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Abstract. Shape Memory Alloy (SMA) consists itself of a group of metallic materials, which  demonstrates the ability to 

return to some previously defined shape, when it is subjected to the appropriate thermal procedure. In this paper the 

classical nonlinear behaviors and global bifurcation of a SMA oscillator system subject to harmonic excitation, were 

investigated. The global bifurcation analyses with the variation of excitation amplitude and temperature were carried 

out respectively and some bifurcation diagrams were presented. The authors numerically investigate basins of 

attraction of periodic attractors in this model. These attractors are strongly dependent on small changes of the initial 

conditions. Gradually varying a control parameter, the size of these basins of attraction is modified by global 

bifurcations of their boundaries. 
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1. INTRODUCTION  
 

Shape memory alloy (SMAs) refer to a group of materials, which have the ability to return to a predetermined shape 

when they are heated. The source of the distinctive mechanical behavior of these materials is a crystalline phase 

transformation between a high symmetry, highly ordered parent phase (austenite), and a low symmetry, less ordered 

product phase (martensite). 

The phenomena related to the shape memory alloys (SMA) are associate to the transformations of the phase, which 

can be caused by the variation of the temperature, as well as, for the variation in the tension level. Basically, the SMA 

presents two stable phases: austenite and martensite. 

According to the mechanical behavior, the shape memory alloys, may be divided in two categories: shape memory 

(SME) and pseudoelastic effect. Shape memory effect is related to the ability of the material to recover a great quantity 

of the residual strain, caused for the action of a loading and unloading, through of the increasing of the temperature of 

the material, in this situation the martensitic phase s stable. Already, the pseudoelasticity behavior refers to the ability of 

the material to obtain a very large strain upon loading and fully recover through a hysteresis loop upon loading and 

always occurs in high temperatures, in this situation the austenitic phase is stable. 

The dynamical response of the shape memory systems is introduced in different references (Lacarbonara et. al. 

2004), (Savi et. al. 2008), (Piccirillo et. al. 2009), without deserve others. Recently, some experimental analyses 

confirm the presence of chaos in shape memory systems, Mosley and Mavroidis (2001). Chaotic behavior is an 

interesting nonlinear phenomenon, which has been intensively studied during the last three decades. Chaotic behavior is 

commonly detected in a wide variety of physical systems, such as electrical, mechanical, and thermal systems, Nayfeh 

(1994). A fundamental characteristic of chaotic systems is its unpredictability. 

Computing basins of attraction results in a new understanding of the behavior of dynamical system. The basin of 

attraction of an attracting set is the set of all the initial conditions, in the phase space whose trajectories go to that 

attracting set. Nusse et. al. (1997). 

Souza et. al. (2008) considers a gear box model and discussed the coexistence of attractors with fractal basin 

boundaries, as well as the existence of long chaotic transients. Souza et. al. (2005) study the effect of the amplitude 

constraint it is to modify the basin boundary structure in a nondeial problem. 

The aim of this paper is to analyze the bifurcation of the SMA oscillator. For this system, we initially determine the 

coexisting periodically attractors and then analyze their basins of attraction. 

  

2. SMA CONSTITUTIVE MODEL 
 

To describe the behavior of the oscillator with shape memory, we adopt in the mathematical modeling of the 

problem the constitutive model proposed, as an example by Savi and Braga (1993).This model is based on Devonshire 

theory and it defines a free energy of Helmholtz ( ψ ) in the polynomial form and it is capable to describe the shape 

memory and pseudoelasticity effects. The polynomial model is more known to deal with one–dimensional cases and it 
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does not consider an explicit potential of dissipation, and no internal variable is considered. In this form, the free energy 

depends only on the state variable (temperature and strain), that is, ),( Tεψψ =  

The free energy is defined in such a way that, for high temperatures ( ATT > ), the energy possesses only one point 

of minimum corresponding to the null strain representing the stability of the austenite phase (A); for intermediate 

temperatures ( AM TTT << ), it presents three points of minimum corresponding to the phases austenitic (A), and two 

other martensitic phases (
+M  and 

−M ), which are induced by positive and negative stress fields, respectively; for 

low temperatures ( MTT < ), there are two points of minimum representing the two variants of martensite (
+M e 

−M ), corresponding to the null strain.  

Therefore, the above restrictions are given by the following equation polynomial: 
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where q and b are constants of the material, AT  corresponds to the temperature where the austenite phase is stable, MT  

corresponds to the temperature where the martensitic phase is stable and ρ  is the mass density; and the free energy has 

only one minimum at zero strain:  
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and the constant e may be expressed in terms of other constants of the material. Thus, the stress–strains relation is given 

by 
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According to Paiva and Savi (2006) the polynomial model represents both martensite detwinning process and 

pseudoelasticity in a qualitatively coherent way, although it does not consider a twinned martensite ( M ). In other 

words, there is no stable phase for MTT <  in a stress-free state, but the authors believe that this analysis is useful for 

the understanding of the nonlinear dynamics of shape memory systems. The proposed model captures all of the 

essential features of the studied phenomenon. 

 

3. THE PROBLEM 
 

We consider the one-degree-of-freedom-oscillator, which consists of a mass m, connected to a rigid support through 

of a viscous damping with coefficient c and a shape memory element, where a periodic external force ( )tptp ω= cos)( , 

is applied to the systems, as shown in figure 1. 

 
Figure 1: Model of a SMA oscillator with ideal excitation 

 
Thus, the equation of motion that governs the vibrating system, may be written as,  

 
2

2
( , ) cos( )

d x dx
m c K x T p t

dtdt
ω+ + =                                                                                                                           (4)  
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On the other hand, the behavior of the element, with shape memory, can be described through the constitutive model 

polynomial. Therefore, the restoring force of the spring is given by, 

53
xexbx)TT(q)T,x(KK
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+−−==                                                                                                                     (5)  

 

where,   
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It follows that x represents the variable relative to the displacement of the element with shape memory; L is the 

length and rA  is the area of this element. 

Then, the governing equation of motion of the oscillator is given by  
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Next, we introducing the following dimensionless variables 

 

t      and      
L

x
y 0ω=τ=                                                                                                                                              (8)                                                          

 

Eq. (7) becomes 

 

( ) ( )φτδ=γ+α−−θ+µ+ cosy y y y y
5312 ���                                                                                                                 (9)       

                      

where the dot represents time differentiation and the dimensionless variables are given by,  
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Eq. (9) can be rewritten as three coupled first-order differential equations 
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                                                                                                      (11) 

 

4. NUMERICAL SIMULATIONS 
 

The numerical simulation results, presented here were obtained using the fourth-order Runge–Kutta algorithm, with 

variable stelenght. In all simulations, we have used the material properties presented in Table 1. Assuming also that the 

SMA element has the following values: 5 21.96 10rA m
−= × , mL

31050 −×= , and unitary mass. 

 

Table 1:  Material constants for a Cu-Zn-Al-Ni alloy [27] 

 

q (MPa/K) b (MPa) e (MPa) TM (K) TA (K) 

  29523.
 7

108681 ×.
 9

101882 ×.
   288    3364.  

 

In addition to the sensitive dependence on the initial conditions, a dynamical system is very sensitive to small 

variations in the control parameters. As a control parameter varies, the stability of a dynamical system changes, due to a 

local or a global bifurcation. The bifurcation diagram provides a general view of the system dynamics, by plotting a 

system variable, as a function of a control parameter, Alligood et. al. (1996). Fig. 2 show a global view of the 

bifurcation diagram of the SMA nonlinear model described by Eq. (9), where we have kept four control parameter µ , 

γ ,  α  and 0.7θ = (where the martensitic phase is stable) fixed, and only vary the forcing amplitude δ . For a given 
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control parameter δ , the bifurcation diagram Fig. 2 plots the asymptotic values of the Poincaré points of the system 

variable  y , where the transient has been omitted. 

 To build this figure, we start with  0.1δ = and a random initial condition for the state variable ( )01 02 03y y , y , y= . 

We then plot the values of 
01y for 200 Poincaré points of the trajectory of y , after discarding 200 points of the initial 

transient. Next, we increase δ  by a small amount and, using the current value of y , as the new initial condition, we 

then drop the first 200 Poincaré points and plot the following 200 Poincaré points of a new trajectory. We repeat this 

procedure until 0.4δ = . In this way, we follow the dynamics of the SMA system as δ  is varied. If we use different 

random initial conditions for a given value of δ , we may find other attractors in the phase space ( )1 2y , y , since those 

initial conditions might fall in different basins of attraction. The rich dynamical states displayed by the bifurcation 

diagram indicate that a dynamical system is sensitively dependent on a small variation of its control parameters. 

 
Figure 2: Bifurcation Diagram for 0.7θ =  

 
Evidently, multistability is a fundamental feature of a complex system, as seen in the periodic window of the 

bifurcation diagram in Fig. 2. The basin of attraction for a given attractor it is the set of initial conditions, each of which 

gives rise to a trajectory that converges asymptotically to the attractor, Hilborn (1994). 

Multistability is a basic feature of complex dynamical systems whereby two or more attractors can coexist for a 
given value of the control parameter. This is depicted by the basins of attraction in Fig. 2, for an example, in interval 

0.221 0.232≤ δ ≤ , two attractors coexist each attracts a different set of initial conditions in the phase space. In Fig. 3, 

we plot the basins of attraction for first attractor in white color and second attractor in black color at 0.2242δ = . To 

find the basins of attraction, we define a grid of 641×641 points in the phase space and iterate each point of the grid 

until it reaches one of the attractors. We color the initial condition according to the attractor to which its trajectory 

converges. It can be seen that most initial conditions are attracted to black color. 

 

 
 

        (a)              (b) 

Figure 3: Basin of attraction, (a) for the two periodic attractor in white color and black color  and (b) Zoom of 

the figure (a) 
 

y� y�
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In Fig. 4, the bifurcation diagram for the amplitude ratio as a control parameter it is investigated considering 2θ = . 

When 0.26δ ≈ the system loses stability and there is a period-doubling bifurcation and unsymmetrical motion occurs. 

Thereafter, the motion undergoes a succession of period-doubling bifurcations with decrease in δ , which eventually 

result in apparently non-periodic or chaotic motions.  

Some regions of these basins have highly interleaved fractal boundaries. To show this characteristic, we present in 

Figure 3(b) a zoom of Figure 3(a). Figure 3(b) shows the coexistence of the two attractors and fine structures at any 

phase space scale. Consequently, there are regions for which the system’s behavior is strongly dependent on small 

changes of initial conditions. 

 
Figure 4: Bifurcation Diagram for 2θ =  

 

In Fig. 4, for an example, in interval 0.259 0.2842≤ δ ≤ , two attractors coexist each attracts a different set of initial 

conditions, in the phase space. In Fig. 5, we plot the basins of attraction for first attractor in white color and second 

attractor in black color at 0.2701δ = . To find the basins of attraction, we define a grid of 641×641 points in the phase 

space and iterate each point of the grid until it reaches one of the attractors. We color the initial condition according to 

the attractor to which its trajectory converges. It can be seen that most initial conditions are attracted to black color. 
 

 
(a)                                                                                       (b) 

Figure 5: Basin of attraction: (a) for the two periodic attractor in white color and black color and (b) Zoom of 

the figure (a), where 0.2701δ =  
 

In Fig. 4, for an example, in interval 0.2842 0.2896≤ δ ≤ , four attractors coexist each attracts a different set of initial 

conditions in the phase space. In Fig. 6, we plot the basins of attraction for first attractor in white color, second attractor 

in black color, third attractor in blue color and fourth attractor in red color at 0.2701δ = . To find the basins of 

attraction, we define a grid of 641×641 points in the phase space and iterate each point of the grid until it reaches one of 

the attractors. We color the initial condition according to the attractor to which its trajectory converges. It can be seen 

that most initial conditions are attracted to red color. 

Fig. 7 provides an illustration how the temperature θ  influences the system dynamics.  

For values of temperature in the wide range of parameter, the SMA oscillator demonstrates a chaotic behavior, 

which then after a cascade of subcritical period doubling bifurcations ends up with a period two motion and soon after a 

one period. 
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(a)                                                                                (b) 

Figure 6: Basin of attraction: (a) for the four periodic attractor in white, black, blue and red colors and (b) Zoom 

of the figure (a), where 0.286δ =  
 

In Fig. 7, for an example, in interval 0.8172 0.8982≤ δ ≤ , two attractors coexist each attracts a different set of initial 

conditions in the phase space. In Fig. 8, we plot the basins of attraction for first attractor in white color and second 

attractor in black color at 0.8451δ = . To find the basins of attraction, we define a grid of 641×641 points in the phase 

space and iterate each point of the grid until it reaches one of the attractors. We color the initial condition according to 

the attractor to which its trajectory converges. It can be seen that most initial conditions are attracted to black color. 

 
Figure 7: Bifurcation Diagram for 0.1δ =  

 

 
    (a)                                                                                   (b) 

Figure 8: Basin of attraction, (a) for the four periodic attractor in white, black, blue and red colors and (b) Zoom 

of the figure (a), where 0.286δ =  
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5. CONCLUSION 

 
In this paper a numerical study of nonlinear dynamics of a SMA oscillator it is presented. The analysis it is 

developed by considering different temperature sets for the shape memory element. 

 Depending on the parameter configuration, the system displays various dynamical responses. The bifurcation 

diagrams and basins of attraction were used to examine the system dynamics. 

 In terms of the system dynamics our analysis shows that, as the control parameters are varied, a complex SMA 
system undergoes a variety of dynamic transitions which change its stability properties, namely, local bifurcations such 

as period-doubling bifurcation. Moreover, the topology of the basins of attraction is modified by global bifurcations of 

their boundaries. 

In any case it is of practical importance to investigate the basins of attraction related  in the different situations, since 

we can determine to what extent a small uncertainty in the initial condition reflects on the knowledge of the attractor the 
system will asymptote to. 

The basins of each behaviour are densely mixed and, as suggested by the magnification shown in Figs. 3b, 5b, 6b 

and 8b, the basin boundary looks like a fractal curve. 

 Furthermore, for the considered control parameter range, the basin boundaries are fractals and so interleaved that 

the trajectory might deviate from one basin to another.  
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