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Abstract. Acoustic noise in industrial areas, typically generated by compressors and vacuum pumps, may be mitigated 

with the combined use of passive and active noise control strategies. Despite its widespread use, the traditional Active 

Noise Control (ANC) technique is proved to be effective only within a small delimited spatial area. When it is 

necessary the movement of human operators in a relatively large area around the noisy equipment, new canceling 

strategies need to be devised to achieve an acceptable spatial coverage. In the pursuit of this goal, it is proposed in this 

paper a model for predicting acoustic pressure levels in a spatial grid from measurement of the vibration level in the 

noisy equipment. There were employed in our experimental set-up a centrifugal pump with an accelerometer attached 

to its casing, and a microphone to cover many pre-defined positions in a spatial grid. The proposed procedure 

comprises the vibration-to-acoustic modeling of the machine-room transfer function using a fixed-structure ARX (Auto-

Regressive with eXogenous input) model. For each spatial coordinate of the microphone a SISO (Single-Input Single-

Output) system where the input is the machine vibration and the output is the noise level is identified, generating a 

corresponding set of estimated parameters. To accommodate the many sets of parameters into a single ARX model it is 

proposed here the use of a multi-layer feed-forward neural network to calculate the model parameters for any given 

point of the room with Cartesian coordinates X, Y and Z (neural network inputs). We present a comparison between 

experimental data and model predictions. Results show good agreement between experimental data and model 

predictions, indicating the potential use of the proposed model in the design of new ANC strategies. 
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1. INTRODUCTION  
 

In an industrial environment, the noise emitted by rotating equipment housed in rooms can be disturbing and even, if 

the level is too high, harmful to operating personnel. Appropriate attenuation for this noise may be obtained by 

associating a simulation model for the acoustic radiation caused by machine vibrations to an Active Noise Control 

(ANC) system. ANC requires the introduction, in an acoustic arrangement, of a controlled secondary acoustic source 

driven in such way that the acoustic field generated by this source interferes destructively over the field caused by the 

original primary acoustic source (Elliott et al., 1987). 

The waveform found in the acoustic field produced by a rotating machine is almost periodic and the fundamental 

frequency and noise level can be estimated by an appropriate model. Therefore, a previous knowledge of the acoustic 

field behavior of the primary source in a vibrating and acoustic radiating environment system is very useful for effective 

noise level control. Through the adjustment of the amplitude and phase of the output signal predicted by a model, the 

secondary source must be driven so that the field originated by the primary acoustic source is cancelled out. Information 

about the pressure and the acoustic power of the vibrating and acoustic radiating environment system is therefore very 

useful in the early stage of effective noise control, either by passive or active means. 

The modeling of the phenomenon involved is not simple and different numerical methods of varying complexity 

have been developed. Many theoretical and experimental studies have been performed to identify the appropriate model 

for simulation of acoustic radiations in a vibrating and acoustic radiating environment in three dimensions. Some 

methods require boundaries or domain division in a large number of elements or sections where very fine meshes are 

needed to solve excitations at high frequencies, such as the infinite element method (IEM; Autrique and Magouls, 

2006/7) and the boundary element method (BEM; Kim and Ih, 1996; Soares and Mansur; 2006; Ozer et al., 2007). 

These methods have not been widely used to compute the propagation of sound due to the high computation effort 

involved, hampering real-time applications and making their use unfeasible for ANC. 

Methods based on geometric acoustics are also widely used in room acoustic prediction. Among these methods, the 

Image Source Method (ISM; Allen and Berkley, 1979; Dance and Shield, 1997; António et al., 2008a) requires a large 

amount of virtual sources which can limit its application. The Ray Tracing Technique (RTT; Kulowski, 1985) is valid 
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in high frequency ranges and includes a certain degree of uncertainty, since it is not assured that all the necessary rays 

will be included in the output signal response. 

The Method of Fundamental Solutions (MFS) is applicable when a fundamental solution of the differential equation 

that describes the sound propagation in the acoustic arrangement analyzed is available (António et al., 2008b). 

The Room Transfer Function (RTF) method, which describes the sound transmission characteristics between a 

source primary and a receiver in a room (Haneda et al., 1999), plays a very important role in acoustic signal processing 

and sound field control, especially when an ANC uses inverse filters based on RTFs to reduce noise (Miyoshi and 

Kaneda, 1988). A multi-input multi-output sound control system has recently been investigated using this method (Wen 

et al., 2006). In such a system, multiple RTFs between the sources and receivers were used. An efficient modeling 

method called common-acoustical-pole-zero (CAPZ) was proposed for multiple RTFs (Haneda et al., 1999). However, 

even when the CAPZ model is used, the RTF has to be measured for every source-receiver due to the dependence on 

the zeros from the source and receiver positions. 

This paper proposes the machine-room transfer function (MRTF), a method that includes the machine vibration 

(primary source) in the dynamic modeling of RTFs. The MRTF method models the vibrating and acoustic radiating 

between a primary source and a receiver in a room. The prediction of the acoustic field inside the enclosed space is the 

main objective. As well as the RTF in the CAPZ model, the MRTF has to be measured for every source-receiver 

setting. Given the difficulty and feasibility of this task, this work also proposes a neural network procedure to estimate 

an unknown MRTF at an arbitrary position between known MRTFs. The neural network is applied over the model 

parameters, mapping the relationship between MRTFs parameters and Cartesian coordinates X, Y and Z, providing 

model predictions at any given position. 

 

2. MODELLING AND METHODOLOGY 
 

2.1. The ARX model 
 

Consider that an ARX model can appropriately represent the acoustic field formed by a primary source of any room-

cloistered system, then: 
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where u(n) is the system input signal sample at instant n, y(n) is the system output signal sample at instant n, e(n) is 

white noise at instant n, d is the delay (dead time) of the system output with regard to input u, q is the forward shift 

operator and nb ≤ na. In this work, the ARX model is applied to predict the output in a simulation fashion (or long step 

ahead prediction), and a least square recursive procedure is be used to estimate the parameters. 

 

2.2. System impulse response and model structure 
 

Consider a vibrating and acoustic radiating environment system that comprises a centrifugal pump housed in a room 

(Fig. 1). The centrifugal pump is the primary noise source in this system. 

 

 

 

(a) (b) (c)  

Figure 1. Acoustic field mapping generated by a rotating machine operating in a closed room. System input: pump 

accelerometer (100 mV/g) signal. System output: microphone (50 mV/PA) signal in all points considered and 

identified by coordinates x, y, z. x =1, 2, …, 7 (·44 cm), y =1, 2, …, 10 (·44 cm) and z =1, 2, …, 5 (·44 cm). 

Microphone displacement (passive sensor): (a) horizontal (b) vertical (c) mesh of the 350 collected data 

(7x10x5 positions assumed by the passive sensor). 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

Placing the accelerometer in the pump and a microphone at any given point in the room (identified by its 

coordinates X, Y, Z), the Machine-Room Transfer Function of the vibrating and acoustic radiating environment signal-

transmission channel between the accelerometer signal u(t) and the microphone signal y(t), denoted by H(s), can be 

identified. This model represents the vibrating and acoustic radiating environment system between the pump and any 

given point in the room. 

Applying an impulse input in the accelerometer (i.e. ( ) ( )u t tδ= ), the response yδ(t) of the system would present a 

profile that could be represented by an under-damped second order system. Therefore, a second order transfer function, 

H(s), can be considered to describe the experimental data: 
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where k, ω, ζ, and td are model gain, characteristic frequency, damping factor and time delay, respectively. A 

discrete-time model equivalent to Eq. (3) is: 
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or, using Eq. (1): 
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In order to improve model predictions the order of B polynomial was varied keeping the same qualitative behavior, 

and a second order model was selected: 
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2.3. Methodology for data gathering 
 

The environment in which the experiment was carried out is a room 7.5 x 3.5 meters and 3.2 meters high, 

composing the acoustic mesh presented in Fig. 1. The room houses a centrifugal pump powered by an electrical 

asynchronous motor, two ICP sensors, an accelerometer which receives the dynamic generated by the primary source 

and a microphone that receives the sound pressure at each point in the mesh previously defined. A piezoelectric 

accelerometer of 100 mV/g was adopted. 

During each measurement the passive sensor was positioned with its axis parallel to the wall (length of the room) 

and to the floor’s plane, in front of the primary source. The data was collected by a CMXA50 Microlog collector (SKF) 

which relies upon a compact collecting data device. The signal treatment is composed of an ICP integrated font linked 

with a pass-band filter (10-1000 Hz), adjusted to a sample frequency of 2560 Hz with a collect span time of 1.6 

seconds. A collection of 4096 points per channel in each mesh of sampling was carried out for each variable data. The 

nominal rotation of the centrifugal pump (primary source) is 29 Hz. Since the highest level of power is below 200 Hz 

band, the collected signal underwent a tenth power reduction prior to the identification of each MRTF. 

 

3. RESULTS 
 

Applying the least square algorithm using the data mesh, 350 MRTFs were identified describing the dynamics and 

spatial behavior of the acoustic pressure in the room through its relationship with the vibration signal from the pump. 

Each machine-room transfer function (MRTF) comprised an ARX model according to Eqs. 1 and 6. 

Considering 350 models and 5 parameters (a1, a2, b0, b1 and b2) for each one, the acoustic pressure mapping in the 

entire room uses a total of 1750 parameters. This number of parameters is too high for real-time applications and a 

neural network was used to calculate the model parameters for any given point of the room with respect to Cartesian 

coordinates X, Y and Z (neural network inputs), which also enables the location of the MRTF at arbitrary positions. 

The neural network modeling approach was developed in a two-stage procedure. First, the calculated parameters 

were modeled by five MISO (Multi-Input Single-Output) feed-forward networks each one with three inputs (Cartesian 

coordinates) and one hidden-layer. The neurons number of each hidden-layer was determined through a dynamic cross-
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validation procedure. In this procedure, experimental data were divided in two data sets, A and B (if desired, the whole 

experimental data set can be divided in more groups). Different network architectures (here the architecture varies with 

the number of neurons of the hidden-layer) are compared with their total loss functions (or performance criterion). For 

each architecture i, the network is trained with data set A and then simulated with data set B, generating the loss 

function Ji,A,B (the sum of squared model errors), and vice-versa, generating the loss function Ji,B,A. The total loss 

function of architecture i is the sum Ji = Ji,A,B + Ji,B,A. The architecture with the lowest total loss function is selected, and 

then it is trained again with the whole experimental data set. With this procedure, the whole experimental data set is 

used either for training purposes as well as for validation purposes. This procedure resulted in an optimal architecture of 

four hidden-neurons for each neural network. In a second stage, both ARX and neural network structures are used 

together, in a simultaneous optimization procedure, in order to generate the final model. Therefore, the final model 

comprises only 105 parameters (a reduction of 94%), which represents a notable reduction in computational cost 

allowing its implementation in real-time control systems. 

The spatial distribution of the estimated parameters can be represented through surfaces, which are presented in 

Table 1 through Table 3. Each table presents the spatial behavior of model parameters (a1, a2, b0, b1, b2) in a specific Z 

plane (indicated in each corresponding table). Therefore, each surface shows parameters variations in both X and Y 

directions. The parameter values in a specific point are related to the physical-acoustic features of this point such as the 

distance from the primary acoustic source or the wave sound reflection measured from the point. The first columns of 

Table 1-Table 3 present the surfaces obtained using the parameter values of the identified models using all input-output 

data (350 in the whole space considered and 70 for each Z plane) according to Fig. 1. The second column presents the 

results obtained by the spatial neural network procedure, applied to the same 350 points. 

Two main conclusions must be highlighted regarding the spatial distribution of model parameters showed in Table 

1-Table 3. First, in all cases the neural network models (second column) agree with the general trends of the original 

identified models (first column), attesting the potentiality and efficiency of the modeling procedure proposed in this 

work. Second, a supposed symmetric behavior expected with respect to the central point of X axis is not verified. This 

fact is associated with the physical features of the room that does not assure a uniformity condition in all space and 

mainly due to the pump displacement, since its driving shaft is not aligned with Y direction, but with X direction. 
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Table 1. Model parameters spatial distribution. Plane Z = 1 (0.44 m) 
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Table 2. Model parameters spatial distribution. Plane Z = 3 (0.44 m) 
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Table 3. Model parameters spatial distribution. Plane Z = 5 (0.44 m)  
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Figure 2. Best and worst adjustments for planes Z=1 (0.44 m): time response of identified and neural network models. 

 

 

Figure 3. Best and worst adjustments for planes Z=3 (0.44 m): time response of identified and neural network models. 

 

 

Figure 4. Best and worst adjustments for planes Z=5 (0.44 m): time response of identified and neural network models. 
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Figure 5. Average PSD for the output. 

 

Fig. 5 presents the average PSD (Power Spectral Density) of the 350 mesh points. The neural network model 

provides a good description of system dominant dynamic (PSD peaks, where most of the energy signal is concentrated) 

without degradation of output prediction (both amplitude and frequency features of the neural network model fit those 

of the identified models well). 

 

4. CONCLUSIONS 
 

This paper presents the development of a Machine-Room Transfer Function (MRTF) to describe the vibrating and 

acoustic radiating environment transmission between a primary source and a receiver in a room. Identified models 

perform satisfactorily in describing system behavior. Furthermore, in order to provide model reduction and to describe 

the whole spatial behavior, a neural network procedure was applied to the parametric models. This procedure resulted in 

significant model reduction of up to 94%, keeping a good description of system dominant dynamics without 

degradation of output prediction and allowing for real-time model implementation in control systems. 

The resultant models were used to simulate the dynamic behavior of the microphone output signal. Figs. 2-4 show 

the best and worst mean square error models for planes Z=1, 3 and 5. It can be seen that even the worst model results 

provide a suitable description of the experimental data, capturing the main trends of system behavior, either when using 

identified or neural network models. 
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