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Abstract: The aim of the present work is to calculate the uncertainty associated with volumetric error components in a 
Moving Bridge type Coordinate Measuring Machine (CMM). The methodology developed consisted in equationing the 
components of the volumetric error using homogeneous transformations techniques; application of the law of 
uncertainty propagation, according to the recommendation of ISO GUM, 1993, in the obtained synthesization 
equations and measurement of the geometric errors and Abbè offsets by means of the direct calibration method. 
Instruments such as the laser interferometer and the mechanical square standard were used. After measurement, 
mathematical models regarding each geometric error and Abbè offset were written and the law of uncertainty 
propagation was applied, again, for each of the obtained equations for determining the uncertainty. The mathematical 
models considered all the variables of influence and correction factors. As conclusions it may be stated that at any 
point in the work volume of the CMM, the components of volumetric error of X, Y and Z axes present uncertainty 
values close to 2,7, 4,0 and 2,0 µm, respectively. 
 
Key words: Standard uncertainty; geometric error; Abbé offset. 

 
1. INTRODUCTION 
 

Every result of measurement is only an estimate of true value. This is due to the influence of several factors that 
interfere in the measurement process, such as variations associated to the measurement instrument, to the operator, to 
the environment and other conditions. The difference between conventional true value and indicated value in a 
measurement is denominated measurement errors. In many measurement processes the conventional true value is 
unknown; therefore, the measurement error is calculated by the difference between the result of measurement and the 
indicated value through calibration. 

According to its behavior, the measurement error can be classified as systematic or random. When none of the 
causes that provoke the random errors is predominant, one can say that its occurrence and behavior coincide with the 
normal probability curve or Gaussian distribution curve. Therefore, it can be assumed that the random errors follow the 
law of normal distribution. However, not all of the sources of errors in a measurement process present normal 
probability distributions. There are, for example, rectangular, trapezoidal and triangular distributions. 

Systematic effects can be corrected without great difficulties; nevertheless, after the correction, a doubt will still 
remain about how well corrected the value obtained in a measurement is. By adding this doubt to those of systematic 
and random effects, the conventionally so called measurement uncertainty (ISO GUM, 1993) can be obtained. 

The word uncertainty means doubt, and thus the doubt about the validity of the result of a measurement is called 
measurement uncertainty. The uncertainty of the measurement result reflects the lack of exact knowledge of the 
measured value. At the present time, it is not enough to express the numerical value of the measured errors, arising thus, 
the need to indicate quantitatively the quality of the result of a measurement. In other words, adding to the result of the 
measurement a statement about the reliability associated to it, that is, the measurement uncertainty. 

According to the (ISO GUM, 1993), the measurement uncertainty can be defined as being the parameter, associated 
to the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the 
quantity. Such parameter may be the standard deviation or multiple of it, or the half-width of an interval corresponding 
to a given level of reliability. 

 
2. MEASUREMENT UNCERTAINTY IN CMMs 
 

The evaluation of measuring instruments, such as Coordinate Measuring Machines through measurement 
uncertainty, is a rather difficult task due to the large number of factors that can contribute to the uncertainty, as well as 
the machine versatility, which allows measuring several metrological features of a workpiece (Balsamo, 1999). 
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The Coordinate Measuring Machines are fast, accurate, flexible and reliable quality control means. Nevertheless, the 
performance of these machines has been limited by several factors, which act together, combining complex ways 
throughout the working volume of the machine, generating the called volumetric error. The largest contribution to the 
volumetric error is constituted by geometric errors (Bosch, 1995). These errors have their origin in the geometric 
deviations of the different components of the Measuring Machine, and they appear during the movement of the 
coordinate axes, due to the interaction among the components. 

In order to study geometric errors, the CMM moving elements are assumed as rigid bodies. The position of a rigid 
body in space can be defined by six degrees of freedom. Since each degree of freedom can be associated to an error, six 
geometric errors are associated to each preferential axis of the CMM, specifically, one position error, two straightness 
errors and three rotation errors (pitch, yaw and roll), summing up a total number of 18 geometric errors. Three more 
errors must be added due to the impossibility of arranging three perfectly orthogonal axes, namely orthogonal errors, 
which depend on the relation between components. Therefore, a full amount of 21 errors can be determined from three 
Cartesian axes CMMs. Complex combinations of geometric errors in the work volume of the CMM generate the 
components of the volumetric error. 

It is known that inspections using CMMs are carried out from coordinate points (Xi, Yi and Zi) on a given surface. 
The coordinates of the points, which are measured by means of an optical-electronic system, are used by the CMM 
software to identify the geometric features of the workpiece. The real coordinates of the points in the CMM work 
volume can be determined if the measured coordinates and their respective errors are known, Eq. (1). 

 

EzZZ

EyYY

ExXX

MachinealRe

MachinealRe

MachinealRe

−=
−=

−=
                                                                                                                                                (1) 

 
where: XMachine, YMachine and ZMachine are the coordinates of the measured points; XReal, YReal and ZReal are the ideal or true 
coordinates and Ex, Ey and Ez are the error components associated to each coordinate. 

The uncertainty associated to the real coordinates (XReal, YReal and ZReal) can be assumed as being equal to zero and 
the uncertainty associated to coordinates X, Y and Z of the measured points can be considered equal to the uncertainty 
obtained for the components of the volumetric error, Ex, Ey and Ez, Eq. (2). 
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Therefore, the uncertainty of three-dimensional measurement can be determined from the uncertainties associated to 

the spatial points that define the sought dimensional feature. Such uncertainty is referred to as three-dimensional or 
volumetric and is related to a region in space whose shape and size are defined by the combination of the various 
existing uncertainty sources, Fig. 1. 
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Figure 1. Representation of three-dimensional uncertainty. 
 
This work presents a methodology to estimate the measurement uncertainty associated to the components of the 

volumetric error of a moving bridge CMM, aiming, in the future, at the determination of the measurement uncertainty 
associated to the measurements performed with these machines. All experimental runs for the acquisition of error data 
were conducted on a Moving Bridge CMM at the Metrology Laboratory, University of São Paulo, Brazil (Fig. 2). 



 

The machine consists of a cast aluminium structure with the shape of a bridge that moves with relation to a granite 
flat surface. The workpieces are attached to the flat surface by means of screws, clamps and fixtures. The flat surface is 
mounted on balls over vee-blocks on the steady structure of the machine. Three sets of aerostatic bearings provide the 
movement of axes X, Y and Z over the slideways. The bearings require dry and clean compressed air to produce the 
layer that sustains the moving parts of the structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Moving Bridge type CMM. 
 

2.1. Geometric model 
 

The error synthesization model used to estimate uncertainty measurement associated volumetric components errors 
was developed by Valdés (2003). This model was obtained by means of homogeneous transformations, each component 
of the volumetric error can be described as the sum of different parts that are related to the geometric errors of the 
machine and to the corresponding Abbè offsets, Eq. (3-5). This model is based on the straightforwardness of application 
and adaptation of the homogeneous transformations to any kind of CMM and on the efficient diagnosis ability of the 
error synthesization method. 
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where: 

Ex, Ey and Ez are the error components associated to each coordinate; 
X, Y and Z are the coordinates; 
Pos(x), Pos(y) and Pos(z)  are the positioning error at axis X, Y and Z, respectively; 
Rx(y) and Rx(z)are the straightness error of axis X direction Y and Z, respectively; 
Ry(x)X and Ry(z) are the straightness error of axis Y direction X and Z, respectively; 
Rz(x) and Rz(y) are the straightness error of axis Z direction X and Y, respectively; 
Pitch(x), Pitch(y) and Pitch(z) are the angular error Pitch at axis X, Y and Z, respectively; 
Yaw(x), Yaw(y) and Yaw(z) are the angular error Yaw to axis X, Y and Z, respectively; 
Roll(x) and Roll(y) are the angular error Roll at axis X and Y, respectively; 
Y34, X23, Z12 and Z45 are the fixed offset; 
Ort(xy), Ort(xz) and Ort(yz) are the orthogonality errors; 

 
The input quantities, for once, may also be considered as measures that depend on other quantities. These values 

and their respective uncertainties may be obtained from a single observation or repeated observations, data supplied by 
the manufacturers of the instruments, observer's experience, literature, previous measurements, calibration standards, 
reference materials or calibration certificates, etc. According to the method used for evaluation of the numeric value of 
the uncertainties, these can be classified in: type A evaluation and type B evaluation. 



 

The combined standard uncertainty can be calculated from the individual standard uncertainties of the variables that 
interfere on the measurement process, through a law known as "law of propagation of uncertainties". 

In the equations (3 - 5) the law of propagation of uncertainty was applied, and equations (6 - 8) obtained. 
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2.2. Determination of the uncertainty associated to the geometric errors 
 

The aim of the present work is the calculation of the measurement uncertainty associated to the volumetric errors 
components in a CMM, at 20ºC reference temperature. Each geometric error was measured individually and a 
mathematical model was developed for each one of them, in order to subsequently apply the law of propagation of 
uncertainties. The CMM, instrument and measuring device used remained in the room where the measurement was 
made during the necessary time to reach the thermal equilibrium. A detailed description of the model can be observed in 
Valdés (2005). 

The results obtained during the estimate of the uncertainty associated to the geometric errors, in a measurement 
position, are summarized in the tables. The uncertainty values regarding the other errors are not presented because they 
are similar to the obtained values. For each evaluated error a Table is presented to show the expressions of the 
sensitivity coefficients and of the standard uncertainty of each influence variable, as well as, the distribution type, the 
degrees of freedom (D.F.) and the calculated value of standard uncertainty for the referred variable. These values, 
combined with standard uncertainty, effective degrees of freedom, coverage factor and expanded uncertainty were 
presented for evaluated geometric error. 
 
a) Measurement uncertainty of orthogonal errors 
 

Equation (9) allows estimating the uncertainty associated to the measured orthogonal errors using the mechanical 
square standard and a LVDT type transducer. 

 

ESqLVDTSqLVDT TLRCLOrt ∆α ⋅⋅+++=                                                                                                                   (9) 

 
where: Ort is the orthogonal error; LVDTL  is the reading taken by LVDT; SqC  is the correction due to error of the 

mechanical square; LVDTR  is the resolution of the LVDT; L is the conventional true value; Sqα  is the coefficient of 



 

thermal expansion of the mechanical square (granite) and SqT∆  is the difference between the mechanical square 

temperature and the reference temperature. 
Next, it has been applied a set of procedures for analysis of the standard uncertainties associated to the variables that 

influence the analyzed dimension. By applying the law of propagation of uncertainties in the Eq. (10), one can write: 
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Similar results of the uncertainty associated to the square errors were obtained for all axes. The presence of small 

differences can be attributed to the operator that is in charge of the carriage movement, because the evaluated machine 
is manual. If the operator is not trained and extremely careful, he/she may produce strengths in the direction of the 
measured displacement, and this may consequently alter the measurement results. Table 1 presents the data regarding 
the calculation of the uncertainty of the orthogonal errors. 

 
Table 1. Orthogonal error (Ort(XY)) measurement uncertainty analysis (Z=200 mm). 

 
Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity 
coefficient 

Degrees of 
freedom. 

Standard uncertainty  

LLVDT A Normal 1 10 5,0*E-4 µm 
CSq B Rectangular 1 ∞ 7,0*E-6 µm 
RLVDT B Rectangular 1 ∞ 4,1*E-5 µm 
Combined standard uncertainty (uc) in µm 5,0*E-4 
Effective degrees of freedom (veff) 193 ( >100) 
Coverage factor (veff, 95 %) k=2 
Expanded uncertainty (Up) in µm 0,001 

 
b) Measurement uncertainty of positioning errors 
 

Equation (11) allows determining the uncertainty associated to the measurement of positioning errors. This equation 
is based on the fact of that the positioning error is defined as being the difference between the reading value of the 
machine and the indicated value by the laser, which in this case is the standard. One can still incorporate to the model 
all the influence variables and the correction factors. 

According to ISO/TR 16015 (2003), the uncertainty associated to the measurements of lengths due to thermal 
effects must consider the uncertainty associated to differential expansion between the measurand and the standard, the 
uncertainty associated to the measurement of temperature and the uncertainty associated to the variation of room 
temperature compared to the reference temperature Eq. (12).  

 
ectThermaleffRRME LCMMPos +++=                                                                                                                   (11) 
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where: EPos is the positioning error; M is the value indicated by machine; CMMR  is the resolution of the machine; LR  is 

the resolution of the laser; LT∆  is the difference between the room temperature and the reference temperature; ET∆  is 

the difference between the scale temperature and the reference temperature; Eα  and Lα are the coefficients of thermal 

expansion of the scale (glass) and the laser beam, respectively. 
Still, the laser interferometer system has the principle of measurement based on the wavelength of the light. So, 

room temperature variations cause changes in the wavelength of the light and thus, errors in the measurements are 
inserted. The calculation of the laser correction coefficient must be done for that the uncertainty can be estimated. 
Equation (13) sets a relation between wavelength, frequency and velocity of light, where: λ is the wavelength,υ  is the 
velocity of light and f is the frequency 

 

f

νλ =                                                                                                                                                                       (13) 

 



 

     The velocity of light is constant in vacuum but, through the air, it varies as a function of air temperature, pressure 
and humidity. Since laser frequency is constant, the wavelength will change with the variation of the velocity of light. 
The distance D shown in the measurement display of the laser unity corresponds to the number of wavelengths, N, 

multiplied by a compensation factor, C, and the wavelength in the air, Aλ , as follows: 

 

ACND λ⋅⋅=                                                                                                                                                           (14) 

 
The compensation factor C can be calculated by means of the equation below. N is the wavelength of movement 

and can be calculated using Eq. (15), where H is the humidity and P is the pressure. 
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Applying the law of propagation of uncertainties in Eq. (12), one can rewrite it as Eq. (17), which allows estimating 

the uncertainty associated to the positioning error.  
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Table 2 presents the data regarding the calculation of the uncertainty of the X-axis positioning errors. 
 

c) Measurement uncertainty of straightness errors and pitch and yaw angular errors 
 

The mathematical model that represents the straightness errors, as well as, pitch and yaw angular errors, of all the 
axes, is given by Eq. (18). 

 
ectThermaleffCReR LL +++=                                                                                                                                (18) 

 
 

Table 2. Positioning errors (Pos(x)) measurement uncertainty analysis (X=100 mm). 
 

Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity 
coefficient 

Degrees of 
freedom 

Standard 
uncertainty 

M A Normal 1 4 8,1*E-2  µm 
RMM3c B Rectangular 1 ∞ 1,2*E-6 µm 
RL B Rectangular 1 ∞ 5,8 *E-3 µm 

αE B Rectangular 6,4 *E-3 µm0C ∞ 2,0*E-10 0C-1 

CL B Rectangular 6,4 *E-3 µm0C ∞ 5,2*E-7 0C-1 

∆T B Rectangular 1,4*E-16 µm/0C ∞ 0,4 0C 
Combined standard uncertainty (uc) in µm 8,1*E-2  
Effective degrees of freedom (veff) 4,04 
Coverage factor (veff, 95 %) k=2,78 
Expanded uncertainty (Up) in µm 0,2 

 
 
Adding the terms related to the thermal effects and applying the law of propagation of uncertainties in Eq. (18), one 

can write Eq. (19). 
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where: R is the error; e is the indicated value by laser; RL is the resolution of the laser; CL is the coefficient of thermal 
expansion of the laser beam; T∆  is the variation of the room temperature regarding the reference. 

The data for calculation of the uncertainty associated to the X-axis straightness errors are presented in Tab. 3 and 4.  
 

Table 3. Straightness error (Rx(y)) measurement uncertainty analysis (X=275 mm). 
 

Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity 
coefficient 

Degrees of 
freedom 

Standard 
uncertainty 

e A Normal 1 4 0,2 µm 
RL B Rectangular 1 ∞ 0,6*E-2 µm 
CL B Rectangular 1,8*E-6 µm0C ∞ 4,6*E-5 0C-1 

∆T B Rectangular 1,7*E-10 µm/0C ∞ 1,2 0C 
Combined standard uncertainty (uc) in µm 0,2 
Effective degrees of freedom (veff) 4 
Coverage factor (veff, 95 %) k=2,78 
Expanded uncertainty (Up) in µm 0,6 

 
Table 4. Straightness error (Rx(z)) measurement uncertainty analysis (X=100 mm). 

 
Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity coefficient Degrees of 
freedom 

Standard 
uncertainty 

e A Normal 1 4 0,2 µm 
RL B Rectangular 1 ∞ 0,6*E-3 µm 
CL B Rectangular 3,3*E-7µm0C ∞ 2,8*E-9 0C-1 

∆T B Rectangular 1,1*E-19 µm/0C ∞ 0,3 0C 
Combined standard uncertainty (uc) in µm 0,2 
Effective degrees of freedom (veff) 4 
Coverage factor (veff, 95 %) k=2,78 
Expanded uncertainty (Up) in µm 0,6 

 
     The found uncertainty values for the X-axis straightness errors have been similar in all the measurement positions 
and the Tab. 5 and 6 shows the data regarding the calculation of the uncertainty of the X-axis angular errors (pitch and 
yaw). 

 
Table 5. Angular error (Pitch(x)) measurement uncertainty analysis (X=200 mm). 

 
Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity coefficient Degrees of 
freedom 

Standard 
uncertainty 

e A Normal 1 4 1,6*E-7 µm 
RL B Rectangular 1 ∞ 1,4*E-7 µm 
CL B Rectangular 7,8*E-6 µm0C ∞ 2,2*E-9 0C-1 

∆T B Rectangular 1,3*E-11 µm/0C ∞ 0,25 0C 
Combined standard uncertainty (uc) in µm 2,1*E-7 
Effective degrees of freedom (veff) 12,4 
Coverage factor (veff, 95 %) k=2,17 
Expanded uncertainty (Up) in µm 4,6*E-7 

 
Table 6. Angular error (Yaw(x)) measurement uncertainty analysis (X=200 mm). 

 
Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity coefficient Degrees of 
freedom 

Standard 
uncertainty 

e A Normal 1 4 8,7*E-8 µm 
RL B Rectangular 1 ∞ 1,4*E-7 µm 
CL B Rectangular 1,2*E-8 µm0C ∞ 2,2*E-9 

∆T B Rectangular 7,3*E-15 µm/0C ∞ 0,27 
Combined standard uncertainty (uc) in µm 1,7*E-7 
Effective degrees of freedom (veff) 51,5 
Coverage factor (veff, 95 %) k=2,01 
Expanded uncertainty (Up) in µm 3,4*E-7 



 

d) Measurement uncertainty of roll angular error 
 

The mathematical model of the roll angular error measurement is given by Eq. (20), where: Roll is the roll error; el 
is the indicated value by the electronic level; RNb is the resolution of the bubble level; RNe is the resolution of the 
electronic level and T∆  is the variation of the room temperature regarding the reference. 

 
ectThermaleffRRelRoll NeNb +++=                                                                                                                       (20) 

 
By applying the law of propagation of uncertainties in Eq. (20), one can obtain the Eq. (21): 
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The uncertainty values associated to the X-axis roll error measurement, Tab. 7, are very small, and thus, the 

contribution of this portion / part in the final uncertainty is practically insignificant. 
 

Table 7. Angular error (Roll(x)) measurement uncertainty analysis (X=200 mm). 
 

Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity 
coefficient 

Degrees of 
freedom 

Standard 
uncertainty 

el A Normal 1 4 5,7*E-7 µm 
RNe B Rectangular 1 ∞ 2,8*E-7 µm 
RNb B Rectangular 1 ∞ 1,1*E-5 µm 

∆T B Rectangular 1,4*E-5 µm/0C ∞ 0,4 0C-1 

Combined standard uncertainty (uc) in µm 1,2*E-5 
Effective degrees of freedom (veff) >>100 
Coverage factor (veff, 95 %) k=2 
Expanded uncertainty (Up) in µm 2,4*E-5 

 
e) Measurement uncertainty of fixed offsets 
 

The mathematical model of the fixed offsets measurement is: 
 

TlRlFO RMRM ∆α ⋅⋅++=                                                                                                                                       (22) 

 
where: FO is the fixed offset; l is the measured length; RMα  is the coefficient of thermal expansion of mechanical rule; 

RMR  is the resolution mechanical rule and T∆  is the room temperature variation. By applying the law propagation of 

uncertainty in the Eq. (23), one can write: 
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The Table 8 shows the data regarding the calculation of the uncertainty of the offset Z12. 

 
Table 8. Fixed offset (Z12) measurement uncertainty analysis. 

 
Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity 
coefficient 

Degrees of 
freedom 

Standard 
uncertainty 

l  A Normal 1 4 0,2 mm 
Rm B Rectangular 1 ∞ 0,6 mm 

αRM B Rectangular 0,01 mm/0C ∞ 2,5*E-8 0C 

∆Tp/m B Rectangular 1 mm/0C ∞ 0,1 0C 
Combined standard uncertainty (uc) in mm 0,6 
Effective degrees of freedom (veff) 420  (>>100) 
Coverage factor (veff, 95 %) k=2 
Expanded uncertainty (Up) in mm 1,2 

 



 

2.3. Components of uncertainty of volumetric error 
 

The value of the volumetric error components were estimated by means of the application of the developed 
synthesization equations. The volumetric error component in X-axis direction (Ex) was calculated in various XY planes 
at fixed Z coordinate values. It was noticed that on the traced surfaces, Ex presented variation between 15 and 55 µm. 
This component showed similar behavior at the evaluated planes, with a slight growing tendency along with the 
increasing of coordinate Y. 

Next, uncertainties associated to the components of the volumetric error Ex were calculated (Fig. 3). It was observed 
that uncertainty values varied from 2,79 to 2,86 µm and presented similar behavior at the different evaluated planes. 
The greatest influences upon the total uncertainty of the volumetric error Ex component were the orthogonality errors 
between axes X-Y and X-Z and Y-axis roll error. This fact is assured by the combination of error values and their 
uncertainties with values and uncertainties of fixed offsets, which are, in this case, Y34, Z45 and Y12, respectively. The 
uncertainty values associated to the measurement of orthogonality errors and roll error were larger if compared to the 
other errors, which were measured with the laser interferometer. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Uncertainty measurement of volumetric component Ex, to Y=150 mm. 
 
On the other hand, the values of the volumetric error components in Y-axis direction (Ey) was estimated at various 

planes XY, for Z offsets of 125, 150, 175, 200, 225, 250 and 275 mm. The surfaces that describe the behavior of this 
component presented significant magnitude, taking values in the interval from –125 to –300 µm. The increment of 
coordinate Z produced a considerable increase of component Ey, which is essentially due to the influence of 
orthogonality errors of axes Y and Z. Component Ey presents similar behavior over all evaluated plans. The uncertainty 
associated to the volumetric error component Ey presents nearly constant values, which vary between 4,00 and 4,03 µm 
(Fig. 4). Component Ey presented the largest uncertainty values at reference temperature. This fact may be attributed to 
several factors: the synthesization equation of that component presenting a high number of influence variables; the 
orthogonality error magnitude between axes Y and Z and fixed offset Z12, as well as the uncertainty associated to them. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Uncertainty measurement of volumetric component Ey, to Z=150 mm. 
 
The volumetric error component in Z-axis direction was calculated for different ZX planes, as Y assumed values 

between 0 and 350 mm at 50 mm steps. The surfaces that describe the behavior of this component presented values in 
the interval from –7 to 6 µm. The uncertainty associated to the volumetric error component Ez presents small and nearly 
constant values, which vary between 1,98 and 2,00 µm (Fig. 5). 

Such values are smaller than the calculated uncertainty for Ex and Ey because of the reduced number of influence 
variables in the synthesization equation of Ez. Moreover, there are orthogonallity errors in the referred equation. The 
fractions that presented the greatest influence over total uncertainty of component Ez were angular errors Roll(x) and 
Roll(y). Mean and standard deviation values of Ez uncertainty are similar at different planes. 

Y
=0

Y
=1

00
Y

=2
00

Y
=3

00
0 75 15

0 22
5 30

0

2,70

2,80

2,90

uE
x 

(µ
m

)
X (mm)

2,80-2,90

2,70-2,80

Y
=0

Y
=1

00
Y

=2
00

Y
=3

00
0 75 15

0 22
5 30

0

4,00

4,02

4,04

uE
y 

(µ
m

)

X (mm)

4,02-4,04

4,00-4,02



 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Uncertainty measurement of volumetric component Ez, to Y=150 mm. 
 
Mean and standard deviation of uncertainty values associated to components Ex, Ey and Ez at the considered planes 

have shown that uncertainty has homogeneous behavior. Therefore, it can be said that at any point in the work volume 
of the CMM, the components of volumetric error present uncertainty values close to 2,8, 4,0 and 2,0 µm, respectively. 

 
3. CONCLUSIONS 
 

In the end of this work, the following conclusions may be presented.  
The procedures described in ISO GUM have been efficient to determine the uncertainty associated the components 

of the volumetric error at any point of the work volume of the evaluated machine at given conditions. By determining 
the effects of variables in three-dimensional uncertainty information was obtained. 

The uncertainties associated to the components of the volumetric error (Ex, Ey and Ez) at 200C were homogeneously 
perceived at several planes. It values close to 2,8, 4,0 and 2,0 µm, respectively. 

The Measuring Machines performance is affected by several factors due to its structural complexity, so much that 
the calculation of the uncertainty becomes a very tiring task. 

The positioning errors are affected by a larger number of uncertainty sources when compared to the other geometric 
errors. 

The uncertainty associated to the temperature variation has been a factor that contributed significantly for the 
uncertainties associated to the angular error measurement of CMM. For positioning, straightness and orthogonal errors 
the uncertainty associated to the variability of measurement was more significant. 

The values of uncertainties associated to the thermal effects are higher than those calculated for other influence 
variables, however pondered by very small coefficients, are little significant for the total uncertainty of the evaluated 
geometrical error. 

Although the uncertainties associated to the coefficients of thermal expansion have also been pondered by the 
coefficients that vary with the used value as standard, they have not been relevant because were much lower than other 
considered uncertainties. 

The influence variables which contributed more significantly in the uncertainty of the components of the volumetric 
error were: magnitude of the fixed offsets and the orthogonality errors, as well as the uncertainty associated to them. 
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