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Abstract. The main purpose of this work is to present a numerical analysis of optimal low-thrust limited-power trajectories for 
simple transfers (no rendezvous) between circular coplanar orbits in an inverse-square force field. Two different classes of 
algorithms in optimization of trajectories are applied.  Optimal trajectories are computed through a direct approach of the 
optimization problem based on gradient techniques, and, through an indirect approach based on the solution of the two-point 
boundary value problem obtained from the set of necessary conditions for optimality. The fuel consumption is taken as the 
performance criterion and it is calculated for various radius ratios ρ = rf / r0, where r0 is the radius of the initial circular orbit and rf 
is the radius of the final circular orbit, and for various transfers durations tf – t0 . Transfers with small and moderate amplitudes are 
studied and the numerical results are compared to the ones given by a linear theory expressed in non-singular orbital elements. 
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1. INTRODUCTION  
 

The main purpose of this work is to present a numerical analysis of optimal low-thrust limited-power trajectories 
for simple transfers (no rendezvous) between circular coplanar orbits in an inverse-square force field. This analysis has 
been motivated by the renewed interest in the use of low-thrust propulsion systems in space missions verified in the last 
two decades due to the development and the successes of two space mission powered by ionic propulsion: Deep Space 
One and SMART 1. Several researchers have obtained numerical and analytical solutions for a number of specific 
initial orbits and specific thrust profiles (Kechichian, 1997; Sukhanov and Prado, 2001; Racca, 2003). Averaging 
methods are also used in such researches (Edelbaum, 1965; Marec and Vinh, 1977; Hassig et al, 1992).  

Two idealized propulsion models have most frequently been used in the analysis of optimal space trajectories 
(Marec, 1979): the power-limited variable ejection velocity systems or, simply, LP systems, are characterized by a 
constraint concerning with the power (there exists a upper constant limit for the power); and the constant ejection 
velocity limited thrust systems or, simply, CEV systems, are characterized by a constraint concerning with the 
magnitude of the thrust acceleration which is bounded. In both cases, it is usually assumed that the thrust direction is 
unconstrained. In the analysis presented in the paper only LP systems are considered. The fuel consumption is taken as 
the performance criterion and it is calculated for various radius ratios 0rrf=ρ , where  0r  is the radius of the initial 
circular orbit 0O  and fr  is the radius of the final circular orbit fO , and for various transfers durations 0tt f − . The 
optimization problem associated to the space transfer problem is formulated as a Mayer problem of optimal control with 
Cartesian elements – components of position and velocity vectors – as state variables. Transfers with small and 
moderate amplitudes are studied and the numerical results are compared to the ones given by a linear theory expressed 
in non-singular orbital elements. 

Two different classes of algorithms are applied in determining the optimal trajectories. They are computed through 
a direct approach of the trajectory optimization problem based on gradient techniques, and, through an indirect 
approach based on the solution of the two-point boundary value problem obtained from the set of necessary conditions 
for optimality. The direct approach involves a gradient-based algorithm which combines the main positive 
characteristics of the steepest-descent method and of a second order gradient method (Bryson, 1975). The indirect 
approach involves the solution of the two-point boundary value problem through two different algorithms of the 
neighboring extremals method. These algorithms involve the solution of a linearized two-point boundary-value problem 
through state transition matrix method and through a backward-sweep method based on a generalized Riccati 
transformation. For completeness, brief descriptions of the gradient-based and the neighboring extremals algorithms are 
presented in the next sections.  
 
2. GRADIENT-BASED ALGORITHM 

 
In this section, a brief description of a simplified gradient-based algorithm used in the analysis is presented. This 

algorithm has two distinct phases: in the first one, it uses a simplified version of the steepest-descent method developed 
for a Mayer problem of optimal control with free final state and fixed terminal times, in order to get great improvements 
of the performance index in the first iterates with satisfactory accuracy. In the second phase, the algorithm switches to a 
direct method based upon the second variation theory developed for a Bolza problem with fixed terminal times and 
constrained initial and final states, in order to improve the convergence as the optimal solution is approached. This 
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second order gradient method involves the solution of a linear two-point boundary value problem through a Riccati 
transformation. 

 
2.1 STEEPEST-DESCENT METHOD 
 

 The steepest-descent method is an iterative direct procedure used for computing a m-vector of control variables 
fttttu ≤≤0),( , that minimizes a scalar performance index in an optimization problem. The most known version has 

been proposed by Bryson and Denham (1962). In this paper, a simplified version of the steepest descent method is 
presented for a Mayer problem of optimal control with free final state and fixed terminal times. Problems with 
constraints on the state variables at the final fixed time are treated by using the penalty function method. The algorithm 
of this simplified version is very simple, requiring a single numerical integration of the adjoint equations at each step. 

The Mayer problem of optimal control is formulated as: Consider the system of differential equations: 
 

niuxf
dt
dx

i
i ,...,1),,( == ,                                                   (1) 

 
where x is an n-vector of state variables, u is an m-vector of control variables. It is assumed that there exist no 
constraints on the state or control variables. The optimal control problem consists in determining the control )(* tu , that  
transfers the system (1) from the initial conditions:  

 

00 )( xtx = ,                                                              (2) 
 

to the final conditions at ft :  
 

free )( −ftx ,            (3) 
 

and minimizes the performance index: 
 

))((][ ftxguJ = .                                          (4) 
 

The functions nmn RRRf →×:(.) , and RRg n →:  are assumed to be continuously differentiable with respect to 
their arguments. Initial and final times are specified. 

The development of the algorithm is based on the classic Calculus of Variations (Gelfand and Fomin, 1963) and the 
step by step computing procedure used in the algorithm can be summarized as follows: 

1. Choose a starting nominal control )(0 tu , fttt ≤≤0 , and integrate the differential equations (1) from 0t  to ft , 
with the initial condition (2). 

2. Integrate the adjoint equations T
xH

dt
d

−=
λ  from ft  to 0t , with the “initial” condition T

xf f
gt −=)(λ . H is the 

Hamiltonian function, ),(),,( uxfuxH Tλλ = , and, T denotes the transpose vector or matrix. 

3. Compute the Lagrangian multiplier { } 2/1
1

02
1

∫ −= ft

t

T
uu dtHWH

K
ν . K and W are defined through the control 

variation constraint 2

0
)()()( KduWuft

t

T =∫ ττδττδ , where )(τW  is an arbitrary, time-varying, positive-definite 

symmetric m × m matrix of weighting functions chosen to improve convergence of the steepest-descent method, and K 
is the step size in control space. Both, )(τW  and K, must be chosen by the user of the algorithm.  

4. Compute the control “correction” T
uHWu 1

2
1 −=
ν

δ , fttt ≤≤0 . 

5. Obtain a new nominal control by using )()()( 01 tututu δ+= , and repeat the process (1) through (4) until the 

integral ∫ −ft

t

T
uu dtHWH

0

1  tends to zero or other convergence criterion is satisfied.     

Remark 1: As the nominal control )(tu  approaches the optimal control )(* tu , the integral ∫ −ft

t

T
uu dtHWH

0

1  

approaches zero and the Lagrangian multiplier ν  tends to zero; thus the control “correction” )(tuδ  can become too 
large and the process diverges. In order to avoid this drawback, the step size in control space K must be redefined. 
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2.2 SECOND ORDER GRADIENT METHOD 
 
The second order gradient method is also an iterative procedure used for computing a m-vector of control variables 

fttttu ≤≤0),( , that minimizes a scalar performance index in an optimization problem. In the paper, it is developed for 
a Bolza problem of optimal control with constrained final state and fixed terminal times. The generalized Riccati 
transformation (Longmuir and Bohn, 1969) is applied in solving the linear two-point boundary value problem 
associated to the accessory minimization problem obtained from the second variation of the augmented performance 
index of the original optimization problem.  

The Bolza problem of optimal control is formulated as: Consider the system of differential equations: 
 

niuxf
dt
dx

i
i ,...,1),,( == ,                                                   (5) 

 
where x is an n-vector of state variables, u is an m-vector of control variables. It is assumed that there exist no 
constraints on the state or control variables. The problem consists in determining the optimal control )(* tu , that  
transfers the system (5) from the initial conditions:  
 

00 )( xtx = ,                                                              (6) 
 
to the final conditions at ft :  
 

0))(( =ftxψ ,           (7) 
 
and minimizes the performance index: 
 

 ),())((][
0

∫+= ft

tf dtuxFtxguJ .         (8) 

 

The functions nmn RRRf →×:(.) , RRRF mn →×:(.) , RRg n →:  and qn RR →:ψ , nq < , are assumed to be 
twice continuously differentiable with respect to their arguments. Furthermore, it is assumed that the matrix [ ]x∂∂ψ  
has maximum rank. Initial and final times are specified. 

The second order gradient method is an extension of the steepest-descent method. The main difference is the 
inclusion of the second-order terms. The step by step computing procedure used in the second order gradient method 
can be summarized as follows: 

1. Choose a starting nominal control fttttu ≤≤0
0 ),(  and integrate the differential equations (5) from 0t  to ft , 

with the initial condition (6). 
2. Choose a starting Lagrange multiplier 0μ  ( qR∈μ ). 

3. Integrate the adjoint equations T
xH

dt
d

−=
λ  from ft  to 0t ,  with the “initial” condition 

( )T
x

T
xf gt ψμλ +−=)( . 

4. Compute the partial derivatives uH , uuH , xuH , λxH , xxH  and uH λ , of the Hamiltonian function 

),(),(),,( uxfuxFuxH Tλλ +−= . 
5. Integrate backward, from ft  to 0t , the system of differential equations for the Riccati coefficients 

  

CRBRRARAR T −++=− &  LRBAL T )( +=− &    BLLQ T=− &    EDRsRBAs T −++=− )(&   )( BsDLr T +=− &   
                            

with the “initial” conditions 
 

xxftR Φ−=)(         T
xftL ψ−=)(         0)( =ftQ         0)( =fts         ψktr f −=)(  

  

where ψμTg +=Φ , R is an n × n symmetric matrix, L  is an n × q matrix, Q is a q × q symmetric matrix, s is an n × 1 
matrix and  r is a q × 1 matrix, and, matrices A, B, C, D, E are given by 
 

uxuuux HHHHA 1−−= λλ    λλ uuuu HHHB 1−−=    xxuxuuxu HHHHC −= −1    uuuu HHHD 1−−= λ    uuuxu HHHE 1−= .  
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6. Compute )()( 0
1

0 trtQ −−=δμ .      
7. Integrate the linear perturbation equation DBsBLxBRAx ++++= δμδδ )(& . 
8. Compute  )()()()()( tstLtxtRt ++= δμδδλ . 

9. Compute )]()([)( 1* tHtxHHHtu uux
T

uuu δλδδ λ++−= − .      

10. Compute the new control ,),()()( 0
01

fttttututu ≤≤+= δ  and the Lagrange multiplier δμμμ += 01 . 
11. Test the convergence. Repeat the process until it converges. 

 
Remark 2: The algorithm of the second order gradient method diverges if the Legendre condition 0<uuH , 

computed for the nominal solution over the whole time interval  fttt ≤≤0 , is not satisfied. By adding a term 
 

∫= ft

t

T udtWuu
0

2
2

2
1

2
1 δδδ , 

 
the Legendre condition can be satisfied if the m × m matrix W2 is chosen large enough. Thus, uuH  must be replaced by 

2WH uu +  in the algorithm described above. 
 

3. NEIGHBORING EXTREMALS ALGORITHMS 
 
Consider the Bolza problem described in the preceding section, Eqns (5) – (8). The following two-point boundary 

value problem is obtained by applying the Pontryagin Maximum Principle (Pontryagin et al, 1962), 
  

TH
dt
dx

λ=         T
xH

dt
d

−=
λ         0=uH         00 )( xtx =         0)( =++

ff x
T

xf
T gt ψμλ         ( ) 0)( =ftxψ . (9) 

 
All quantities in these equations are evaluated on the optimal solution.  
       The solution of the boundary value problem defined by (9) consists in determining the initial values of the adjoint 
variables )( 0tλ  and the Lagrange multipliers μ. The neighboring extremals method basically consists in iteratively 
determining these values and is based on two different procedures for solving the associated linearized two-point 
boundary value problem obtained through the linearization of Eq. (9) about an extremal solution (Breakwell et al, 
1963): the state transition matrix method and backward-sweep method using a generalized Riccati transformation 
(Bryson, 1975; Longmuir and Bohn, 1969). The step by step computing procedure used in the neighboring extremals 
algorithm with the state transition matrix method, can be summarized as follows: 

 
1. Guess the starting approximations for )( 0tλ  and μ ; that is, )( 0

0 tλ  and 0μ . 
2. Integrate forward, from 0t  to ft , the state and adjoint equations in Eq. (9), with the initial conditions 

00 )( xtx =  and )()( 0
0

0 tt λλ = . The control is obtained solving 0=uH . 
3. Integrate forward, from 0t  to ft , the state transition matrix differential equation 
 

  Φ⎥
⎦

⎤
⎢
⎣

⎡
−

=
Φ

TAC
BA

dt
d ,  

  

with the initial condition It =Φ )( 0 , where uxuuux HHHHA 1−−= λλ , λλ uuuu HHHB 1−−=  and xxuxuuxu HHHHC −= −1 . This 
step is made simultaneously with step 2. 

4. Compute the matrices )(12 fx tT
f
Φ=ψ , T

x f
V ψ=  and ( ) )()( 1222 fxx

TT
xxf tgtU

ffff
Φ++Φ= ψμ . 

5. Solve the linear algebraic system: 
 

( )f
T
x

T
x ff

gVU λμψδμδλ ++−=+0  ψδλ −=0T ,       
   

and obtain the variations 0δλ and δμ . 
6. Test the convergence. If it will not obtained, update the unknowns )( 0tλ  and μ ; that is, compute the new 

values 00
1

0
1 )()( δλλλ += tt  and δμμμ += 01 . 
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7. Go back to step 2 and repeat the procedure until convergence is obtained.  
 
Remark 3: Only differential equations for the matrices 12Φ  and 22Φ  need to be integrate in step 3. 

 
The step by step computing procedure used in the neighboring extremals algorithm with the backward-sweep 

method using a generalized Riccati transformation, can be summarized as follows: 
 

1. Guess the starting approximation for )( 0tλ ; that is, )( 0
0 tλ . 

2. Compute the control ),( λxuu =  from 0=uH . 
3. Integrate forward, from 0t  to ft , the state and adjoint equations in Eq. (9), with the initial conditions 

00 )( xtx =  and )()( 0
0

0 tt λλ =  in order to obtain )( ftx  and )( ftλ . 

4. Compute μ  through the equation ( ) ( )T
xfx

T
xx gt +−=

−
)(

1
λψψψμ . 

5. Integrate backward, from ft  to 0t , the system of differential equations for the Riccati coefficients 
 

CRBRRARAR T −++=− &        LRBAL T )( +=− &       BLLQ T=− &      
     
with the boundary conditions 
 

 )()( xx
T

xxf gtR ψμ+−=        T
xftL ψ−=)(        0)( =ftQ      

     
and the state and adjoint equations in Eq. (9), with boundary conditions )( ftx  and )( ftλ . 

6. Compute the variationδμ  from ψδμ ktQ 1
0 )( −−= . 

7. Compute )( 0tδλ  from δμδλ )()( 00 tLt = . 
8. Test the convergence. If it is not obtained, update the unknown )( 0tλ ; that is, compute the new value 

)()()( 00
0

0
1 ttt δλλλ += . 

9. Go back to step 2 and repeat the procedure until convergence is obtained.  
 
Remark 4: In order to assure the convergence of the algorithm described above, the procedure presented in Section 

2.2 for the second order gradient method is applied. If the Legendre condition 0<uuH , computed for the nominal 
solution over the whole time interval  fttt ≤≤0 , is not satisfied we can take 2WH uu +  in the place of uuH . 

Note that the neighboring extremals algorithms use different approaches to compute the Lagrangian multiplier μ. 
  

4. OPTIMAL LOW-THRUST LIMITED POWER TRAJECTORIES 
 

The algorithms described in the preceding section are applied in a numerical analysis of optimal low-thrust limited 
power trajectories for simple transfers (no rendezvous) between circular coplanar orbits in an inverse-square force field. 
The fuel consumption is taken as the performance criterion and it is calculated for various radius ratios 0rrf=ρ , 
where 0r  is the radius of the initial circular orbit 0O  and fr  is the radius of the final circular orbit fO , and for various 
transfers durations 0tt f − . Transfers with small and moderate amplitudes are studied and the numerical results are 
compared to the ones given by a linear theory expressed in non-singular orbital elements. 

 
4.1 FORMULATION OF THE OPTIMIZATION PROBLEM  

 
LP system is characterized by low-thrust acceleration level and a high specific impulse (Marec, 1979). The ratio 

between the maximum thrust acceleration and the gravity acceleration on the ground is between 10−4 and 10−2. For LP 
system, the fuel consumption is described by the variable J , 

 

∫= ft

t
dtJ

0

2

2
1 γ            (10) 

 
where γ is the magnitude of the thrust acceleration vector γ, used as control variable. The consumption variable J is a 
monotonic decreasing function of the mass m of the space vehicle, ( )0max 11 mmPJ −= , where Pmax is the maximum 
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power and 0m  is the initial mass. The minimization of the final value fJ  is equivalent to the maximization of fm  or 
the minimization of the fuel consumption. 

The optimization problem for simple transfers (no rendezvous) between coplanar orbits is formulated as: At time t, 
the state of a space vehicle M is defined by the radial distance r from the center of attraction, the radial and 
circumferential components of the velocity, u and v, and the fuel consumption J.  In the two-dimensional formulation, 
the state equations are given by 

 

R
rr

v
dt
du

+−= 2

2 μ   S
r

uv
dt
dv

+−=   u
dt
dr

=   ( )22

2
1 SR

dt
dJ

+= ,  (11) 

 
where μ is the gravitational parameter (it should not be confused with the Lagrangian multiplier in Sections 2 and 3), R 
and S are the radial and circumferential components of the thrust acceleration vector, respectively. The optimization 
problem is stated as: it is proposed to transfer a space vehicle M from the initial state at the time 00 =t , 
  

0)0( =u   1)0( =v    1)0( =r    0)0( =J    (12) 
 

to the final state at the prescribed final time ft : 
 

0)( =ftu   
f

f r
tv μ

=)(   ff rtr =)( ,      (13) 

 
such that Jf is a minimum; that is, the performance index is 

 
)( ftJIP = .            (14) 

 
For LP system, it is assumed that there are no constraints on the thrust acceleration vector (Marec, 1979). In the 

formulation described above, the variables are taken in canonical units. 
 

4.2 LINEAR THEORY 
 
A brief description of a first order analytical solution for the problem of optimal simple transfer (no rendezvous) 

between close quasi-circular coplanar orbits in an inverse-square force field is presented in this section. This 
approximate solution is expressed in non-singular orbital elements (Marec, 1979) and it is given by 

 

0λAx =Δ ,             (15)                         
    
where Δx = [Δα  Δh  Δk ]T denotes the imposed changes on non-singular orbital elements (state variables): aa /=α , h 
= ecosω,  k = esinω, where a is the semi-major axis, e is the eccentricity and ω is the argument of the pericenter; λ0 is 
the 3 × 1 vector of initial value of the adjoint variables, and, A is a 3 × 3 symmetric matrix. The overbar denotes the 
reference orbit O  about which the linearization is performed. In this first order solution, the adjoint variables 
associated to the non-singular elements are constant. The matrix A is given by: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

kkkhk

hkhhh

kh

aaa
aaa
aaa

A

α

α

αααα

,           (16)                         

   

with: lΔ= 3

5

4
μαα
aa   ( )03

5

sinsin4 ll −== fhh
aaa
μαα    ( )03

5

coscos4 ll −−== fkk
aaa
μαα  

   

( )⎥⎦
⎤

⎢⎣
⎡ −+Δ= 03

5

2sin2sin
4
3

2
5

lll fhh
aa
μ

            ( )03

5

2cos2cos
4
3

ll −−== fkhhk
aaa
μ

                                 

 

( )⎥⎦
⎤

⎢⎣
⎡ −−Δ= 03

5

2sin2sin
4
3

2
5

lll fkk
aa
μ

,         (17)                         
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where ( ) llll Δ+=−+= 000 ttn ff  and 3an μ=  is the mean motion. 

The optimal thrust acceleration ∗γ  and the variation of the consumption variable JΔ  during the maneuver are 
expressed by: 

 

( ) ( ){ }skhrkhan
eeγ llll sincos2cossin1 λλλλλ α +++−=∗ , 

      

{ }222 2 22
2
1

kkkkhhkhhhkkhh aaaaaaJ λλλλλλλλλ ααααααα +++++=Δ ,                             

 
where aaa, aαh,…, akk  are given by Eqns (17), and, λα , λh , and λk are obtained from the solution of the linear algebraic 
system defined by Eq. (16); er and  es are unit vectors extending along radial and circumferential directions in a moving 
reference frame, respectively. 

The relationships between the Cartesian elements and the nonsingular orbit elements, valid for orbits with very 
small eccentricities, are given by 

 

( )ll cossin khnau −=   ( )ll sincos1 khnav ++=   
ll sincos1 kh

ar
++

= .     (18) 

 
For transfers between circular orbits, only αΔ  is imposed. If it is assumed that the initial and final positions of the 

vehicle in orbit are symmetric with respect to x-axis of the inertial reference system, that is, 20 lll Δ=−=f , the 
solution of the system (15) is given by: 

 

( )
( )⎭⎬

⎫

⎩
⎨
⎧

Δ−ΔΔ+Δ
Δ+ΔΔ

=
2sin64sin610

sin35
2
1

225

3

llll

llαμλ α a
   ( )⎭⎬

⎫

⎩
⎨
⎧

Δ−ΔΔ+Δ
ΔΔ

−=
2sin64sin610

2sin8
225

3

llll

lαμλ
ah    0=kλ . 

 
We note that the linear theory is applicable only for orbits which are not separated by large radial distance. The 

reference orbit has been defined with a semi-major axis given by ( ) 20 faaa += , in order to improve the accuracy in 
the calculations.  

 
5. RESULTS  

 
The results of the numerical analysis are presented for various radius ratios 0/ rrf=ρ  and for various time 

durations 0tt f −  (in canonical units). Small amplitude transfers, =ρ  0.727; 0.800; 0.900; 0.950; 1.050; 1.100; 1.200; 
1.523, with time durations  0.20 =− tt f ; 3.0; 4.0; 5.0; 20.0; 30.0; 40.0 and 50.0, and moderate amplitude transfers, 

=ρ  2.500; 3.750, 5.000 and 6.250, with time durations 0.200 =− tt f ; 30.0; 40.0; and 50.0,  are considered. We note 
that the Earth-Mars transfers corresponds to 523.1=ρ  and the Earth-Venus transfers corresponds to 727.0=ρ . 

 For the gradient-based algorithm, the set of parameters defined by the user and the first approximation of the 
control law have been chosen to get a good performance of the algorithm to each maneuver. The terminal constraints 
have been obtained with an error lesser than 1.0 × 10−7, that is, ( ) 7100.1)( −×≤ftxψ , and the performance index has 

been calculated with a error 121 100.5 −+ ×<−= nn JJe  for small amplitude transfers and 101 100.1 −+ ×<−= nn JJe  

for moderate amplitude transfers, where n denotes the iteration. For the first neighboring extremals algorithm, based on 
the state transition matrix, the criterion adopted for convergence is a tolerance of 5.0×10−10 in the computation of 
corrections (variations) of the performance index (consumption variable). In view of this convergence criterion, the 
terminal constraints are obtained with an error less than 5.0 × 10−6, that means ( ) 6100.5)( −×≤ftxψ . For the second 
neighboring extremals algorithm, based on the generalized Riccati transformation, the criterion adopted for convergence 
is the same described for the gradient-based algorithm with ( ) 7100.1)( −×≤ftxψ . 

Tables 1 – 4 show the consumption variable J for small amplitude transfers, computed through the numerical 
algorithms and the linear theory, and, the relative difference between the numerical and analytical results, with 

( ) 100% / 111 ×−= neighlinearneighrel JJJd , ( ) 100% / 112 ×−= neighgradneighrel JJJd , ( ) 100% / 1213 ×−= neighneighneighrel JJJd . 
Table 5 show similar results for moderate amplitude transfers, taking only the ones computed through the 

numerical algorithms; since the linear theory is not applicable to this case. The results given by the neighboring 
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extremals algorithm based on the state transition matrix (denoted by number 1) have been chosen as the exact solution 
for each maneuver, in view of the accuracy obtained in fulfillment of the terminal constraints. 

For small duration transfers, Tables 1 and 2 show that the maximum absolute relative difference 1reld  occur for the 
most of transfers with 50 =− tt f , and it is about 2 % for 1>ρ  and 5.5 % for 1<ρ . The exception, 5236,1=ρ  and 

30 =− tt f , can be related to the choice of the parameters of the gradient-based algorithm. For moderate duration 
transfers, Table 3 and 4 show that the maximum absolute relative difference 1reld  is about 7 % for 1>ρ  and 3.5 % for 

1<ρ . In both cases, the maximum absolute relative differences 1reld  occur for transfers with large radial excursion.The 
results presented in Tables 1 – 4 show that the linear theory gives a good approximation for the solution of optimal 
transfer problem between close circular coplanar orbits: for the small amplitude transfers with 100.01 ≤−ρ , 

%5.0<reld  for the most of the maneuvers, and, for the shorter duration transfers with 20 =− tt f  and 30 =− tt f , 
%0.2<reld . In general,  %0.1%0.7 >> reld  for transfers with moderate amplitude, 727.0=ρ  and 5236,1=ρ , 

corresponding to Earth-Venus and Earth-Mars transfers respectively. The results presented in the paper are better than 
the ones presented in da Silva Fernandes e Golfetto, 2005, in which only small duration transfers are analysed through  
the gradient-based algorithm. The difference between the results is due to the greater computational effort (number of 
iterations, accuracy of the terminal constraints) required to obtain the new results. 

 
Table 1 – Consumption variable J (ρ > 1) for small duration transfers 

ρ       tf-t0 Janal Jgrad  JNeigh1 JNeigh2 drel1 drel2 drel3 

 
1.0500 

2.0 
3.0 
4.0 
5.0 

1.4463 × 10-3 
3.4169 × 10-4 
1.2533 × 10-4 
6.7541 × 10-5 

1.4463 × 10-3 
3.4166 × 10-4 
1.2538 × 10-4 
6.7611 × 10-5 

1.4459 × 10-3 
3.4164 × 10-4 
1.2537 × 10-4 
6.7598 × 10-5 

1.4459 × 10-3 
3.4175 × 10-4 
1.2563 × 10-4 
6.7835 × 10-5 

0.03 
0.02 
0.03 
0.08 

0.03 
0.01 
0.00 
0.02 

0.00 
0.03 
0.20 
0.35 

 
1.1000 

2.0 
3.0 
4.0 
5.0 

5.8778 × 10-3 
1.3977 × 10-3 
5.0619 × 10-4 
2.6374 × 10-4 

5.8741 × 10-3 
1.3970 × 10-3 
5.0666 × 10-4 
2.6453 × 10-4 

5.8716 × 10-3 
1.3969 × 10-3 
5.0664 × 10-4 
2.6451 × 10-4 

5.8716 × 10-3 
1.3971 × 10-3 
5.0720 × 10-4 
2.6511 × 10-4 

0.11 
0.06 
0.09 
0.29 

0.04 
0.00 
0.00 
0.01 

0.00 
0.01 
0.11 
0.23 

 
 

1.2000 

2.0 
3.0 
4.0 
5.0 

2.4187 × 10-2 
5.8370 × 10-3 
2.0813 × 10-3 
1.0260 × 10-3 

2.4097 × 10-2 
5.8200 × 10-3 
2.0845 × 10-3 
1.0346 × 10-3 

2.4097 × 10-2 
5.8199 × 10-3 
2.0844 × 10-3 
1.0345 × 10-3 

2.4097 × 10-2 
5.8203 × 10-3 
2.0855 × 10-3 
1.0345 × 10-3 

0.37 
0.29 
0.15 
0.83 

0.00 
0.00 
0.00 
0.00 

0.00 
0.01 
0.05 
0.00 

 
1.5236 

2.0 
3.0 
4.0 
5.0 

1.7743 × 10-1 
4.4947 × 10-2 
1.6051 × 10-2 
7.2498 × 10-3 

1.7434 × 10-1 
4.4067 × 10-2 
1.5889 × 10-2 
7.3352 × 10-3 

1.7434 × 10-1 
4.4066 × 10-2 
1.5889 × 10-2 
7.3351 × 10-3 

1.7433 × 10-1 
4.4068 × 10-2 
1.5893 × 10-2 
7.3356 × 10-3 

1.77 
1.99 
1.02 
1.17 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.03 
0.01 

 
Table 2 – Consumption variable J (ρ < 1) for small duration transfers 

ρ tf-t0 Jlinear Jgrad  JNeigh1 JNeigh2 dre1l drel2 drel3 

 
0.7270 

2.0 
3.0 
4.0 
5.0 

3.7654 × 10-2 
8.9269 × 10-3 
4.0482 × 10-3 
2.8941 × 10-3 

3.7299 × 10-2 
9.0261 × 10-3 
4.2133 × 10-3 
3.0573 × 10-3 

3.7298 × 10-2 
9.0259 × 10-3 
4.2131 × 10-3 
3.0572 × 10-3 

3.7298 × 10-2 
9.0255 × 10-3 
4.2154 × 10-3 
3.0646 × 10-3 

0.95 
1.10 
3.91 
5.33 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.05 
0.24 

 
0.8000 

2.0 
3.0 
4.0 
5.0 

2.0951 × 10-2 
4.9040 × 10-3 
2.0703 × 10-3 
1.3838 × 10-3 

2.0842 × 10-2 
4.9173 × 10-3 
2.1047 × 10-3 
1.4198 × 10-3 

2.0842 × 10-2 
4.9172 × 10-3 
2.1046 × 10-3 
1.4197 × 10-3 

2.0842 × 10-2 
4.9168 × 10-3 
2.1049 × 10-3 
1.4227 × 10-3 

0.52 
0.27 
1.63 
2.53 

0.00 
0.00 
0.00 
0.00 

0.00 
0.01 
0.01 
0.21 

 
0.9000 

2.0 
3.0 
4.0 
5.0 

5.4740 × 10-3 
1.2771 × 10-3 
5.0063 × 10-4 
3.0496 × 10-4 

5.4672 × 10-3 
1.2772 × 10-3 
5.0198 × 10-4 
3.0653 × 10-4 

5.4671 × 10-3 
1.2771 × 10-3 
5.0198 × 10-4 
3.0652 × 10-4 

5.4671 × 10-3 
1.2769 × 10-3 
5.0174 × 10-4 
3.0685 × 10-4 

0.13 
0.00 
0.27 
0.51 

0.00 
0.01 
0.00 
0.00 

0.00 
0.02 
0.05 
0.11 

 
0.9500 

2.0 
3.0 
4.0 
5.0 

1.3958 × 10-3 
3.2649 × 10-4 
1.2451 × 10-4 
7.2585 × 10-5 

1.3955 × 10-3 
3.2649 × 10-4 
1.2459 × 10-4 
7.2671 × 10-5 

1.3955 × 10-3 
3.2647 × 10-4 
1.2458 × 10-4 
7.2667 × 10-5 

1.3955 × 10-3 
3.2636 × 10-4 
1.2440 × 10-4 
7.2647 × 10-5 

0.02 
0.01 
0.06 
0.11 

0.00 
0.01 
0.00 
0.01 

0.00 
0.03 
0.14 
0.03 

 
 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

Table 3 – Consumption variable J (ρ > 1) for moderate duration transfers 
ρ       tf-t0 Jlinear Jgrad  JNeigh1 JNeigh2 dre1l drel2 drel3 

 
1.0500 

20.0 
30.0 
40.0 
50.0 

1.4520 × 10-5 
9.7411 × 10-6 
7.2599 × 10-6 
5.8158 × 10-6 

1.4536 × 10-5 
9.7482 × 10-6 
7.2659 × 10-6 
5.8199 × 10-6 

1.4533 × 10-5 
9.7480 × 10-6 
7.2660 × 10-6 
5.8200 × 10-6 

1.4531 × 10-5 
9.7460 × 10-6 
7.2636 × 10-6 
5.8182 × 10-6 

0.09 
0.07 
0.08 
0.07 

0.02 
0.00 
0.00 
0.00 

0.01 
0.02 
0.03 
0.03 

 
1.1000 

20.0 
30.0 
40.0 
50.0 

5.4007 × 10-5 
3.6278 × 10-5 
2.7003 × 10-5 
2.1653 × 10-5 

5.4168 × 10-5 
3.6390 × 10-5 
2.7083 × 10-5 
2.1719 × 10-5 

5.4167 × 10-5 
3.6389 × 10-5 
2.7078 × 10-5 
2.1718 × 10-5 

5.4165 × 10-5 
3.6387 × 10-5 
2.7077 × 10-5 
2.1716 × 10-5 

0.30 
0.30 
0.27 
0.30 

0.00 
0.00 
0.02 
0.00 

0.00 
0.01 
0.00 
0.01 

 
 

1.2000 

20.0 
30.0 
40.0 
50.0 

1.8980 × 10-4 
1.2543 × 10-4 
9.4416 × 10-5 
7.5157 × 10-5 

1.9172 × 10-4 
1.2695 × 10-4 
9.5396 × 10-5 
7.5976 × 10-5 

1.9154 × 10-4 
1.2693 × 10-4 
9.5391 × 10-5 
7.5928 × 10-5 

1.9154 × 10-4 
1.2693 × 10-4 
9.5390 × 10-5 
7.5927 × 10-5 

0.91 
1.18 
1.02 
1.02 

0.09 
0.02 
0.01 
0.06 

0.00 
0.00 
0.00 
0.00 

 
1.5236 

20.0 
30.0 
40.0 
50.0 

8.6591 × 10-4 
5.7537 × 10-4 
4.2991 × 10-4 
3.4273 × 10-4 

9.3232 × 10-4 
6.1074 × 10-4 
4.5311 × 10-4 
3.6096 × 10-4 

9.3151 × 10-4 
6.1071 × 10-4 
4.5296 × 10-4 
3.6093 × 10-4 

9.3158 × 10-4 
6.1073 × 10-4 
4.5299 × 10-4 
3.6095 × 10-4 

7.02 
5.79 
5.09 
5.04 

0.09 
0.00 
0.03 
0.01 

0.01 
0.00 
0.01 
0.01 

 
Table 4 – Consumption variable J (ρ < 1) for moderate duration transfers 

ρ tf-t0 Jlinear Jgrad  JNeigh1 JNeigh2 dre1l drel2 drel3 

 
0.7270 

20.0 
30.0 
40.0 
50.0 

7.2355 × 10-4 
4.8236 × 10-4 
3.6177 × 10-4 
2.8942 × 10-4 

7.4857 × 10-4 
4.9863 × 10-4 
3.7385 × 10-4 
2.9903 × 10-4 

7.4856 × 10-4 
4.9862 × 10-4 
3.7384 × 10-4 
2.9901 × 10-4 

7.4856 × 10-4 
4.9862 × 10-4 
3.7383 × 10-4 
2.9897 × 10-4 

3.34 
3.26 
3.22 
3.20 

0.00 
0.00 
0.00 
0.01 

0.00 
0.00 
0.00 
0.01 

 
0.8000 

20.0 
30.0 
40.0 
50.0 

3.4529 × 10-4 
2.2973 × 10-4 
1.7196 × 10-4 
1.3736 × 10-4 

3.5015 × 10-4 
2.3313 × 10-4 
1.7467 × 10-4 
1.3978 × 10-4 

3.5011 × 10-4 
2.3316 × 10-4 
1.7465 × 10-4 
1.3959 × 10-4 

3.5010 × 10-4 
2.3311 × 10-4 
1.7465 × 10-4 
1.3959 × 10-4 

1.37 
1.47 
1.54 
1.59 

0.01 
0.01 
0.01 
0.13 

0.00 
0.02 
0.00 
0.00 

 
0.9000 

20.0 
30.0 
40.0 
50.0 

7.3862 × 10-5 
4.8663 × 10-5 
3.6467 × 10-5 
2.9218 × 10-5 

7.4146 × 10-5 
4.8851 × 10-5 
3.6588 × 10-5 
2.9317 × 10-5 

7.4146 × 10-5 
4.8852 × 10-5 
3.6589 × 10-5 
2.9316 × 10-5 

7.4144 × 10-5 
4.8850 × 10-5 
3.6587 × 10-5 
2.9314 × 10-5 

0.38 
0.39 
0.33 
0.33 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.01 

 
0.9500 

20.0 
30.0 
40.0 
50.0 

1.7023 × 10-5 
1.1240 × 10-5 
8.4569 × 10-6 
6.7519 × 10-6 

1.7042 × 10-5 
1.1251 × 10-5 
8.4642 × 10-6 
6.7581 × 10-6 

1.7040 × 10-5 
1.1249 × 10-5 
8.4640 × 10-6 
6.7580 × 10-6 

1.7038 × 10-5 
1.1247 × 10-5 
8.4620 × 10-6 
6.7561 × 10-6 

0.10 
0.08 
0.08 
0.09 

0.01 
0.02 
0.00 
0.00 

0.01 
0.02 
0.02 
0.03 

 
Table 5 – Consumption variable J (ρ > 1) for large transfers 

ρ       tf-t0 Jgrad  JNeigh1 JNeigh2 drel1 drel2 

 
2.500   

20.0 
30.0 
40.0 
50.0 

3.7918 × 10-3 
2.4069 × 10-3 
1.7684 × 10-3 
1.3892 × 10-3 

3.7736 × 10-3 
2.3900 × 10-3 
1.7541 × 10-3 
1.3859 × 10-3 

3.7733 × 10-3 
2.3900 × 10-3 
1.7541 × 10-3 
1.3859 × 10-3 

0.48 
0.71 
0.81 
0.24 

0.49 
0.71 
0.81 
0.24 

 
3.750   

20.0 
30.0 
40.0 
50.0 

8.1990 × 10-3 
4.5458 × 10-3 
3.2329 × 10-3 
2.5307 × 10-3 

8.1729 × 10-3 
4.5421 × 10-3 
3.2236 × 10-3 
2.5257 × 10-3 

8.1729 × 10-3 
4.5420 × 10-3 
3.2235 × 10-3 
2.5256 × 10-3 

0.32 
0.08 
0.29 
0.20 

0.32 
0.08 
0.29 
0.20 

 
5.000 

20.0 
30.0 
40.0 
50.0 

1.2883 × 10-2 
7.0584 × 10-3 
4.8792 × 10-3 
3.5496 × 10-3 

1.2839 × 10-2 
7.0466 × 10-3 
4.8279 × 10-3 
3.5462 × 10-3 

1.2837 × 10-2 
7.0442 × 10-3 
4.8440 × 10-3 
3.5469 × 10-3 

0.34 
0.17 
1.06 
0.10 

0.35 
0.20 
0.72 
0.08 

 
6.250 

20.0 
30.0 
40.0 
50.0 

1.9213 × 10-2 
1.0358 × 10-2 
6.3041 × 10-3 
4.6526 × 10-3 

1.9210 × 10-2 
1.0336 × 10-2 
6.2781 × 10-3 
4.6443 × 10-3 

1.9205 × 10-2 
1.0306 × 10-2 
6.2839 × 10-3 
4.6482 × 10-3 

0.02 
0.21 
0.41 
0.18 

0.04 
0.50 
0.32 
0.09 
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6. CONCLUSIONS 

 
A numerical analysis of optimal low-thrust limited-power transfers between circular coplanar orbits in an inverse-

square force field has been performed through a gradient-based algorithm and two neighboring extremals algorithms. 
The results have compared to the ones obtained through a linear theory expressed in non-singular orbital elements. For 
small amplitude transfers; that is, transfers between close orbits, the linear theory gives a good approximation for the 
optimal trajectories. For moderate amplitude transfers, the numerical algorithms give very similar results. 
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