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Abstract. Progressive Cavity Pump (PCP) is one of the most used technologies for transporting different fluid-like materi-
als, from sandy crude oil to waste sludge. In its simplest form, it consists of a single threaded screw (rotor) turning inside
a double threaded nut (stator), forming cavities separated by seal lines. The stator can be metallic or covered with an
elastomeric layer. This apparently simple mechanism produces a more-or-less pulsation-free positive displacement flow,
without the need for valves, based on the movement of the cavities from the suction to the discharge, as the rotor turns
inside the stator. PCPs are largely used in the oil industry because of their ability to pump liquids with high solid contents,
high efficiency with high viscosity liquids, unique design, and simple installation and operation. The performance of a
PCP is a function of the rotor diameter and eccentricity, stator diameter and pitch, the number of stages, and rubber cover
properties, in the case of elastomeric PCPs. Oil production completions with PCPs are generally designed using charac-
teristics pump curves provided by manufacturers. However, several variables, such as viscosity, solid and gas contents -
not taken into account in these curves - can affect the volumetric efficiency of both metallic and elastomeric stator pumps.
The analysis of pump performance at oil field conditions is the main goal of research on PCPs. The pressure drop - flow
rate relationship of a PCP depends strongly on the pressure driven back flow between two consecutive cavities. Many
models have been presented to try to describe this back flow, commonly referred to as slip flow. Only recently, a complete
three-dimensional, transient model of the flow has been presented. The solution is extremely complex and computation-
ally expensive mainly because of the 3-D character of the flow, the complexity of the geometry and mesh motion to follow
the rotor movement. The results agree well with experimental data, however the use of the model for testing different
operating conditions and pump designs is limited, since the time to compute the flow at each conditions is extremely large
(over one week). The problem becomes even more complex in the case of elastomeric stator. Realizing that there is a large
ratio of length scales in the region between consecutive cavities, we propose an asymptotic model to describe the flow
inside PCPs. The model reduces the three-dimensional Navier-Stokes equation to a two-dimensional Poisson’s equation
for the pressure field inside the pump. At each time step, it was solved by a second-order finite difference scheme. The
results obtained agree very well (discrepancy less than 5%) with the complete 3D model, however the computational time
required is approximately 100 times smaller. The asymptotic model will make it simpler to extend the model to PCPs with
deformable stator, multiphase flow and different geometries.
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1. INTRODUCTION

Almost every fluid-like material can be pumped with Progressive Cavity Pumps. Since the pumping principle con-
ceived by the french engineer René Moineau [1] in the 1930‘s, a large number of different industrial applications puts this
positive displacement pump in the group of the most used technologies for moving fluids, from sandy crude oil to waste
sludge. Progressive Cavity Pumps (PCP) in their simplest form consist of a single threaded screw (rotor), turning inside
a double threaded nut (stator), forming consecutive cavities separated by seal lines. This simple configuration belongs to
the singlelobe category of PCP. More complex geometries with a large number of lobes are also used, and any combina-
tion is possible as long as the stator has one more lead than the rotor. The first generation of PCP’s had a metallic rotor
and stator, forming rigid moving cavities in the space between the two surfaces. The following generations presented a
rubber covered stator, which is common nowadays. The deformable stator creates a compression fit with the rotor, in
contrast with the metallic pump where there is a small clearance leading to a larger leakage between consecutive cavities.
Considering that deformable stators have operational limitations, related with temperature and mechanical resistance of
the elastomers, metallic PCPs have great application opportunity, and it has been recognized by the oil industry that this
pump could become an important technological alternative for heavy oil production. This apparently simple mechanism
produces an almost pulsation-free positive displacement flow, without the need for valves, based on the movement of
the cavities from the suction to the discharge ends of the pump as the rotor turns inside the stator. The volumetric flow
delivered by a PCP at a constant rotor speed and pressure difference depends on three design features: rotor diameter,
rotor eccentricity and stator pitch. The pump pressure rating depends on the number of stages. The peculiar characteristic
of PCP is the occurrence of back flow, also denominated slip flow, derived from non perfectly sealed cavities.

Due to their unique design and principle of operation, PCP systems provide many benefits in oilfield applications, such
as high solid content tolerance, best efficiency with high viscosity fluids, simple installation and operation. Oil production
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with PCP is generally designed over the knowledge of characteristic pump curves provided by manufacturer, but several
variables can affect and change the volumetric efficiency of both metallic and elastomeric stator pumps. It is common
knowledge that the characteristic curves change significantly with liquid viscosity and gas content, therefore pump curves
provided manufacturers usually do not represent the real pump performance at down hole conditions. Moreover, in order
to design PCPs that can be operated at extreme conditions, it is important to understand the effect of each geometric
design parameter on the pump performance. These are the main reasons behind research efforts dedicated to study the
flow inside PCPs.

The performance of PCPs is a function of volumetric pump displacement and the slip flow ie, the backward flow
between consecutive cavities due to the adverse pressure gradient along the pump. The limitation of simple models on
predicting pump performance is related to the difficulties in calculating the internal back flow. For any type of stator, rigid
or deformable, slippage is a function of the fluid characteristics, the differential pressure, the components dimensions and
the kinematics. In the case of elastomeric stators the problem become even more complex, because the geometry of the
flow channel becomes a function of the pressure field.

Olivet et al., (2002) [2] performed an experimental study and obtained characteristic curves and instantaneous pressure
profiles along metal to metal pumps for single- and two-phase flow conditions.

The first and simplest numerical model to describe the flow inside the PCP was presented by Moineau (1930) [1] and
is based on calculating the back flow across the pump, considering a Hagen-Poiseuille flow in the sealing lines, which is
subtracted from the volume displaced by the rotating rotor, giving the volumetric flow rate. As the differential pressure
across the pump rises, so does the slippage, and the relation between differential pressure and net volumetric flow pumped,
can be calculated. Since the slippage gap area is not clearly defined, the model is able to describe the qualitative behavior,
but it is not accurate.

The volumetric displacement associate with the rotor movement can be easily calculated from pump components
geometry, but calculating a internal slip is not a trivial problem. In order to improve Moineau’s model, Gamboa and
Olivet (2003) [3] have modeled the slip as the superposition of two different mechanism: one due to the rotor’s movement
and other due to the differential pressure between two cavities. However, limitations were recognized and the model was
not able to fit experimental data.

Only recently, a complete three-dimensional, transient model of the flow inside the cavities of a PCP has been presented
(Paladino et al. (2008) [4]). The numerical solution obtained with a commercial CFD software is extremely complex and
computationally expensive, mainly because of the transient and 3-D character of the flow, the complexity of the geometry
and the necessary mesh motion to follow the rotor movement. The results agree well with experimental data, however the
use of the model for testing different operating conditions and pump designs is limited, since the time to compute the flow
at a single operating condition was over one week. Therefore, the time required to produce an entire pump performance
curve would be enormous.

Realizing that the region that defines the flow rate - pressure drop relationship is the small clearance between the
moving rotor and the stator, where the slip flow occurs, and that the ratio of length scale in this region is very hight,
we propose an asymptotic model to describe the flow inside PCPs. The proposed model reduces the three-dimensional
transient Navier-Stokes equation to a quasi-steady state two-dimensional Poisson’s equation for the pressure field inside
the pump.

This is the same idea behind simplified models of the flow in screw extruder - see Li and Hsieh (1994) [5] and Shuresh
et. al (2008) [6]. The simplified models for extruder can predict the qualitative behavior, but they are still not accurate
enough to use as a design tool, mainly because of the geometric and kinematic simplifications used. One of the hypothesis
is to neglect the curvature effect of the cross section, and to describe the geometry of the flow region using cartesian
coordinates. Pina and Carvalho (2006), [7] presented an lubrication approximation model in cylindrical coordinates to
describe the flow in annular space with varying eccentricity and showed that neglecting he curvature effect can greatly
compromise the accuracy of the model.

The objective of this work is to develop an asymptotic model for the flow inside a metallic (rigid) singlelobe progres-
sive cavity pump. The cross section is parameterized using cylindrical coordinates and there is no simplified assumption of
the geometry and kinematics of the rotor. The resulting 2D equation for the pressure field at each time step was discretized
with a second order finite difference approximation. The model was used to obtain predictions of the pump performance
curve as a function of rotor speed, liquid properties and pump geometry.

The results obtained agree very well (discrepancy less than 5%) with the complete 3D model, but the computational
time required was approximately 1000 times smaller.

2. MATHEMATICAL MODELLING

The flow inside the pump cavitied is governed by the Navier-Stokes and continuity equations, which in cylindrical
coordinates are:
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where u, v, and w are the axial, radial, and tangential velocity components. To avoid solving the system of coupled
three-dimensional differential equations, dimensional analysis is used to eliminate some of the terms of the equations.
The procedure used here is generally known as lubrication approximation.

The clearance between the rotor and stator is much smaller than the radius or length of the pump: F = (Ro −Rr) ¿
Ro ∼ Rr ∼ L, as shown in the figure 1. Using continuity equation, it can be shown that the main flow is in the axial
direction, the velocity component in the radial direction is much smaller than in the other two, i.e., u,w À v. Moreover,
the variation of the velocity components in the axial and azimuthal directions are much smaller than those in the radial
direction. Thus, the derivatives with respect to the radial direction are much larger than the others
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By applying dimensional analysis the appropriate terms of the Navier-Stokes transient equations can be neglected and
the system of differential equations becomes:
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Figure 1. Components of PCP

Since the pressure is not a function of r, the velocities u and w can be analytically integrated in the radius direction in
terms of the pressure:
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where c1, c2, c3, c4 are constants calculated based on the boundary conditions.

2.1 Pump Geometry and Integral Limits

The movement of the fluid inside the pump is caused by the single-threaded helical rotor rolling eccentrically inside
a helical double-threaded stator. As the stator has a pitch length twice as long compared to the rotor, the fluid is trapped
in consecutive quasi-sealed cavities. These cavities follow each other and produce a almost pulsation-free, positive dis-
placement flow, figure 2.

The flow displacement inside of a PCP depends on three design features: Rotor radius (Rr), eccentricity (E) and stator
pitch (Pst). Note, in figure 3, that the center of the cross section of the rotor is not the center of mass of the rotor (center
of the rotor’s helix) due to its helical nature. And the distance from the center of the rotor’s helix and the center of the
stator defines the eccentricity(E).

Our coordinate center lies on the center of the cross section of the rotor (Cr), therefore in a cross section of the pump
it translates as shown in the figure 4. Eventhough the velocity component in the radius direction, v, is much smaller
compared to the others, in the boundary condition v is considered, because of the pump kinematic. To describe the
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Figure 3. PCP’s cross section.

geometry of the region where the fluid flows inside the pump, the position of the internal radius of the stator has to be
derived as a equation of θ and z, Ro(θ, z) . The cross section of the flow region varies from the rotor radius (Rr), which
in our coordinate system is constant, to the internal radius of the stator (Ro(θ, z)).

Figure 4. Rotation and translation of the rotor.

Some important variables used to describe this geometry, Ro(θ, z), are shown in figures 5 - 6 and defined below:

ΘS =
2πz

Pst
=

πz

Pr
is the angle between an horizontal axis from the rotor center to a central line of the stator; Pst and Pr

are the stator and rotor piches; dCSR = CsCr = 2E cos(Ωt−ΘS), so −2E ≤ dCSR ≤ 2E is the distance between the
centers of the rotor and stator;

α1 = arctan
(

Rs

2E − dCSR

)
and α2 = arctan

(
Rs

2E + dCSR

)
are the angles between the central rotor line and the

segments: CrA to CrA′ and CrB to CrB′, respectively.
We divided the region where the fluid flows in a cross section in four parts, as shown in figure 6. Each part of the

region is represented by a function. The functions that describe Ro(θ, z) are written in the table 1, which also shows the
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Figure 5. Geometrical elements of the PCP’s cross section

Figure 6. Each one of the four regions: I, II, III and IV respectively.

related part of the region and the θ’s limit of each part, where A = (α1−Θs); B = (π−Θs −α2); B’ = (π + α2−Θs);
A’ = (2π − α1−Θs).

Table 1. The functions that describes the geometry of a singlelobe metal PCP.

Region θ limits Function —– Ro(θ, z)

I A’ ≤ θ < A (2E − dcsr) cos(θ −ΘS) +
√

R2
s − (2E − dcsr)2 sin2(θ −ΘS)

II B ≤ θ < B’ −(2E + dcsr) cos(θ −ΘS) +
√

R2
s − (2E + dcsr)2 sin2(θ −ΘS)

III A ≤ θ < B
√

R2
s + (2E − dcsr)2

[
sin α1

sin(θ−ΘS)

]

IV B’ ≤ θ < A’ −
√

R2
s + (2E − dcsr)2

[
sin α1

sin(θ−ΘS)

]
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2.2 Kinematic and Boundary Conditions

Note that the cross section of the rotor translates and rotates with respected to the center of the stator. The cross
section of the PCP in four different times are shown in figure 4. To derive the appropriate boundary conditions, we need
to determine the velocity of a point P in the rotor and of a point Q in the stator, as shown in figure 7.

Figure 7. Variables to describe rotor’s kinematic

The angular coordinate of P is θ = γ + Ωt, where γ is the inicial angle and Ω is the clockwise rotation. The position
of the rotor’s center (our center of reference) related to the stator’s center is:

Xcsr = dcsr cos(Θs) = +2E cos(Ωt−Θs) cos(Θs),
Ycsr = −dcsr sin(Θs) = −2E cos(Ωt−Θs) sin(Θs).

Thus the velocity of the rotor’s center is: −−→Vcsr = −−−→
VXcsr +−−−→

VYcsr :−−−→
VXcsr = −2eΩsin(Ωt−Θs) sin(Θs),

−−−→
VYcsr = 2EΩ sin(Ωt−Θs) cos(Θs).

So, (XP , YP ) = (Xcsr + Rr cos(γ + Ωt), Ycsr + Rr sin(γ + Ωt)) is the position of the point P related to the stator
center and its velocity is −→VP = −−→

VXP +−−→
VYP : −−→

VXP = VXcsr −RrΩsin θ,
−−→
VYP = VYcsr + RrΩ cos θ.

It is clear that the velocity of P related to our frame of reference, in the rotor center, is:−−−→
VPcsr = (VXP

− VXcsr , VYP
− VYcsr ) = (−RrΩsin θ, RrΩcos θ) .

Finally, the velocity of the point Q (located at the stator boundary), related to our coordinate system, is:−−−→
VQcsr = −→

VQ − −−→Vcsr ⇒ −−−→
VQcsr = −−−→Vcsr = (2EΩsin(Ωt−Θs) cos(Θs),−2EΩsin(Ωt−Θs) sin(Θs)), note that−→

VQ ≡ 0, because the stator is stationary.

Applying the transformation matrix below, any vector can be written in cylindrical coordinates:
[

Vr

Vθ

]
=

[
cos θ sin θ
− sin θ cos θ

] [
Vx

Vy

]

Now, we are able to present all velocities in r = Ro and r = Rr:

v(Ro) = VXQcsr
cos θ + VYQcsr

sin θ = +2EΩsin(Ωt−Θs) cos(Θs)

w(Ro) = −VXQcsr
sin θ + VYQcsr

cos θ = −2EΩsin(Ωt−Θs) sin(Θs)

v(Rr) = VXP csr cos θ + VYP csr sin θ = 0 (3)

w(Rr) = −VXP csr sin θ + VYP csr cos θ = ΩRr

It is clear that P rotates only and both, P and Q, do not have azimutal movement: u(Ro) = u(Rr) = 0.

Back to the equations (2) and applying the boundary conditions presented in equations (3), we are able to find
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c1, c2, c3, c4 and write the complete expressions of u and w:
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. (6)

Up to this point, the pressure field is still unknown. In order to evaluate it, and since the expressions of u and w are
known, the continuity equation can be integrated in the radius direction, from Rr to Ro:
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Applying the boundary conditions (3) in the equation (7), the continuity become:
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Using the known equations of the velocity field (eqs. (4) and (5)) to integrate w and ru in the radius direction:
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with K in equation (6),
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Finally, the equation can compactly be written as:
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Note that K is the same used before (eq. (6)) and
∂Ro

∂θ
can be directly derived from the functions presented in table 1.

The equation (10) is a Poisson equation with the pressure field as unknown. The boundary conditions are: periodicity:

P (θ = 0) = P (θ = 2π);
∂P

∂θ
(θ = 0) =

∂P

∂θ
(θ = 2π) and Dirichlet condition: P (z = 0) = Pin, P (z = L) = Pout, for

the suction and discharge of the pump.

This equation was discretized using a central finite difference and solved in the software matlab.
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3. NUMERICAL RESULTS

In order to compare and validate our results we use the same pump, fluid and physical conditions as used by Olivet
et al, [2] in their experimental study. The metal singlelobe PCP was chosen as the follow characteristics: pump length
Lb = 0.36 m, length of each rotor pitch L = 0.06 m, number of the piches of the rotor Nr = 6, radius of the rotor’s
cross section Rr = 0.02 m, radius of the stator’s cross section Rs = 0.020185 m, eccentricity E = 0.004039 m.

In these numerical experiments, the rotor velocity 300 rpm pumped a fluid of 42 cp against a differential of pressure
of 345 kPa.
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Figure 8. Pressure distribution along pump length

It is interesting that the model provides detailed information of the flow inside the pump. The obtained results were
as expected, the relevant physical effects occur when the flow goes thought the gap, i.e. pump performance is defined
by the flow between consecutives cavities. It can be seen in figure 8, which shows the pressure distribution along pump
length for three different angles (θ = 0, θ = π/2 and θ = π). Inside the cavity the pressure is almost constant and a large
gradient occurs when the fluid flows through the clearance.

This phenomena can be also confirmed in figure 9. The left side of this figure shows the clearance and the right one
the pressure distribution, both in a θ× z plane and in the same moment. The first plots show the clearance and differential
of pressure after 0.013 seconds and the second ones 0.150 seconds after, that is 3/4 of the pump rotation.
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Figure 9. Clearance and pressure distribution in a θ × z plane in two times: t1 = 0, 013s and t2 = 0, 150s .

The variation of the flow rate with time is presented in figure 10. Comparing two different imposed pressure’s gradient,
we can notice that the variation of the flow rate without differential of pressure (∆P = 0) is smooth and it loses this
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Figure 10. Flow rate versus time. ∆P = 0, ∆P = 345kPa.

smoothness when the imposed pressure’s gradient increases (∆P = 345kPa). There are two peaks in the flow rate, one
in the beginning and another in the middle of the pump cycle. The pump geometry suggest this variation in the flow rate.
Notice in figure 4 that when the rotor is in the beginning and in the middle of one rotation it is located in the two extremes
of the pump’s cross section, touching the stator.

Once the pressure field is evaluated we can use the analytical expressions eq. (4) and eq. (5) to describe the velocity
field. It is shown in a contour plot (fig. 11) of velocity and also of pressure, both in the same time and position (t = 0.15s
and z1 = 0.036m ). The rotor squeeze the fluid to flow against the pressure gradient, and it is clear, analyzing the velocity
field, the slippage, which is the responsible for the loss of efficiency in the pump. And we can also notice that the fluid
recirculates. To compare our pump curve with an experimental data from Olivet et al, [2] and also with the numerical
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Figure 11. Contour graphic of pressure and velocity fields in the same position (z1 = 0.036m) and time (t2 = 0.15s).)

solution obtained with a commercial CFD software by (Paladino et al, 2008 [4]), a 300 rpm of rotor’s velocity operating
in a fluid with the viscosity, µ = 42cp were chosen. As shown in the comparative plot 12, our results agree well with the
literature. The model can be used also to evaluate operational parameters of the pump. For example, the influence of the
gap in the flow rate can be analyzed in the figure 13 . Defining a dimensionless flow rate as in equation 11 and varying
the differential of pressure for three gaps.

Qad =
Qm

[2 ·Rs ·E + π · (R2
s −R2

r)] · (L/t)
(11)

.

4. FINAL REMARKS

In this work, an asymptotic model for the flow inside a metallic (rigid) singlelobe progressive cavity pump was de-
veloped. The cross section is parameterized using cylindrical coordinates and there is no simplified assumption of the
geometry and kinematics of the rotor. The proposed model reduces the three-dimensional transient Navier-Stokes equa-
tion to a quasi-steady state two-dimensional Poisson’s equation for the pressure field and provide detailed information
about the flow inside the pump. The resulting 2D equation for the pressure field at each time step was discretized with a
second order finite difference approximation. The model was used to obtain predictions of the pump performance curve
as a function of rotor speed, liquid properties and pump geometry. The results obtained agree very well with experimental
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datas and with the complete 3D model and the computational time required was order of magnitude smaller. Another in-
teresting characteristic of this asymptotic model is that it can be easily extended to PCPs with deformable stator, different
geometries and also multiphase flows. And also, because of the more efficient computation, the model can be included
into a PCP simulator to provide the pump curve at any operational conditions.
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Figure 12. µ = 42cP, rotor velocity 300 rpm
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