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Abstract. In this work, approximated analytical solutions, which include short periodic terms, are presented for three 
different problems involving optimal low-thrust limited-power transfers between elliptical orbits in a Newtonian 
central gravity field. These problems are classified as: transfers between coplanar orbits, transfers between non-
coplanar coaxial orbits and transfers between non-coplanar co-parameters orbits. The optimization problem 
associated to the general space transfer problem is formulated as a Mayer problem of optimal control theory with 
Cartesian elements – position and velocity vectors – as state variables. After applying the Pontryagin Maximum 
Principle, classical orbital elements are introduced through a canonical transformation. Short periodic terms are 
eliminated from the maximum Hamiltonian function through an infinitesimal canonical transformation. The new 
Hamiltonian function, resulting from the infinitesimal canonical transformation, describes the extremal trajectories 
associated with the long duration maneuvers for simple transfers (no rendez-vous). This new Hamiltonian function can 
be simplified for the three special classes of maneuvers described above and closed-form analytical solutions can be 
obtained through Hamilton-Jacobi theory.  
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1. INTRODUCTION  
 

In this work, approximated analytical solutions, which include short periodic terms, are presented for three different 
problems involving optimal low-thrust limited-power transfers between elliptical orbits in a Newtonian central gravity 
field. These problems are classified as: transfers between coplanar orbits, transfers between non-coplanar coaxial orbits 
and transfers between non-coplanar co-parameters orbits. This analysis has been motivated by the renewed interest in 
the use of low-thrust propulsion systems in space missions in the last twenty years. Two important space missions have 
made use of low-thrust propulsion systems: NASA-JPL Deep Space One and ESA-SMART1. Low-thrust electric 
propulsion systems are characterized by high specific impulse and low-thrust capability and have their greatest benefits 
for high-energy planetary missions (Marec, 1979; Racca, 2003). Several researchers have obtained numerical and 
analytical solutions for a number of specific initial orbits and specific thrust profiles (Edelbaum, 1964, 1965; Marec and 
Vinh, 1977; Haissig et al, 1992; Kiforenko et al, 2003). 

The optimization problem associated to the general space transfer problem is formulated as a Mayer problem of 
optimal control theory with Cartesian elements – position and velocity vectors – as state variables. It is assumed that the 
thrust direction is free and the thrust magnitude is unbounded, that is, there exist no constraints on control variables 
(Marec, 1979, 1984). After applying the Pontryagin Maximum Principle and determining the maximum Hamiltonian 
function, classical orbital elements are introduced through a canonical transformation – Mathieu transformation – 
defined by the general solution of the canonical system described by the integrable kernel of the maximum Hamiltonian 
function. Hori method (Hori, 1966) – a perturbation technique based on Lie series –  is applied in solving the canonical 
system of differential equations that governs the optimal trajectories. Short periodic terms are then eliminated from the 
maximum Hamiltonian function through an infinitesimal canonical transformation described by a generating function 
obtained at first order in the thrust magnitude. The new Hamiltonian function, resulting from the infinitesimal canonical 
transformation, describes the extremal trajectories associated with the long duration maneuvers for simple transfers (no 
rendez-vous). This new Hamiltonian function can be simplified for the three special classes of maneuvers described 
above and closed-form analytical solutions can be obtained through Hamilton-Jacobi theory. The separation of variables 
technique (Lanczos, 1971) is applied to solve the Hamilton-Jacobi equation associated to the average canonical system. 
First order analytical solutions are then obtained in each case by using the generating function built through Hori 
method. 
  
2. OPTIMAL SPACE TRAJECTORIES 

 
A low-thrust limited-power propulsion system, or LP system, is characterized by low-thrust acceleration level and 

high specific impulse (Marec, 1979, 1984). The ratio between the maximum thrust acceleration and the gravity 
acceleration on the ground, 0max gγ , is between 10−4 and 10−2. For such system, the fuel consumption is described by 
the variable J defined as 
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where γ is the magnitude of the thrust acceleration vector γ , used as control variable. The consumption variable J is a 
monotonic decreasing function of the mass m of space vehicle, 
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where Pmax is the maximum power and 0m  is the initial mass. The minimization of the final value of the fuel 
consumption Jf   is equivalent to the maximization of fm .  

The general optimization problem concerned with low-thrust limited-power transfers (no rendezvous) will be 
formulated as a Mayer problem of optimal control by using Cartesian elements as state variables. Consider the motion 
of a space vehicle M  powered by a limited-power engine in a Newtonian central gravity field. At time t, the state of the 
vehicle is defined by the position vector )(tr , the velocity vector )(tv  and the consumption variable J. The control γ  is 
unconstrained, that is, the thrust direction is free and the thrust magnitude is unbounded. 

The optimization problem is formulated as follows: it is proposed to transfer the space vehicle M  from the initial 
state )0,,( 00 vr  at the initial time 00 =t  to the final state ),,( fff Jvr  at the specified final time ft , such that the final 
consumption variable fJ  is a minimum. The state equations are 
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where μ  is the gravitational parameter.  

According to the Pontryagin Maximum Principle (Pontryagin et al, 1962), the optimal thrust acceleration *γ  must 
be selected from the admissible controls such that the Hamiltonian function H reaches its maximum. The Hamiltonian 
function is formed using Eq. (2), 
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where rp , vp  and Jp  are the adjoint variables and dot denotes the dot product. Since the optimization problem is 

unconstrained, *γ  is given by 
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The optimal thrust acceleration *γ  is modulated (Marec, 1979) and the optimal trajectories are governed by the 

maximum Hamiltonian function *H , obtained from Eqns (3) and (4), 
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The consumption variable J is ignorable and Jp  is a first integral. From the transversality conditions, ( ) 1−=fJ tp ; 

thus, ( ) 1−=tpJ . Equation (5) reduces to 
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Using Eqns (6) and (7), the maximum Hamiltonian function can be written in the form *0
*

γHHH += , where 

rpp v
30

r
H vr

μ
•−•=  denotes the undisturbed Hamiltonian function and 

2

2

*
vp

H =γ  denotes the disturbing function 

concerning the optimal thrust acceleration. 
  
3. TRANSFORMATION FROM CARTESIAN ELEMENTS TO A SET OF ORBITAL ELEMENTS 
 

Consider the canonical system of differential equations governed by the undisturbed Hamiltonian function 0H ,  
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where re  is the unit vector pointing radially outward of the moving frame of reference (Fig. 1). The general solution of 
the state equations is well-known in Astrodynamics (Battin, 1987) and the general solution of the adjoint equations is 
obtained through properties of generalized canonical systems (da Silva Fernandes, 1994). Thus, 
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where se  and we  are unit vectors along circumferential and normal directions of the moving frame of reference, 
respectively (Fig. 1); a is the semi-major axis, e is the eccentricity, I  is the inclination of orbital plane, Ω is the 
longitude of the ascending node, ω  is the argument of pericenter, f  is the true anomaly, E is the eccentric anomaly, M 

is the mean anomaly, 3an μ=  is the mean motion, and ( )ar , ( ) far sin , ... etc are functions of the elliptic motion 
which can be expressed explicitly in terms of the eccentricity and the mean anomaly through Lagrange series (Battin, 
1987). The anomalies are related through the equations: 
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The unit vectors re , se  and we  of the moving frame of reference are written in the fixed frame of reference as 
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Figure 1 – Frames of reference. 
 
Equations (8) – (11) define a Mathieu transformation between the Cartesian elements ( )vr ppvr ,,,  and the orbital 

ones ( )MIea ppppppMIea ,,,,,,,,,,, ωω ΩΩ . The Hamiltonian function is invariant with respect to this canonical 
transformation, thus 

  
MnpH =0 ,               (14) 
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The new Hamiltonian function describes the optimal low-thrust limited-power trajectories in a Newtonian central 

gravity field. Note that new Hamiltonian function becomes singular for circular and/or equatorial orbits. 
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4. AVERAGED MAXIMUM HAMILTONIAN FOR OPTIMAL TRANSFERS  
 
In order to eliminate the short periodic terms from the maximum Hamiltonian function *H , Hori method (Hori, 

1966) is applied. It is assumed that 0H  is of zero order and *
γH  is of the first order in a small parameter defined by the 

magnitude of the thrust acceleration. 
Consider an infinitesimal canonical transformation, 
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The new variables are designated by the prime. According to the algorithm of Hori method, at order 0, one finds 
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general solution of which is given by 
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The subscript 0 denotes the constants of integration. 

This general solution is introduced into the equation of order 1 of the algorithm of Hori method and the mean value 
of *γ

H  must be calculated from the resulting equation. 1S  is obtained through integration of the remaining part. 1F  and 

1S  are then given by the following equations: 
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Terms factored by Mp′  have been omitted in equations above, since only transfers (no rendez-vous) are considered. 

 
5. SPECIAL CLASSES OF MANEUVERS 

 
In this section, complete first order solutions for three special classes of maneuvers –  transfers between coplanar 

orbits, transfers between non-coplanar coaxial orbits and transfers between non-coplanar co-parameters orbits – are 
presented. These maneuvers correspond to integrable canonical systems described by 10 FFF +=′ , whose solutions are 
obtained by applying Hamilton-Jacobi theory. 

 
5.1 Transfers between coplanar orbits 

 
For transfers between coplanar orbits 1F  and 1S  simplify and are given by: 
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The general solution of the canonical system described by the new average Hamiltonian function is obtained 

through two canonical transformations as described in da Silva Fernandes and Carvalho (2008). First, consider the 
Mathieu transformation, ( ) ( )ωφω ωφω pppapppea aea ′′′′′′′′→′′′′′′ ,,,,,,,,,, , defined by the following equations: 
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The Hamiltonian function F ′  is invariant with respect to this transformation. Thus, 
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Now, consider the canonical transformation, ( ) ( )EE pppCCpppa CC
W

a ,,,,,,,,,,
2121⎯→⎯′′′′′′′′ ωφωφ , defined by a 

generating function W such that the constants 1C ,  2C  and E become the new generalized coordinates. These constants 
are defined by  
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Constant E should not be confused with the eccentric anomaly E. By applying the separation of variables technique for 
solving the Hamilton-Jacobi equation (Lanczos, 1971), one gets: 
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After some calculations (details can be found in da Silva Fernandes and Carvalho, 2008), one finds the solution of 

the canonical system governed by the Hamiltonian F ′′  for a given set of initial conditions: 
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with the auxiliary constants 0k , 1k  and 2k  defined as functions of the initial value of the adjoint variables by 
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The constants C, 1C , 2C  and E can also be written as functions of the initial value of the adjoint variables: 
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The initial conditions are ( ) 00 aa ′′=′′ , 0sin)0( φ=′′e  and ( ) 00 ωω ′′=′′ , and, 0τ  is obtained from 010 coscoscos τφ k= . 

Following Hori method (Hori, 1966) and applying the initial conditions, one finds: 
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with a′ , e′ , …, ωp′  given through Eqs (20) and (22). These equations become singular for circular orbits. The 
eccentric anomaly E ′  is computed from Kepler´s equation with the mean anomaly M ′  given by 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 

( ) ∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′

′
′−′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′+
−

′
+′=′

t

t
dtp

e
eae

a
tMtM

0
2

2

3

52

30
1

2
25)( ωμ

μ . 

 
5.2 Transfers between non-coplanar coaxial orbits 

 
For transfers between non-coplanar coaxial orbits 1F  and 1S  simplify and are given by: 
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Consider the Mathieu transformation defined by Eq. (20) with Ip′  replacing ωp′ . The Hamiltonian function F ′  is 

invariant with respect to this transformation and it is given by 
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Now, consider the canonical transformation, ( ) ( )EE pppCCpppIa CC
W

Ia ,,,,,,,,,,
2121⎯→⎯′′′′′′′′ φφ , defined by a 

generating function W such that the constants 1C ,  2C  and E become the new generalized coordinates. These constants 
are defined by  
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By applying the separation of variables technique for solving the Hamilton-Jacobi equation (Lanczos, 1971), one gets: 
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After some calculations, one finds the solution of the canonical system governed by the Hamiltonian F ′′  for a 
given set of initial conditions: 
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with the auxiliary constants 0k , 1k  and 2k  defined as functions of the initial value of the adjoint variables by 
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The constants C, 1C , 2C  and E can also be written as functions of the initial value of the adjoint variables: 
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The initial conditions are ( ) 00 aa ′′=′′ , 0sin)0( φ=′′e  and ( ) 00 II ′′=′′ , and, 0τ  is obtained from 010 sinsinsin τφ k= . 

Following Hori method (Hori, 1966) and applying the initial conditions, one finds: 
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with a′ , e′ , …, Ip′  given through Eqs (20) (with Ip′  replacing ωp′ ) and (29). The eccentric anomaly E ′  is computed 

from Kepler´s equation with the mean anomaly ∫ ′+′=′
t
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dtntMtM
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5.3 Transfers between non-coplanar co-parameters orbits 

 
For transfers between non-coplanar co-parameters orbits 1F  and 1S  simplify and are given by: 
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Consider the Mathieu transformation defined by Eq. (20) with Ip′  replacing ωp′ . The Hamiltonian function F ′  is 

invariant with respect to this transformation and it is given by 
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Note that Eq. (28) reduces to Eq. (35), taking 0tan =φ . Thus, Eq. (29) simplify and the solution of the canonical 

system governed by the Hamiltonian F ′′  for a given set of initial conditions is given by: 
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with the auxiliary constant 0k  defined by 
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be written as functions of the initial value of the adjoint variables: 
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The initial conditions are ( ) 00 aa ′′=′′ , 0sin)0( φ=′′e  and ( ) 00 II ′′=′′ . 

Following Hori method (Hori, 1966) and applying the initial conditions, one finds that )(ta  and )(te  are given by 
Eqs (30) and (31), respectively, and 
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with a′ , e′ , …, Ip′  given through Eqs (20) (with Ip′  replacing ωp′ ) and (36). The eccentric anomaly E ′  is computed 
as described in Section 5.2. 
 
6. CONCLUSION 

 
Approximated analytical solutions, which include short periodic terms, have been obtained for three different 

problems involving optimal low-thrust limited-power transfers between elliptical orbits in a Newtonian central gravity 
field using an approach based on canonical transformations. The two-point boundary value problem of going from an 
initial orbit to a given final orbit can be solved through a Newton-Raphson algorithm using these solutions, as described 
in da Silva Fernandes e Carvalho (2008). Finally, it should be noted that similar results are obtained for maneuvers 
between non-coplanar orbits involving changes in the longitude of the ascending node. 
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