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Abstract. This paper describes the vorticity shedding from a circular cylinder oscillating in the direction of an incident 
uniform flow. We use a cloud of discrete vortices to investigate numerically the influence of cylinder oscillation 
frequency on the lock-in phenomenon of Kármán vortex shedding. The aerodynamic loads are computed using an 
integral formulation derived from the pressure Poisson equation. Results are examined for Reynolds number of around 
100,000 and a large oscillation amplitude. Our results indicate several types of vortex shedding mode. 
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1. INTRODUCTION 
 

In scientific terms, the flow around cylindrical bodies includes a variety of fluid dynamics phenomena, such as 
separation, vortex shedding and the transition to turbulence. The mechanisms of vortex shedding and its suppression 
have significant effects on the various fluid-mechanical properties of practical interest: flow-induced forces, vibrations 
and noises and the efficiencies of heat and mass transfer, for example. For a better and easy understanding of the 
physics, therefore, it is reasonable to focus our attention on the flow around bodies of simple geometry such as a 
circular cylinder.  

Cylinders having a two-dimensional structure are very suitable for restricting the complexity and thus observing the 
fundamental features of the flow. One of the most interesting features of this flow is the phenomenon of 
synchronization, in which the frequency of vortex shedding, f, coincides with that of the cylinder oscillation, fb; this is 
also known as “lock-in”.  The literature is plenty of materials on the subject and previous works have reported that the 
lock-in features and vortex shedding patterns in the flow around an in-line oscillating cylinder differ significantly with 
those in flows around a stationary cylinder or a cylinder oscillating transversely. For instance, vortex shedding 
frequency f had been found to lock-in to the forcing frequency fb when fb is close to the free vortex shedding frequency 
fso in the transverse oscillating case. But, the in-line vibration lock-in takes place at a number of multiple ratios of fb/fso, 
especially, at fb/fso =2.0, where the lift and drag forces increase greatly. Comprehensive reviews can be found in 
Koopman (1967), Sarpkaya (1979), Bearman (1984), Blevins (1990), Griffin and Hall (1991), Williamson and 
Govardhan (2004) and Hirata et al. (2008). 

Koopman (1967) investigated the lock-in region in terms of the oscillation amplitude A and the frequency of a 
circular cylinder fb. He showed that the Kármán vortex is more likely to lock-in when fb is closer to the vortex shedding 
frequency from the fixed cylinder, f, i.e. the threshold amplitude is lower when f/fb is closer to unity. He also reported 
that there exists a definite value of oscillation amplitude below which the lock-in does not occurs even when f/fb=1.  

The experimental work of Williamson and Roshko (1988) deals with the synchronization regions and identifies 
many modes and vortex wake patterns with detailed explanations and descriptions; due to the difficulties in the 
experimental visualizations the Reynolds number were kept below 600.  

The numerical work of Hirata et al. (2008) simulated the flow around a heaving circular cylinder by using vortex 
method. Their results showed that there are three characteristic bands for the body oscillating frequency. Band I, for 
which fb → 0, the body oscillation has little influence and the vortex shedding frequency is almost independent of the 
body oscillating frequency. Band II represents a transition band in which the lock-in is partial and one can identify 
simulation periods in which lock-in is observed followed by simulation periods where this does not occurs. Finally in 
the uppermost Band III the inertial components dominate the lock-in is always observed. The numerical findings show 
that the lock-in frequency depends on the amplitude of the body oscillation; in fact it decreases linearly with it in 
accordance of the low Reynolds number findings of Williamson and Roshko (1988). 

This paper utilizes the vortex method code developed by Hirata et al. (2008) to simulate numerically the vortex 
shedding from an in-line oscillating circular cylinder in a uniform flow. In this study, the focus is upon lock-in of the 
Kármán vortex caused by a higher-amplitude cylinder oscillation. The transition behavior from non lock-in to lock-in is 
investigated by using two reference frames; the body fixed frame oscillates with respect to the inertial frame of 
reference. A cloud of free vortices is used in order to simulate the vorticity, which is generated on the body surface and 
develops into the boundary layer and the viscous wake. Each individual free vortex of the cloud is followed during the 
numerical simulation in a typical Lagrangian scheme. Important features of the vortex methods (Chorin, 1973; Leonard, 
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1980; Sarpkaya, 1989; Sethian, 1991; Lewis, 1999; Alcântara Pereira et al., 2004; Kamemoto, 2004; Stock, 2007) are: 
(i) it is a numerical technique suitable for the solution of convection/diffusion type equations like the Navier-Stokes 
ones; (ii) it is a suitable technique for direct simulation and large-eddy simulation; (iii) it is a mesh free technique; the 
vorticity field is represented by a cloud of discrete free vortices that move with the fluid velocity. 

Vortex cloud simulation offers a number of advantages over the more traditional Eulerian schemes for the analysis 
of the external flow that develops in a large domain; the main reasons are: (i) as a fully mesh-less scheme, no grid is 
necessary; (ii) the computational efforts are directed only to the regions with non-zero vorticity and not to all the 
domain points as is done in the Eulerian formulations; (iii) the far away downstream boundary condition is taken care 
automatically which is relevant for the simulation of the flow around a bluff body (or an oscillating body) that has a 
wide viscous wake. 

The two-dimensional aerodynamic characteristics are investigated at a Reynolds number of 1.0×105; due to this fact, 
even with such a high Reynolds number value, no attempt for turbulence modeling were made once these aspects have a 
strong three-dimensional component; see Alcântara Pereira et al. (2002). 
 
2. FORMULATION OF THE PHYSICAL PROBLEM 
 
2.1. Definitions 
 

Figure 1 shows the harmonic in-line motion of the circular cylinder in the uniform fluid flow U=1. The (x, o, y) is 
the inertial frame of reference and the (ξ, o, η) is the coordinate system fixed to the cylinder. The position and velocity 
of the local moving coordinate at the center of the circular cylinder are defined, respectively, as 

 
( ) tλsinA ξ =                                                                                                                                                               (1) 

 
( ) tλcos λA uξ osc ==& ,                                                                                                                                              (2) 

 
where A is the body oscillation amplitude, λ=2πfb is the angular velocity and fb is the body oscillation frequency.  

 
 
 

 
Figure 1 – Definitions 
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2.2. Governing Equations 
 
For an incompressible fluid flow the continuity is written as 
 

0=⋅∇ u                                                                                                                                                                                          (3) 
 

where u ≡ (u, v) is the velocity vector. 
If, in addition, the fluid is Newtonian with constant properties the momentum equation is represented by the 

Navier-Stokes equation as 
 

uuuu 2
Re
1p

t
∇+−∇=∇⋅+

∂
∂

.                                                                                                                                                  (4) 

 

Here, p is the pressure field and Re stands for the Reynolds number defined as 
υ
D URe = , where υ the kinematic 

viscosity of fluid and D is the diameter cylinder; the dimensionless time is D/U. 
On the cylinder surface the adherence condition has to be satisfied. This condition is better specified in terms of the 

normal and tangential components as 
 

)()( nvnu ⋅=⋅  on bS , the impenetrability condition                       (5) 
 

)()( τvτu ⋅=⋅  on bS , the no-slip condition          (6) 
 

where n and τ are unit normal and tangential vectors and v is the body surface velocity vector. 
Far from the body (for r→∞, in Fig. 1) one assumes that the perturbation due to the body motion fades away, that is 
 

 1→u .                                                                                                                                                                                          (7) 
 

3. THE VORTEX METHOD 
 

3.1. Viscous Splitting Algorithm (Chorin, 1973) 
 
Taking the curl of the Navier-Stokes equation and with some algebraic manipulations one gets the vorticity 

equation which presents no pressure term. In two-dimensions this equation reads 
 

ω∇=ω∇⋅+
∂
ω∂ 2

Re
1

t
u                                                                                                                                                                (8) 

 
where ω(x, t) = ∇×u(x, t) represents the only non-zero component of the vorticity field (observe that the pressure is 
absent from the formulation). 

The left hand side of the above equation carries all the information needed for the convection of vorticity while the 
right hand side governs the diffusion. Following Chorin (1973) we use the viscous splitting algorithm, which, for the 
same time step of the numerical simulation, says that 

 
Convection of vorticity is governed by 
 

0
t

=ω∇⋅+
∂
ω∂ u                                                                                                                                                                             (9) 

 
Diffusion of vorticity is governed by   
 

ω∇=
∂
ω∂ 2

Re
1

t
.                                                                                                                                                                          (10) 

 
3.2. Convection and diffusion of vorticity 
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The vortex method proceeds by discretizing spatially the vorticity field using a cloud of elemental vortices, which 
are characterized by a distribution of vorticity, 

iσ
ς (commonly called the cutoff function), the circulation strength iΓ  

and the core size iσ . Thus, the discretized vorticity is expressed by 
 

( ) ( ) ( ) ( )( )∑
=

−=≈
Z

1i
iσi

h tςtΓt,ωt,ω
i

xxxx .                                                                                                                    (11) 

 
where Z is the number of point vortices of the cloud used to simulate the vorticity field. 

In this paper, as the diffusion effects are simulated using the random displacement method (Lewis, 1999), we 
assume that the core sizes are uniform ( σσi = ), and use the Gaussian distribution as the cut-off function; this choice of 
the cut-off function leads to the Lamb Vortices (Leonard, 1980); thus 

 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= 2

2

2σ σ
exp

πσ
1ς

x
x .                                                                                                                                              (12) 

 
The numerical analysis is conducted over a series of small discrete time steps Δt for each of which a discrete vortex 

element Γ(i) is shed from each impeller surface element. The intensity Γ(i) of these newly generated vortices is 
determined using the no-slip condition, see Eq. (6). 

For the convection of the discrete vortices of the cloud, Eq. (9) is written in its Lagrangian form as 
 

t)y,(x,u
dt

dx (i)
(i)

=                                                                                                                                                                    (13) 

 

t)y,(x,v
dt

dy (i)
(i)

=                                                                                                                                                                    (14) 

 
being (i) = 1, Z. 

The convective motion of each vortex generated on the body surface is determined by integration of each vortex 
path equation, which can be written, using a first order Euler scheme, as 

 

Δt(t)(i)u(t)xΔt)(tx (i)(i)
⎥⎦
⎤

⎢⎣
⎡+=+                                                                                                                                       (15)  

 

Δt(t)(i)v(t)yΔt)(ty (i)(i)
⎥⎦
⎤

⎢⎣
⎡+=+ .                         (16) 

 
The diffusion of vorticity is taken care of using the random walk method.  The random displacement Zd ≡ (xd, yd), 

with a zero mean and a (2Δt/Re) variance, for vortex (i) is defined as 
 

[ ] ⎟
⎠
⎞

⎜
⎝
⎛Δ

=
P
1ln

Re
t4Q)cos(2x (i)

d π                                                                                                                                                 (17) 

 

[ ] ⎟
⎠
⎞

⎜
⎝
⎛Δ

=
P
1ln

Re
t4Q)sin(2y(i)

d π                                                                                                                                                  (18) 

 
where P and Q are random numbers in the range 0.0 to 1.0. Therefore the final displacement is written as 

 
(i)
d

(i)(i) xΔt(t)(i)u(t)xΔt)(tx +⎥⎦
⎤

⎢⎣
⎡+=+                                                                                                                                 (19)  

 
(i)
d

(i)(i) yΔt(t)(i)v(t)yΔt)(ty +⎥⎦
⎤

⎢⎣
⎡+=+ .                     (20) 

 
3.3. Numerical Implementation 
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The u (i) and v (i) components of the velocity induced at the location of the vortex (i) can be written as 
 

(i)(i)(i) uvub1u ++=                                                                                                                                                                (21) 
 

(i)(i)(i) vvvb0v ++=                                                                                                                                               (22) 
 

where,  ui (i) ≡ [1, 0] is the velocity vector of uniform flow, 
 

 ub (i) ≡ [ub (i), vb (i)] is the velocity vector induced by the cylinder at the location of vortex (i), 
 

 uv (i) ≡ [uv (i), vv (i)] is the velocity vector induced at the vortex (i) due to the vortex cloud. 
 
The ui (i) calculations present no problems. The body contributes with ub(x, t), which can be obtained, for example, 

using the Boundary Element Method (Katz and Plotkin, 1991). The two components can be written as 
 

∑
=

=
NP

1k

(i)
kk

(i) ucψub                                                                                                                                                    (23) 

 

∑
=

=
NP

1k

(i)
kk

(i) vcψvb                                                                                                                                                    (24) 

 
where NP is the total number of flat source panels representing cylinder surface. It is assumed that the source strength 
per length is constant such that kψ = const and (i)

kuc  and (i)
kvc  are the components of the velocity induced at vortex (i) 

by a unit strength flat source panel located at k. 
As the body surface is simulated by NP straight line panels (Panels Method) it is convenient to calculate the body 

induced velocity in the moving coordinate system. For that one has to observe the following 
- The fluid velocity on the body surface is written as 
 

[ ] ji u  0  t)(λ cos λA t)η;, (ξ += .                                                                                                                                            (25) 
 
- The velocity induced by the body, according to the Panels Method calculations, is indicated by [ub(ξ,η), vb(ξ,η)]; 

this is the velocity induced at the vortex (i), located at the point [ξ(t), η(t)]; thus 
 

( ) tλcos λA t)η;, ub(ξt)y;(x,(i)ub +=                                                                                                                                 (26) 
 

t); η , vb(ξt)y;(x,(i)vb = .                                                                                                                                                       (27) 
 
The velocity uv is obtained from the vorticity field by means of the Biot-Savart law 

  

( ) ( )( ) ( ) ( ) ( ) ( )( )tdtdtt ,ω','ω','ω, xKxxx'xKxxx'xGxuv ∗=−=−×∇= ∫∫                                                                     (28) 

  
where K = ∇×G is the Biot-Savart kernel, G is the Green’s function for the Poisson equation, and ∗ represents the 
convolution operation. 

Once, with the vorticity field the pressure calculation starts with the Bernoulli function, defined by Uhlman (1992) 
as 
 

u=+= u  ,
2

upY
2

.                                                                                                                                                                  (29) 

 
Kamemoto (1993) used the same function and starting from the Navier-Stokes equations was able to write a 

Poisson equation for the pressure. This equation was solved using a finite difference scheme. Here the same Poisson 
equation was derived and its solution was obtained through the following integral formulation (Shintani and Akamatsu, 
1994) 
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( ) ( )∫∫ ∫∫ ⋅×Ξ∇−Ω×⋅Ξ∇=⋅Ξ∇−Η
Ω S niS inii dS

Re
1ddSYY eωωue                                                                               (30) 

 
where 1Η =  in the fluid domain, 0.5Η =  on the boundaries, Ξ  is a fundamental solution of the Laplace equation and 

ne  is the unit vector normal to the solid surfaces. 
The drag and lift coefficients are expressed by 

 

( ) ∑∑
==

∞ −=−−=
NP

1k
kkP

NP

1k
kkkD sinβΔSCsinβΔSpp2C                                                                                                          (31) 

 

( ) ∑∑
==

∞ −=−−=
NP

1k
kkP

NP

1k
kkkL cosβΔSCcosβΔSpp2C                                                                                              (32) 

 

where kΔS  is the length and kβ  is the angle and both of the kth-panel. 

 
4. RESULTS AND DISCUSSION 
 

We preliminary investigate the flow around a fixed circular cylinder to analyze the consistence of the vortex code 
and to define some numerical parameters; as for example the number of panels used to define the cylinder surface. For 
this particular configuration, the cylinder surface was represented by NP=100 flat source panels with constant density. 
The simulation was performed up to 800 time steps with magnitude Δt=0.05. During each time step the new vortex 
elements are shedding into the cloud through a displacement ε=σ0=0.0032d normal to the straight-line elements 
(panels); see Ricci (2002).  

Table 1 shows that the numerical results agree very well with the experimental ones obtained by Blevins (1984), 
which have an uncertainty of about 10%. The results from Mustto et al. (1998) were obtained numerically using a 
slightly different vortex method from the present implementation. The agreement between the two numerical methods is 
very good for the Strouhal number, and both results are close to the experimental value. The present drag coefficient 
shows a higher value as compared to the experimental result. One should observe, that the three-dimensional effects are 
non-negligible for the Reynolds number used in the present simulation (Re = 1.0×105). Therefore one can expect that a 
two-dimensional computation of such a flow must produce higher values for the drag coefficient. On the other hand, the 
Strouhal number is insensitive to these three-dimensional effects. The mean numerical lift coefficient, although very 
small, is not zero which is due to numerical approximations. The aerodynamic forces computations were evaluated 
between t=20 and t=40. 

 
Table 1. Mean drag and lift coefficients and Strouhal number for fixed circular cylinder 

 
5101.0Re ×=  DC  LC  St  

Blevins (1984) 1.20 - 0.19 
Mustto et al. (1998) 1.22 - 0.22 
Present Simulation 1.22 0.07 0.20 

 
The Strouhal number is defined as 

 

U
d fSt =                                                                                                                                                                      (33) 

 
where f is the detachment frequency of vortices of the lift coefficient. One should observe that the lift coefficient 
oscillates with a dimensionless frequency (Strouhal number) that is one half the frequency of oscillation of the drag 
coefficient curve. More details of this preliminary study are discussed in Hirata et al. (2008). 

In this paper, the body Strouhal number is defined as 
 

U
df

St b
b = .                                                                                                                                                                (34) 
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Table 2 summarize the numerical results, including the mean lift and drag coefficient, Strouhal vortex shedding 
frequency of the drag coefficient, St0, for fixed amplitude of A/d = 0.50 and given forcing frequencies.  
 

Table 2. Present numerical results (A/d=0.50 and Re=1.0x105) 
 

bSt  0St  StSt b  
DC  LC  

0.002 0.421 0.008 1.189 0.036 
0.003 0.421 0.016 1.028 0.041 
0.008 0.403 0.040 1.147 −0.025 
0.016 0.384 0.080 1.368 0.039 
0.048 0.049 0.239 1.375 0.260 
0.064 0.061 0.318 0.992 −0.102 
0.095 0.097 0.477 1.062 0.201 
0.111 0.111 0.557 0.779 0.0003 
0.127 0.128 0.637 0.478 −0.090 
0.143 0.142 0.716 0.201 −0.010 
0.159 0.160 0.796 0.117 −0.007 
0.191 0.190 0.955 −0.137 −0.0003 
0.207 0.206 1.035 −0.190 −0.001 
0.239 0.238 1.194 −0.367 −0.002 

 
Figure 2 shows the behavior of drag and lift coefficients for case Stb = 0.016. The lift curve has approximately a 

dimensionless frequency about twice the frequency of the drag coefficient (St0). As showed in Fig. 4a, for cylinder 
oscillations around Stb = 0.016 the mode of vortex formation can be categorized still as fixed cylinder mode. 
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Figure 2. Time history of drag and lift coefficients for A/d = 0.5, Stb = 0.016 and Re=1.0x105.  

 
It is seen here that the increase in cylinder vibration is accompanied with the decrease in vortex shedding frequency 

leading to symmetrical mode of vortex formation, see Fig. 4b. For the symmetrical mode, a pair of vortices is shed in 
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phase from both sides of the cylinder during one oscillation cycle. Figure 3 shows the time-dependent drag and lift 
coefficients for oscillating circular cylinder at A/d = 0.5, Stb = 0.239 and Re=1.0x105.  As soon in Fig. 3 the lift 
coefficient no oscillates and the frequency of oscillation of the drag coefficient curve is closer to the vortex shedding 
frequency from the fixed cylinder. 
 

0.00 10.00 20.00 30.00 40.00
Time

-2.00

0.00

2.00

A
er

od
yn

am
ic

 F
or

ce
s

Drag Coeficient

Lift Coeficient

Body Oscillation

A

B

C

D

 
Figure 3. Time history of drag and lift coefficients for A/d = 0.5, Stb = 0.239 and Re=1.0x105.  

 
Instant B in Fig. 3 is defined by a maximum value of the cylinder oscillation amplitude; at this moment a pair of 

vortices is shed in phase from both sides of the cylinder surface and moving toward the viscous wake; this structure is 
indicated in Fig. 5. 

 
(a) Stb = 0.016 

 
(b) Stb = 0.239 

 
Figure 4. Two different modes of vortex formation for circular cylinder vibration, for A/d = 0.5 and Re=1.0x105.   

 
Ongoren and Rockwell (1988) carried out extensive experiments from an in-line oscillating circular cylinder at low 

Reynolds number Re = 855. Two basic vortex shedding patterns were observed for the forced oscillation for A/d=0.13: 
one with symmetrical mode and the other with four antisymmetrical modes. According their experiments, in general, 
the cylinder oscillations are predominantly in the symmetrical mode, while the antisymmetrical modes are induced by 
the naturally occurring large-scale vortex formation.    
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Figure 5. Near wake behavior at an instant represented by point B for in-line oscillation cylinder. 

 
Figure 6 reveal that a small vortex structure is detached from the cylinder and is incorporated into the viscous wake 

behind a large vortex structure at A/d = 0.5 and Stb = 0.064. This behavior is coherent with those antisymmetrical 
modes reported Ongoren and Rockwell (1988). The temporal history of the aerodynamics forces is presented in Fig. 7. 

 
Figure 6. Mode of vortex formation for circular cylinder vibration, for A/d = 0.5, Stb = 0.064 and Re=1.0x105.   

 
Further analyses are necessary to understand the aerodynamic loads and vortex shedding behavior through different 

oscillating frequencies and amplitudes. 
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Figure 7. Time history of drag and lift coefficients for A/d = 0.5, Stb = 0.064 and Re=1.0x105.  

 
5. CONCLUSIONS 
 

In the present study, we used the vortex method to investigate fluid flows around an in-line oscillating cylinder with 
a high value of the Reynolds number. The methodology developed in this paper to understand the complex mechanisms 
of regimes of vortex shedding is greatly simplified by the utilization of the vortex method. In general, when vortices are 
shed into the wake of a cylindrical body, they cause a periodic lift force on the body at the frequency of shedding and a 
drag force having twice that frequency. In this work the forced vibration of circular cylinders associated with these 
aerodynamic forces have been investigated for Reynolds number of around 100,000 and a large amplitude of A/d=0.50. 

small vortex structure 
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For the symmetrical mode, our results showed that the vortex shedding synchronized with the cylinder vibration (which 
is known as the lock-in phenomenon) when the amplitude of lift coefficient is around zero and the vibration frequency 
around StSt b =1.0. Finally, despite the differences presented, the results are promising, that encourages performing 
additional tests in order to explore the phenomena in more details. 
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