 - Comparison between neutron density as obtained from Eq. (46) with the numerical reference method. 
 

Graph 1 allows the conclusion that the approximation proposed overlaps the numerical reference method. This 
behaviour can be justified as the typical values of parameter effl  for ADS reactors are smaller than for PWR type 

reactors, which indicates that disregarding the second derivate is a good approximation. 
Figure 2 shows that it is possible to visualize the behaviour of neutron density ( )tn , strongly influenced by the 

variation of the external neutron source ( )q t .  
 

 
 

Figure 2 - Neutron density behaviour as obtained from Eq. (46) for different external sources q(t). 
 

4. CONCLUSIONS 
 

An analytical approximation has been developed in this paper, seeking to predict neutron density ( )tn  in sub-
critical systems with linear reactivity insertions and source external to the system. The formulation proposed consists of 
the solution of the point kinetics equations for sub-critical systems with a group of precursors. The results obtained have 
shown small percentage deviations in relation to those obtained with the reference method, which was the numerical 
solution of the point kinetics equations for sub-critical systems. 
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