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Abstract. In acoustic sciences electric motors are treated as negligible noise sources. In fact, a well maintained 

electric motor does not generate significant sound power levels by itself. However, standard industrial plants that need 

several electric motors to run other devices or mechanisms usually group these electric motors close to each other. 

That generally makes the sum of its noises become very significant, despite of the low noise caused by a single motor. 

That's why studying the acoustics in electric motors and, the prediction of the noise generated by these machines to 

prevent acoustic problems before they can cause problem to the industrial environment is important. In this study a 

new model to estimate  sound power levels was created (through surfaces of response and neural network) using a 

data bank provided by the Laboratory of Acoustics and Vibration of the Federal University of Uberlândia. To check 

the accuracy of this new model, it was compared with existent models created by well-known authors in acoustics and 

with random experimental data from another data bank, not used in the conception of the new model. The new model 

was considered successful, since the errors of the sound power levels estimated in relation to the experimental sound 

power levels data were not significant. 
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1. INTRODUCTION  

 
Most of authors in acoustics area treat electric motors like negligible noise-sources, because the noise generated by 

one single electric motor (without mechanical problems such as unbalancing or missing lubrification) does not affect 
the total sound pressure levels around itself. Sound power levels upcoming from electric motors are actually small, 
when compared with another common sources of noise (standard machinery) in an oil refinery, for example. In this 
case, ovens, compressors, some types of valves in pipe net and combustion engines, are just some of the noise sources 
much more significant than electric motors. However, thinking about this same case, electric motors use to be grouped 
in specific areas in large numbers by making the maintenance, repair and overhaul of this components easier, but, this 
habit also make the noise of electric motors much more important, once they are grouped and their sound power levels 
are summed. Although the sound power level sum is a logarithmic method (which means that two identical sources of 
noise working together make only a 3 dB higher sound power level than one of these sources), 4 electric motors each 
one with sound power levels of 80 dB will create a sound pressure level field of 86 dB at 1 meter of distance, exceeding 
the 85 dB limit stated to a 8 hour work journey, according to Gerges (2000).So, this is the reason to study noise created 
by electric motors and ways to minimize its impact in human health at workplace. 
According to Gerges (2000), electric motors are complex noise generator sources though the vibration of their 

components and the turbulent air flux at their refrigeration. So, are complex to the analytic methods to estimate the 
noise in this kind of motors. The complexity in the noise source identification of electric motors is also exposed by 
Duarte (1985). In his work the sources noise were defined as T.E.F.C. (totally enclosed fan cooled, class of all motors 
analyzed in this work) electric motors: the bearing, the external fan, the external fan cover and the internal fan. All of 
their components were parts of a complex air flow system what make the noise generation inside the motor almost 
impossible to analyze. 
In this article, new equations are proposed to predict sound power levels of electric motors in function of its 

electrical power and axis rotation. These equations will be estimated by using response surfaces and a neural network 
(using the commercial software MATLAB®). The neural network will be trained by the Levenberg-Marquardt 
algorithm. 
  
2. METHODOLOGY 

 
To validate the neural network approach and analyze its accuracy, three different sound power levels were 

experimented: a new model generated by response surface method (RSM), the model used to electric motors shown in 
Bies and Hansen (2003) and the experimental data collected in an industrial plant. 
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The data bank was divided into two groups: a large group of motors, used to train the neural network and find the 

model of the RSM methodology, and another small group, used to check the accuracy of the models. 
 
2.1. Response Surfaces 

 

The Response Surface Method (RSM) was created by George Edward Pelham Box in the 50’s and consists in to 
analyze the influence of a group of variables, in some response variables, and since them has been uses with great 
success in modeling various industrial process (Barros Neto et. al., 2001). Consists of planning and analysis of 
experiments, which seeks to relate levels of responses with the quantitative factors that affect theses responses (Box and 
Draper, 1987). 
At first, Box suggested the RSM applied to a second-degree equation, intending to optimize the parameters targeting 

a wanted response. To determine a first-degree polynomial model the common approach consists in using a factorial 
designed experiment, such as 2² factorial design or 2³ factorial design. The design 2² (or 2x2, where each factor has two 
levels surrounding, in a tetrahedron, a center-point of the analyzed part) shown in Fig. 1 was the chosen factorial design 
to estimate the response surface. 
 

 
 

Figure 1. An example of 2² experiment design with equivalent response surface 
 
The most extensive applications of RSM are in the industrial world, particularly in situations where several input 

variables potentially influence some performance measure or quality characteristic of the product or process (Myers and 
Montgomery, 2002). The case approached consists in two parameters (electric power and axis rotation) which 
contribution for the function (sound power level) will be determined by the RSM, working alike a multiple linear 
regression. The optimization does not make sense to the work's objective, once it only could bring higher or lower 
sound power levels optimizing the electric power and axis rotation values. 
Once sound power levels use a logarithmic scale (dB) the variables of the equation should be in the same scale, so, 

the form of the equation that the RSM will return is presented in Eq. (1). 
 
NWS = A * log10 (CV) + B * log10 (RPM) + C     [dB] (1) 
 
Where: 
NWS is the sound power level of the electric motor (in dB), CV is the electric power of the motor (in cv), RPM is 

the rotation of its axis (in rpm). A, B and C are constants. A and B represent the contribution of electric power of the 
motor and the contribution of axis rotation of the motor to its generated sound power level respectively and C is an 
adjusting coefficient. 
The RSM methodology was used to find the constant values: A, B and C. 
 

2.3. Neural Networks 

 
Artificial neural networks, which are referred to as neural network, connections, adaptive networks, neurocomputers 

and parallel distribution processors, are massively parallel interconnected network of simple elements intended to 
interact with the real world in the same way as biological nervous systems. They have been used to solve a wide variety 
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of science and engineering problems that involve extracting useful information from complex or uncertain data (Jalel et. 
al., 1991).  
Neural networks are defined by three characteristics: architecture, training algorithm and activation function. The 

term comes from their similarity with the neural system present in neural biology. The activation function is the relation 
between input and output of the neurons (A1, A2, A3 and B on Fig. 2) the architecture is defined by the connections 
between these neurons (f1, f2 and f 3 on Fig. 2) and the training algorithm is used to determine the architecture. 
Basically, the training algorithm will fit the best functions (connections) between the nodes (or neurons) using 

previously existent data (experimental data in the majority of experiments) in order to train the neural network to give a 
certain output, according to random inputted value(s). 
Each neuron or node, after submit its input to the activation function can send this activation to several other 

neurons, but this value is the same for all these synapses. What will define the difference over the irradiated neuron 
signals are the connections (functions determined by the architecture) between this neuron and the others that take its 
signal as input. 
In this work the neural network used was a common ANN (Artificial Neural Network) given by the commercial 

software MATLAB® which design is not known, but trained by the  Levenberg-Marquardt algorithm. Once this work 
does not aim a deep study of neural networks, but only their efficiency to the approached case, the neural network is 
used like a common black box computational tool and no further information about it is needed. 
 

 
 

Figure 2. Schematic representation of a basic neural network 
 

2.4. The Bies and Hansen Method 

 
The method suggested to estimate sound power levels in electric motors in Hansen and Bies (2003) consists of two 

different equations, Eq.(2) to estimate sound pressure levels of motors which electric power are below 54.35 cv and 
Eq.(3) to estimate sound pressure levels of motors above 54.35 cv. Once the equations estimate sound pressure levels at 
one meter distant from the source, Eq.(4) was used to convert these sound pressure levels into sound power levels of the 
source. 
 

Lp = 17 + 17 log10 [0.736 * (CV )] + 15 log10 (RPM)     [dB] (2) 
 
Lp = 28 + 10 log10 [0.736 * (CV)] + 15 log10 (RPM)     [dB] (3) 
 
NWS = Lp+ 11 – 10 log10 (D)       [dB] (4) 
 
Where: 
Lp is the sound pressure level (in dB) of a noise source and D is the directivity according to the placement of this 

noise source. 
The directivity D is defined by the installation's position of the electric motor in relation to nearby barriers and its 

value is shown in Fig. 3. 
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Figure 3. Directivity of noise source according to nearby barriers 
 
The model shown in Bies and Hansen (2003) was chosen among well-known models because it is the one which 

presents the lowest errors to estimate sound power levels generated by an electric motor according to Mateus et al. 
(2008). 
 
3. RESULTS 

 
The first stance data analysis using the RSM resulted in an general equation, Eq.(5), for all the electric motors in the 

data bank, but the estimated sound power levels carried out unsatisfactory error levels. Following the common sense 
among authors of most famous acoustic books, the data was classified by electric power band, since the noise sensitivity 
to electric power is not linear and the adoption of electric power bands is a practical way to avoid errors originated by a 
single equation applied in a large parameter range data bank. 
Equation (5) brings the sound power level equation to electric motors with any electric power: 
 
NWS = 3.04 * log10 (CV) + 6.91 * log10 (RPM) + 71.47 + X     [dB] (5) 
 
Where X is a coefficient used to change the NWS into octave-band sound power level, shown on Tab. 1. 
 

Table 1. X  values to adjust NWS  from Eq. (5) to octave-band sound power levels 
 

63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz

-37.39 -24.95 -14.52 -6.75 -4.84 -6.30 -10.73 -17.26

Octave-Band Adjust Coefficients

 
 

The sound power levels obtained using the Eq. (5) can be seen in Tab. 2. 
Since the errors from Eq. (5) in comparison with the experimental data were not satisfactory, as can be seen in Fig. 

4, the power band division of the electric motors in data bank was adopted and three new equations were obtained: Eq. 
(6), Eq. (7) and Eq. (8).  
 

Table 2. Sound power levels estimated by a Eq. (5) from the RSM for all electric motors 
 

CV RPM 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz NWS

7.5 3530 61.26 73.69 84.12 91.90 93.81 92.34 87.92 81.39 98.65

20 3530 62.55 74.99 85.42 93.19 95.10 93.64 89.21 82.68 99.94

40 1780 61.41 73.85 84.28 92.05 93.97 92.50 88.07 81.54 98.80

50 3550 63.78 76.21 86.65 94.42 96.33 94.86 90.44 83.91 101.17

125 3560 65.00 77.43 87.86 95.64 97.55 96.08 91.66 85.13 102.39

200 3520 65.58 78.02 88.45 96.22 98.14 96.67 92.24 85.72 102.97

300 3580 66.17 78.60 89.04 96.81 98.72 97.25 92.83 86.30 103.56  
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Figure 4. Error between NWS estimated by Eq. (5) and sound power levels identified in situ.  
 
As the X, the coefficient value seen in Eq. (5), the X1, X2 and X3 values represent, the one octave-band adjusting 

coefficients for Eq. (6), Eq. (7) and Eq. (8), respectively. 
Equation (6) refer to electric motors with power between 1 cv and 49 cv, Eq. (8) to electric motors with power 

between 50 cv and 149 cv and Eq. (8) to electric motors of 150 cv and above. 
 
NWS = 6.17 * log10 (CV) + 7.94 * log10 (RPM) + 63.46 + X1       [dB]  { 1 cv  up to 49 cv}    (6) 
 
NWS = 1.5 * log10 (CV) + 10 * log10 (RPM) + 64.55 + X2         [dB] { 50 cv  up to 149 cv} (7) 
 
NWS = 4.4 * log10 (CV) + 367.4 * log10 (RPM) – 1213.4 + X3     [dB]  { 149 cv  and above} (8) 
 
 
Table 3. X1 , X2  and  X3  values to adjust NWS  in Eq. (6), Eq. (7) and Eq. (8) to one octave-band sound power levels 

 

63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz

-38.23 -26.19 -15.78 -6.85 -4.77 -5.98 -10.11 -16.89

-36.7 -23.53 -12.88 -6.14 -4.62 -6.59 -11.69 -18.03

-36.90 -24.91 -14.94 -8.53 -6.18 -7.31 -11.06 -17.18

Octave-Band Adjust Coefficients

X
1

X
2

X
3  

 
The sound power levels obtained using the RSM with electric power divided in bands can be seen in Tab. 4. 
 

Table 4. Sound power levels estimated by Eq.(6), Eq.(7) and Eq.(8) 
 

CV RPM 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz NWS

7.5 3530 58.80 70.83 81.24 90.18 92.26 91.05 86.92 80.13 97.03

20 3530 61.43 73.46 83.87 92.81 94.88 93.68 89.55 82.76 99.66

40 1780 60.93 72.96 83.37 92.31 94.38 93.17 89.05 82.26 99.15

50 3550 65.90 79.07 89.72 96.46 97.98 96.01 90.91 84.57 102.60

125 3560 66.51 79.68 90.33 97.07 98.59 96.62 91.52 85.18 103.21

200 3520 62.82 74.82 84.79 91.20 93.54 92.42 88.67 82.54 99.72

300 3580 66.30 78.29 88.26 94.67 97.01 95.89 92.14 86.01 103.20  
 
The NWS values shown in Tab. 4, which errors compared with experimental values of NWS, are presented in     

Fig. 5. 
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Figure 5. Error between NWS estimated by Eq.(6), Eq.(7) and Eq.(8) and sound power levels identified in situ. 
 

The NWS obtained using the trained neural network can be seen in Tab. 5. 
 

Table 5. Sound power levels estimated by the trained neural network 
 

CV RPM 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz NWS

7.5 3530 59.53 71.14 80.64 90.47 92.55 92.33 88.47 81.1 97.79

20 3530 60.71 72.24 83.01 92.33 94.59 93.53 89.28 82.45 99.29

40 1780 62.33 75.37 85.44 92.89 92.79 91.22 87 80.66 98.17

50 3550 63.45 75.3 87.62 95.72 98.48 96.05 91 84.97 102.34

125 3560 63.76 73.27 86.85 94.89 96.83 95.83 91.74 86.27 101.5

200 3520 63.95 73.11 86.03 93.98 95.74 95.64 91.89 86.27 100.96

300 3580 66.44 78.83 87.79 94.45 97.4 97.34 92.57 85.97 102.75  
 

 
The NWS values shown in Tab. 5, which errors compared with experimental values of NWS, are presented in     

Fig. 6. 
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Figure 6. Error between NWS estimated by the trained neural network and sound power levels identified in situ. 
 

In the same way the NWS obtained using the Bies and Hansen method can be seen in Tab. 6. The directivity D 
adopted to convert Lp to NWS was 2, for all the electric motors, since they were all placed in the ground with more than 
one meter away from any obstacle/barrier. 
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Table 6. Sound power levels estimated by the Bies and Hansen method 

 
CV RPM 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz NWS

7.5 3530 76.81 79.81 81.81 84.81 84.81 83.81 78.81 70.81 90.90

20 3530 84.06 87.06 89.06 92.06 92.06 91.06 86.06 78.06 98.14

40 1780 84.71 87.71 89.71 92.71 92.71 91.71 86.71 78.71 98.80

50 3550 90.86 93.86 95.86 98.86 98.86 97.86 92.86 84.86 104.94

125 3560 94.90 97.90 99.90 102.90 102.90 101.90 96.90 88.90 108.98

200 3520 96.86 99.86 101.86 104.86 104.86 103.86 98.86 90.86 110.95

300 3580 98.73 101.73 103.73 106.73 106.73 105.73 100.73 92.73 112.82  
 

The NWS values shown in Tab. 6, which errors compared with experimental values of NWS, are presented in     
Fig. 7. 
 

 

7,5; 3530 20; 3530 40; 1780 50; 3550 125; 3560 200; 3520 300; 3580

0

2

4

6

8

10

12

14

Error using the Hansen and Bies Method

Power [cv]; Rotation [rpm]

E
rr
o
r 
[%

]

 
 

Figure 7. Error between NWS estimated by the Bies and Hansen method and NWS identified in situ. 
 

4. RESULTS ANALYSIS 

 

To condense the results the methods used are plot in Fig. 8. The last group of four columns indicates the average 
error. The method of Hansen and Bies does not brought the best accuracy to estimate the sound power levels of the 
seven random-chosen electric motors, regardless of its considered better performance among well-known methods. 
 All the other methods presented average error below 2%. 
The RSM with Eq. (5) presented an average error around 1.5%, but with three equations (Eq. (6), Eq. (7) and Eq. 

(8)), showed a decreased value of the average error around 1.1%. 
The propose methodology using neural networks gave an average error around 1.2%. Although the average value 

being a little bit higher than the RSM method (with three equations) there are some promising aspects to be investigated 
in the neural network method. 
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Figure 8. Error comparison for analytic and numerical methods presented in this work 
 

5. CONCLUSION 

 

In the end, could be noticed that the neural network was a more than satisfactory approach to estimate sound power 
levels of electric motors, but, it demands a substantial data bank (the one used in this work contains about 70 different 
electric motors) to keep its accuracy and computational process which can enhance its use. 
The equations provided by the RSM also showed low deviation levels and the proposed group of equations Eq. (6), 

Eq. (7) and Eq. (8) presented the best accuracy of all methods with the minor average error even when compared with 
the famous method of Hansen and Bies (2003).  
Thus we have room for future studies of new analytical acoustic equations to evaluate the noise generated by other 

kinds of machinery. 
 

6. ACKNOWLEDGEMENTS 

 

The authors would like to thanks to: the project REGAP/FAU, to the FEMEC (UFU) and to the FAPEMIG for their 
support to the researches at Laboratory of Acoustics and Vibration (LAV). 
 

7. REFERENCES 

 

Barros Neto, B., Scarminio, I. S., Bruns, R. E., 2001, “Como Fazer Experimentos: Pesquisa e Desenvolvimento na 
Ciência e na Indústria" Ed. Unicamp, Campinas, Brazil.  pp. 251-261. 

Box, G. E. P., Draper, N. R. “Empirical model buiding and response surfaces” J. Wiley, New York, 669p.,1987. 
Bies, D. A., Hansen, C. H., 2003, “Engineering Noise Control: Theory and Practice”, Ed. London and New York. 
Duarte, M. A. V., 1985, “Estudo e Identificação das Fontes de Ruído em Motores Elétricos – TEFC”, Florianópolis, 
Brazil. 

Fausett, L., 1994, “Fundamentals of Neural Networks: Architectures, Algorithms and Applications” Ed. Prentice Hall, 
United States. 

Jalel, N.A., Mirzai, A.R.,Leigh, J.R., Nicholson, H., 1991, “Application of Neural Network in Process Control” 
Proceedings of the Second British Neural Network Society Meeting (NCM91), London, October 1991. 

Gerges, S. N. Y., 2000, “Ruído - Fundamentos e Controle” Ed. NR, Florianópolis, Brazil. 
Mateus, D.A., Duarte, J.B., Oliveira Filho, R. H., Duarte, M. A. V., 2008, “Precisão dos Métodos Analíticos na 
Predição de Níveis de Potência Sonora para Motores Elétricos” in XXII Encontro SOBRAC (XXII Brazilian 
Acoustic Society Meeting), Belo Horizonte, Brazil. 

Myers, R.H., Montgomery, D.C., 2002, “Response Surface Methodology: Process and Product Optimization Using 
Designed Experiments” Ed. John Wiley & Sons, United States of America. 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

8. RESPONSIBILITY NOTICE 

 
The authors are the only responsible for the printed material included in this paper. 


