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Abstract. The dynamics of a non axi-symmetrical body in space was introduced in previously [Dynamics of bodies in 
space rotating across stability borders, Zambrano. & Weber., 2009] focusing the calculation of the minimal kinetic 
energy for starting the change of basins of attraction, handling of singular points during the integration of the 
movement equations for cardanic angles, and investigating stability conditions of the movement for different inertial 
configurations. The present work is a continuation of the study of the dynamics of a body in space using tools from 
Nonlinear Dynamics applied to the understanding of the motion of a gyroscope on a cardanic suspension. In the study 
the influence of the inertia of the gimbals during large excursion motions are considered, crossing the stability borders 
in the concept of Lyapunov. Non axi-symmetric rotors are considered, and the necessary conditions in angular 
momentum and kinetic energy for the escape of a basin of attraction are obtained. Due to the influence of the gimbals 
inertia, a significant variation in the value of minimal energy for this escape is obtained, in spite that qualitative 
results of the free body are maintained. The problem of singularity which existed in the case of a body in space was 
eliminated due to the inertia of the gimbals, then, the numerical integration of movement equations using cardanic 
angles does not present any problems. The model in this paper does not consider energy loss due to rubbing between 
the components of the gyroscope: the total kinetic energy of the gyroscope is constant, but there exists an exchange of 
energy between the rotor and the gimbals, whose complexity depends on the initial conditions, as is seen clearly in the 
results. It is shown how the change of moments of inertia (the gimbals), influences the stability of the movement. The 
contribution of this work is to evaluate the importance of the configuration of the inertia of the frames which must be 
done very carefully (it is possible to show significant differences in the dynamics of the body due to influence of the 
small inertia of the gimbals), and to characterize the gyroscope with cardanic suspension using tools from non-linear 
dynamics and chaos theory. 
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1. INTRODUCTION 
 

The topic of rotation in space continues receiving attention along the modern development of science: traditional 
mechanics finds new ways using modern computational and visualization techniques. Even so, to understand basic 
rotational phenomena of a free body in space it is very helpful to use a gyroscope on cardanic suspension. Numerous 
important gyroscopic problems that occur in applications can be simulated qualitatively in the experiment. 

When the attitude of a body in space is studied, it can be characterized by different differential equations according 
to the used tools: there are several parameterizations possible: among most commonly used, there are cardanic angles, 
Euler angles, Euler Rodrigues parameters, Quaternions, etc. The best parameterization depends on the amplitudes of the 
displacements to be studied. In the solution of differential equations of motion there may exist singularity points like it 
happens using cardanic angles (Zambrano, H. & Weber, H.I., 2009) demanding special care. On the other hand, the 
Gyroscope with cardanic suspension and no restriction for the gimbals rotation will reproduce quite well the motion 
characteristics of a body in space. This is true for small amplitude nutations, but there exist differences due to the 
presence of the inertia of the gimbals. This inertia may exert considerable influence in the dynamics of the movement 
modifying the nonlinear structure of the equations but, nevertheless, it presents a more realistic description of the real 
phenomena. 

In this work the dynamics of this Gyroscope is studied using cardanic angles, the nonlinear characterization of the 
movement is done, basins of attraction are generated and stay defined until certain conditions, given by the Lyapunov 
definition of the stability of motion; are reached. It will be shown that in this case singularity points do not exist as in 
the solutions of a previous work (Zambrano, H. & Weber, H., 2009): these singularity points disappear due to the inertia 
of the gimbals.  A random looking behavior of the deterministic systems will receive the name of Chaos (Savi, 2006). 
Defining slightly different initial conditions will give rise to a seemingly random response and it will be shown that the 
Gyroscope has chaotic characteristics resulting in unexpected movements. 
 
2. EQUATIONS OF MOTION 
 

The equations were obtained using Lagrange equations. The kinematics is done defining sequential rotations with 
cardanic angles, each rotation is associated to a component of the gyroscope: angle α is used to define the position of 
the external gimbal (Qex), angle β defines the motion of the internal gimbal (Qin) in the external gimbal and the angle γ 
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gives the spin of the rotor in the internal gimbal (Fig. 1). Since there are only rotations in the dynamics of the gyroscope 
with gimbals, three generalized coordinates are enough to study the problem. We choose cardanic angles. To define the 
sequential rotations it is necessary to work with 4 reference systems (SR), one fixed in space and the others attached to 
the components of the gyroscope (in movement). A short form for the notations is: 
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The gyroscope is composed by three bodies; the total kinetic energy is the sum of the energies of each body. This 

kinetic energy is independent of the coordinate system where it is calculated, allowing calculating the energy of each 
component in its respective SR which makes the calculation easier, since the inertia matrix is constant. 
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The total kinetic energy of the gyroscope is then: 
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Where: Ix is the moment of inertia of the external gimbal corresponding to axle x of SR(Q), moments IX_R, IY_R and IZ_R 

are the principal moments of inertia of the internal gimbal in its respective axles of SR(R), the moments, I1, I2, I3 
are the principal moments of inertia of the rotor in axles x, y, z of SR(S) respectively. 

 

     

Rotor                       Quadro  Interno 

   
Quadro  Externo 

 
 

Figure 1. Diagram of components of the gyroscope 
 
The studied problem consists in: a rotor which initially is turning with constant angular momentum, an external 

impact force on one of the gimbals, i.e. one of the axles, x or y, of SR(R), this impact generates an instantaneous change 
in the angular momentum, starting a nutation motion. 

Rotor Internal gimbal

External gimbal
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NORMALIZATION OF THE EQUATIONS 
To better analyze the results, and also to diminish one parameter in the motion equations, thus diminishing the 

complexity of the mathematical calculation, it is advisable to count on non-dimensional motion equations: therefore the 
initial value (after the impact) of the angular momentum hG = I3 v will be considered for the normalization. The time 
will be changed by the non-dimensional value τ = ν t, where ν represents an angular speed (instantaneously after the 
impact); the original conception of this normalization is presented by (Weber, H.I., 2005).  The temporal derivatives 
will be changed to: 

 
G

3

hv v v v
I

α α β β γ γ′ ′ ′= = = =  (4) 

 
Another step of the normalization process is directed to the moments of inertia: since the original rotation axis is (z) 

Fig. (1) moment of inertia I3  was used to define the parameter τ, and all other moments of inertia will be normalized 
with respect to I3 .  The non-dimensional moments of inertia of the rotor and of the external gimbal are: 

  
1 1 3I Iµ =   2 2 3I Iµ =   3x xI Iµ =  

 
The internal gimbal is considered as a ring, to diminish the number of parameters; therefore we only have the polar 

moment IX_R and two diagonal moments IY_R = IZ_R  which are equal. In the normalized form we get: 
 

_ 3p X RI Iµ =   
_ 3 _ 3d Y R Z RI I I Iµ = =  

 
After the impact, the  of the gyroscope remains constant; in its normalized form it is represented as: 

 
2 C GEE E h v=  (5) 

 
LAGRANGE EQUATIONS 
The movement is conservative; therefore it is easy to apply Lagrange equations. Since there is only kinetic energy 

variation, Lagrange equations taking Eq. (3), are used with cardanic angles as generalized coordinates. 
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Equation (6) will result in differential equations of second order; the earlier described normalization process is 

applied in these second order equations to obtain non-dimensional equations of movement. The kinetic energy of every 
body can also be normalized following the same normalization process. 
 
2.1. Analysis of initial conditions 
 

In an initial instant before the impact, the rotor has a constant angular momentum HG in direction of the axle z0 of 
SR(x0, y0, z0). With the impact it changes in module and direction to a new angular momentum hG0: it now has the 
direction of axle z of SR(x, y, z) formerly defined as (F).  

 

 
 

Figure 2. Angular momentum change due to impact 
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Two coordinate systems are considered to understand the impact process: 
First (R) with axles (x0, y0, z0) defined in Eq. (1) in its position at a time τ = 0 and second F(x, y ,z) where the 

angular momentum (hG0) lines up with the axle z. Then, hG0 in (R) can be written as: 
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On the other hand, the total angular momentum of the gyroscope can be calculated summing up the angular 
momentum of each component: 

0 0_ 0_ 0_Qext Qin Rotor= + +H H H H  
In this way we arrive to another mathematical expression for hG0 , giving: 
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The expressions for the initial angular speeds (after the impact) in function of cardanic angles are obtained by the 

solution of Eq. (7). Also here the normalization is applied to obtain non dimensional initial angular speeds. These 
procedure shows that it is possible to define the whole problem starting with initial angles, in spite the fact that the 
initial condition was generated by an impact perpendicular to the axle of the original angular momentum of the rotor. 

In this work only two general initial conditions are studied: when the impact occurs in y direction of SR(R) then { α 
≠ 0, β = 0, γ = 0 } is taken, and when the impact occurs in x direction of SR(R) then { α = 0, β ≠ 0, γ = 0 }. Knowing the 
initial angles it is possible to calculate initial angular speeds, and, in this way, all initial conditions for the differential 
equations of second order are defined. 

  
3. INFLUENCE OF THE INERTIA OF THE CARDANIC SUSPENSION 
 

It was mentioned before that this work gives sequence to a recent work (Zambrano, H. & Weber, H.I., 2009), where 
only the dynamics of the rotor in space was analyzed (without a cardanic suspension). Basins of attraction were defined 
using angles α and β, and the change of basin during large amplitude motions may happen in the direction of α, but the 
change of basin in direction of β is only possible at two points. This behavior can be confirmed by Fig. (3). 

 

 
 

Figure 3. Diagram showing motion across stability borders (rotor in space) 
 

Figure (3) presents the behavior of a non axi-symmetric rotor (rotor in space): it is an easy task to calculate the 
necessary minimum energy for a change in the basin of attraction to happen. When considering the influence of gimbals 
with inertia, it is only possible to calculate of the minimum energy using a numerical method. 

The rotor presented in Fig. (1) is part of the Magnus gyroscope (Magnus, 1965); some physical characteristics of the 
components of the gyroscope obtained from a CAD fitting to the object are shown in the following table. 

α

β
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Table 1. Moments of inertia of the Magnus gyroscope. 
 

 
 

The influence of the inertia of the gimbals changes the geometry of the basins of attraction shown in Fig. (3); the 
singularity point that existed in the study of the rotor in space will not exist any more when the inertia of the gimbals are 
considered, even for very small values of this inertia, the effect in the dynamics of the system is considerable. 

 

  
 

Figure 4. Bifurcation Diagram for µ1, without gimbals on left, with gimbals on right. 
 
 
 
The first important difference when there are gimbals is the facility of changing the basin of attraction in β direction, 

therefore in the motion equations the denominator will never be zero. In Fig. (4) there are presented two cases where the 
control variable is µ1 , in the figure on the left for a single rotor it does not exist change of basin of attraction in β 
direction, therefore the angle β remains inside  < -π/2 , π/2 >. Otherwise when the inertia of the gimbals are considered 
the angle β can reach any value without problem (Fig. (4) on the right). 

 
3.1. Sensitivity of the dynamics to the inertia of the gimbals. 
 

The sensitivity to the inertia of the gimbals in dynamics is very high. Even for values of µx smaller than 10-5, Fig.5 
and 6, there are regions with very irregular characteristics. The figures consider the same initial condition that will lead 
to instability in the linear region and solution points between 40 < τ < 42 are represented.  

 

  
 

Figure 5. Bifurcation Diagram for µx  very small. 
 

ββ 
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Figure 6. Bifurcation Diagram for µp  and µd  very small. 
 

In conclusion of the previous results, the dynamics a body in space is affected very much by the inertia of the 
external gimbal as also by the inertia of the internal gimbal, considered individually and also simultaneously. 

 
 

  
 

Figure 7. Bifurcation Diagram for µx . 
 
 

  
 

Figure 8. Bifurcation Diagram for µp  and  µd . 
 
Figure (7) shows that there exists an intermediate region when varying the inertia value of the external gimbal: in 

this region the movement is stable for the initial condition (α0=0.555), but the position and the length of this stable 
region in the figure depends on the initial condition. In Fig. (8) two regions appear, one unstable and the other stable. 
The increase of the inertia leads to an increase of stability since the gimbal with bigger inertia behaves in a more stable 
way for the same disturbance. Considering both gimbals simultaneously we obtain a greater stable region but also that 
for greater inertia again a region of instability appears, meaning that there is an optimal intermediate region for the 
moments of inertia.  

Finally, considering gimbals with inertia, makes the dynamics of the free rotor to cover a greater range of 
amplitudes, it is possible to move in direction of the angle α and also in the angle β crossing basins of attraction. Points 
of singularity do not exist; when the inertias grow and the body turns heavy, more energy is needed from the impact to 
cross borders of the basin. In this aspect there is a big difference to the movement of a pure rotor in space. 

The analysis done above studies the impact in direction of axle y of SR(R) in its initial position. The case of the 
impact in direction of axle x of SR(R) is similar, the movement of body in space is more stable when the impact is in 
this direction, and the movement does not change basin, but due to the inertias of the gimbals, the gyroscope changes 
basin of attraction, and the dynamics of the movement is similar to the case studied here. 
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4. GYROSCOPE DYNAMICS 
 
In this part of work, the behavior of the Magnus gyroscope is analyzed, Table (1). According to the work of 

Zambrano, H. & Weber, H.I., 2009, if the gimbals are not considered, the minimum energy for the change of basin of 
attraction and also the maximum energy that can be applied by the impact (in axle y of initial SR(R)) are: 

min (cambio vasija ) 1, 289EE =
    

(α0=0,5547)
                                                 max 2,045EE =        

 (α0=π/2)  
Now, considering the influence of the gimbals, the new values of the energies are: 
EEmin (cambio vasija) = 1,0023    (α0=0,05238)   EEmax = 1,8282     (α0=π/2) 
 
An interesting fact when considering the inertias of the gimbals is that the new basin of attraction is not any more a 

square with π/2 of side, as in the case of the body in space, but an ellipse with approximately π/8 of major axis, as is 
shown in the following figure: 

 

 
 

Figure 9. Form of limits of the basins of attraction, without gimbals on left, with gimbals on right. 
 

Other interesting fact in respect to the initial energy is that in case of body in space (without gimbals) the body does 
not change basin of attraction when the impact occurs in direction of axle x, but due to the inertias of the gimbals the 
limit of the basin of attraction is equal to the outer ellipse of Fig. (9) right, which was drawn for an impact in y.  

The value of the initial energies for an impact in direction x of the initial SR(R) is: 
EEmin = 1,072 (β0=0,39949)   EEmax = infinite  (β0=π/2) 

The condition of infinite energy means that a very strong impact is necessary to obtain a big initial angle of β0.  One 
better presentation of the initial energies appears in the following figure: 
 

 
 

Figure 10. Initial kinetic energy: left, impact in y; right, impact in x. 
 

Beyond changing the form of the limits of the basin of attraction, which is now elliptical, the centers also move. 
This meaning that, when the body in space is studied, the centers of the basins of attraction are fixed equal to a multiple 
of π, but due to the inertias of the gimbals the centers do not remain fixed during the movement; for each initial 
condition different centers of basins of attraction are obtained. Considering all aspects, it is difficult to identify all 
points that belong to a specific basin.  Using a numerical method it is possible to calculate the limits of the basins of 
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attraction in elliptic form, the maximum and minimum axes of the ellipse can be defined during the first change of basin 
of attraction (for the inertial configuration of the gyroscope of Magnus, major axis  ≈ π/8, and minor axis  ≈ π/10). 

 

 
 

Figure 11. Basins of attraction, without gimbals on left, with gimbals on right. 
 

Figure (12) presents the kinetic energies of each gimbal and of the rotor, which interact conserving a constant value 
in the sum. The smallest kinetic energy belongs to the internal gimbal motion, due to the fact that it has a smaller 
inertia. In Fig. (13) some basins of attraction can be seen, in the direction of the angle α and β, the behavior of the 
angles are also observed in Fig. (12), obtaining an almost linear behavior of γ in comparison to other angles. 
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Figure 12. Energy and angles in function of τ , with α0=0.5 
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Figure 13. Orbits of the movement, with α0=0.5. 
 

 
 

Figure 14. Phase-space representation, with α0=0.5. 
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In the case of body in space, in the spatial orbit two hemispheres appear: it is true that several basins of attraction 
existed and appeared in the figures α vs β, but when the motion is represented in space (on a sphere of unitary radius) 
they remained superposed in only two centers or two hemispheres. When the inertia of the gimbals are considered, in 
the space orbit more centers appear, Fig. (13), and it is not possible to work with hemispheres to understand the 
movement, this behavior can much easily be observed experimentally. 

The Phase-Spaces in Fig. (14), the angular speeds stay in a small region when compared to the speeds in the case of 
the body in space, since in this case when some change of basin happens the speeds are very high (greater than 60), this 
fact is tranquilizing since very great speeds are not feasible. 

 
5. STUDY OF CHAOS 

 
The investigation of chaos in this topic was initiated when studying the body in space; initially we believed that the 

jumps of basins of attraction had a chaotic behavior, which was easy to see in numerical results. After calculating the 
Lyapunov exponent of this movement, the chaotic tendency was verified.  The influence of the inertias of the gimbals 
also are important in this analysis, the motion equations of the gyroscope are more complex than those of the body in 
space, therefore one expects also to get chaos.  As the behavior of γ is almost linear, it is better to take periodic values of 
α, β angles for a specific condition and draw Poincare maps. In the following figure angles are represented for a specific 
speed condition. 

 

 
 

Figure 15. Poincare maps, β vs α for zero speed values. 
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Figure 16. Lyapunov Exponent, considering the variation in initial condition ∆α0=10-6. 
 
Figure (15) characterizes a chaotic behavior of the gyroscope, reaffirming the conclusion of Fig. (14) which also 

induces the believe of chaotic motion, since there is an infinite number of superimposed unstable orbits. 
Figure (16) is used for a quantitative evaluation of the chaotic behavior, considering an initial condition of α0=0,5 

and changing in a small amount ∆α0=10-6 to a nearby orbit. These figures depend on the initial condition, but the 
conclusion on the chaos will be the same, the positive value of the exponent will be always reached. 
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6. CONCLUSION 

 
 In the book of (Magnus, 1965) several experiments are proposed to evaluate the motion of a non axi-symmetric 

rotating body in space using the phenomena present in a gyroscope on a cardanic suspension. In fact, the inclusion of 
the inertia of the gimbals will give a much richer problem and, even very small inertias for the gimbal may alter the 
behavior considerably. When the system is subjected to impacts that inject sufficient energy for a change in the basin of 
attraction, the rotor without gimbals may only do it in α direction; in the β direction there is a singularity in the 
equations obliging us to work with an alternative parameterization, like quaternions. That is not the case for the 
gyroscope with gimbals. 

The minimum kinetic energy to get a crossing over the borders defined by the limits of the Lyapunov stability and 
reach another basin of attraction, is lesser when including the gimbals, and the maximum energy transferred to the 
rotating body by the impact diminishes also a little. There are some differences according to which axis the impact is 
considered and the above mentioned is valid for the axis of minimum inertia. When impacting along the axis of 
maximum inertia (x) the minimum kinetic energy is also smaller but the maximum transferred energy by the impact 
tends to infinity of beta becomes greater as β0=1,25.  

The basin of attraction considered in α, β plane changes its geometrical appearance, from something like a square 
(without gimbals) to an elliptic form (considering gimbals). In this case there are neutral regions between distinct 
basins, where the motion crosses by when moving from one to the other. Sometimes the basins are superposed, inducing 
us to consider moving centers along the time. When representing the rotational orbit over a sphere with unitary radius 
we get the impression of having several basins over it and that the centers where during some time the motion keeps 
oscillating around also move with the time. 

Looking at the phase planes and at the Poincaré maps, one may conclude on the presence of chaos in the motion. 
One may certify this conclusion drawing the diagram to obtain the Lyapunov exponent. 

The investigated case considers a non axi-symmetric rotor where the biggest inertia is the polar inertia of the rotor   
(1 ≥ µ1 , µ2) and where the initial impact that disturbs the motion occurs along the direction of y axis (µ2) and along x 
axis (µ1). For the axi-symmetric case (µ1 = µ2) the dynamic behavior including or not the gimbals is the same and the 
stability is kept changing the strength of the impact. In the non axi-symmetric case if the rotor is by itself unstable for a 
certain impact, it also will be with the gimbals but, there can be a case when the rotor is stable without considering the 
gimbals and turns out unstable due to its effect. 
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