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Abstract. Inverse problems can be found in many areas of science and engineering and can be applied in different ways.
Two examples can be cited: thermal properties estimation or heat flux function estimation in some engineering thermal
process. The great advantage of the inverse technique is the ability of obtaining a physical problem solution that cannot
be solved directly. Different techniques for the solution of inverse heat conduction problem (IHCP) can be found in
literature. However, any inverse or optimization technique has a basic and common characteristic: both of them need to
solve the direct solution several times. This characteristic is the cause of the large time consumed. In heat conduction
problem, the time consumed is, usually, due to the use of numerical solutions of multidimensional models with refined
mesh. In this case, if analytical solutions are available the computational time can be reduced drastically. This study
presents the development and application of a 3D-transient analytical solution based on Green’s function. The inverse
problem is due to the thermal properties estimation of conductors. The method is based on experimental determination of
thermal conductivity and diffusivity using partially heated surface method without heat flux transducer. First developed
to use numerical solution, this technique can, using analytical solution, estimate thermal properties faster and with more
accuracy.
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1. INTRODUCTION

Analytical solutions are an important tool for solution of engineering problems (Beck et al., 2008), since they can be
used: to validate approximate solutions; to facilitate the analysis and understanding of physical problems; in construction
of physical problems; in construction of new numerical algorithms such as the transient method of surface element (Beck
et al., 1992) or in direct application in real problems reducing the computational cost and allowing exact solutions of the
model studied be obtained.

Examples of analytical solutions developed for verification or validation of approximate solutions obtained by numer-
ical methods, such as algorithms based on finite differences, finite volumes or finite elements can be found in papers of
Beck et al. (2006), Beck et al. (2004) or Macmasters et al. (2002) and others.

To mention, also, various thermal models involving heat conduction, such as, multidimensional problems in rectangu-
lar solids Beck and McMasters (2004), bidimensional transient problems with periodic heating in multi-layer cylindrical
bars Milosevic and Raynoud (2004) or heated solids in motion (Haji-Sheikh and Beck, 2002), (Haji-Sheikh et al., 2003),
(Beck and McMasters, 2004) and (Haji-Sheikh et al., 2009).

The complexity of a thermal model, from the view-point of analytical solution, normally is in multidimensional tran-
sient problems subjected to non-homogeneities such as prescribed heat flux or transient temperature or transient heat
generation. Since practical engineering problems normally involve all these aspects the customary procedure is the use of
simplifying hypotheses or the application of numerical models.

The principal objective of this study is the use direct of analytical solutions to develop techniques of inverse problems
applied to thermal problems, more specifically in experimental techniques to obtain thermal properties.

Various researches have dedicated special attention of obtain analytical solutions for the thermal problem in orthogonal
machining processes, always using previous knowledge machining processes as knowledge of the heat generated at the
tool-chip interface or simplified models.

A thermal model adequate for this type of problem, should consider the multidimensional transient characteristics,
environment (convection) and the heat generated at the tool-workpiece interface. As mentioned, the construction of an
analytical model with the above characteristics is one of the reasons of this study.

Normally the objective of development of analytical solutions is to gain knowledge about the phenomenon, to validate
numerical models or application direct in engineering problems such as, for example, thermal modeling of an orthogonal
cutting temperature (Longbottom and Lanham, 2005). However, in this study, the principal objective is the use of analyti-
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cal solutions in optimization problems. The inverse algorithms usually have to calculate the direct problem several times.
In this case, the use of analytical solutions not only increases the precision but also reduces greatly the computational time.
A typical application, shown here, is in the inclusion of analytical solutions in the DPT optimization code for estimations
of thermal properties of rectangular solid samples using the partial heating method developed by Borges et al. (2006).

The majority of experimental techniques that determining thermal properties uses analytical solutions. For example,
the classical techniques to measure properties such as the flash method (Parker et al., 1961) and its variations of estima-
tion of thermal diffusivity (Degiovanni, 1988), (Sramkova and Log, 1995), (Thermitus and Laurent, 1997), (Albers et al.,
2001), (Maillet et al., 2000) or the hot wire method proposed by Blackwell (1954), and applied by various authors to
estimate thermal conductivity of solids (Grazzini et al., 1996), (Gross and Le-Thanh-Son, 2004), (Abu-Hamdeh et al.,
2001), (Xie et al., 2006), (Coquard et al., 2006). There are still other studies that use analytical solutions for estimations
properties such as Guimarães et al. (1995), Nicolau et al. (2002), and Lima et al. (2003). However, all these techniques
are applied to measure thermal properties of nonconductors using one-dimensional thermal models. Usually, the hypoth-
esis of one-dimensional model is guaranteed by a high geometrical ratio (area/thickness). The thermal gradient in the
directions of the heat flux is thus obtained. This procedure is difficult to apply in conductor materials which due to the
low sensitivity of the thermal properties in relation to the temperature variation in the heat flux direction will require high-
power equipment or very thick samples (Borges et al., 2006). This is one of the reasons for the trend to search of more
complex thermal models which approximates to real experimental conditions and thus allowing the development of more
simple and less costly experimental project with greater flexibility in relation to the sample geometry. Multidimensional
models with numerical solutions were, then, introduced and incorporated in experimental techniques such as in the papers
of de Dowding et al. (1996), Aviles-Ramos et al. (2001), Murphy et al. (2005) and Borges et al. (2006).

The technique developed by Borges et al. (2006) is quite robust and competitive in terms of range of application (con-
ductors and non-conductors) and geometry (disks, rectangular and irregular samples) principally due to the adaptability
and capacity of solution of thermal models with are more complex, such as a three-dimensional transient model with
transient boundary conditions (heat flux varying with time and in space). The possibility of incorporating exact solutions
in this method (code) represents a great contribution in reduction of computational time, in numerical stability and in
more precise estimations. This is one of the main objectives of this work.

2. THEORETICAL FUNDAMENTALS

2.1 Description of Experimental Technique to Obtain Thermal Conductivity and Thermal Diffusivity

The procedure is divided in five steps: development of an experimental apparatus which permits a heat flux at one
part of the sample while the remaining surfaces are kept isolated; ii) obtain a thermal model of the sample; iii) obtain
a parameter proportional to the heat flux at the sample q+(t), using the sequential method with specified function Beck
et al. (1995); iv) obtain the thermal diffusivity; v) comparison between the total heat rate supplied by the heater element
and the parameter, q+(t), proportional to the heat flux at the sample during the on-off heating cycle and consequently
obtain the thermal conductivity.

Thermal model

The proposed thermal model to be reproduced experimentally is given by a sample initially at uniform temperature,
T0. The sample is then submitted to a heat flux [W/m2] while all other surfaces are kept isolated. Figure 1 shows the
thermal model.

Experimental set-up

The boundary conditions of the theoretical model must be guaranteed experimentally. This means that the isolated
condition at the surfaces must be obtained. An efficient way to obtain isolation experimentally from the viewpoint of
convection heat loss is an environment in vacuum. Figure 2 shows an experimental apparatus which is basically a vac-
uum furnace subjecting the heat and the sample to an environment free from convection and a computer controlled data
acquisition system.

A cast iron sample with thickness of 65mm and lateral dimensions of 80, 5mm × 80mm initially in thermal equi-
librium at T0 is then submitted to a unidirectional and uniform heat flux. A total heat rate, P , is supplied by a 318Ω
electrical resistance heater, covered with silicone rubber, with lateral dimensions of 50 × 50mm and thickness 0, 3mm.
The magnitude of P can be obtained just by multiplying the voltage difference versus current value.

The temperatures are measured using two surface thermocouples (type K). The signals of temperatures are acquired
by a data acquisition system HP Series 75000 with voltmeter E1326B controlled by a personal computer.
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Figure 1. Equivalent three-dimensional transient thermal model
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Figure 2. (a) Experimental apparatus. (b) Schematic of the heater and the sample

Inverse problem: obtaining the dimensionless heat flux q+(t)

Various techniques of inverse problems can be used to estimate the heat flux applied. The main difficulty is that the
thermal properties of the sample are also unknown. In which case, the technique of Borges et al. (2006) proposes the
obtaining of a dimensionless heat flux q+(t), proportional to the real heat flux applied q(t). Later the real heat flux q(t) is
then identified. This study uses the function specification sequential method described by Beck et al. (1995) to estimate
q+(t).

Function Specification Sequential Method Beck et al. (1995)

The function specification sequential method is based on mean squared error, S, between measured temperatures, Y ,
and calculated temperatures, T , such that

S =

r∑
i=1

(T (tM+i−1)− Y (tM+i−1))
2 (1)

where i = 1, 2, ..., r is the number of future time steps, j = 1, 2, ..., J is the number of thermocouple, M is the computed
instant of time.

This method is called function specification because it assumes a functional form of the surface heat flux variation
with time and space. The function can be a sequence of constants segments, straightline segments or it can be one of
many others forms such as parabolic, cubic or exponential Beck et al. (1995). In this work, the heat flux is considered as
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constants segments over future time steps, then

q+M+1 = ... = q+M+i−1 (2)

The function specification method can be resumed in following computational algorithm:
Step 1: Calculate the sensitivity coefficients to whole domain time and save them;
Step 2: Assume a functional form for q+(t) for times tM , tM+1,...,tM+r−1;
Step 3: Minimize the sum of squares function S;
Step 4: Obtain the estimated heat flux;
Step 5: Retain and save the first heat flux component q+M for all positions;
Step 6: Increase M by one and repeat the procedure since Step 2.
The sequential method will be applied in solution of the proposed inverse directly without alteration.
The principle is applied to estimate q+M , which is proportional to the heat flux q(t) (Fig.1), and is defined by

q+(t) =
q(t)

k

kref
qref

(3)

where kref and qref are reference values of conductivity and heat flux density respectively. They can assume, whatever
value, for example unitary.

The solution of the dimensionless direct problem is presented in the next section.

Obtaining the thermal diffusivity, �

To obtain the thermal diffusivity, a dynamic system equivalent to the thermal model shown in Fig.1 was chosen.
The system is characterized by input whose signal X(t) is the dimensionless heat flux X(t) = q+(t), and an output
represented by the temperature difference between two distinct positions of the sample, Y (t) = T1(t)− T2(t).

The frequency response, H(f), of the system is defined by

H(f) =
T1(t)− T2(t)

'(f)
(4)

And its phase factor, ', can be calculated as

' = arctan

(
ℑH(f)

ℜH(f)

)
(5)

where ℑH(f) and ℜH(f) are the imaginary and real parts of H(f), respectively.
Guimarães et al. (1995) observed that the phase factor, ', is a function exclusively of the thermal diffusivity. This

fact is the base of the procedure for obtaining the thermal diffusivity thorough minimization of an objective based on the
difference between experimental and calculated values of '. This objective function can be written as

S' =

Nf∑
i=1

('e(i)− '(i))
2 (6)

where 'e and ' are the experimental and calculated values of the phase factor of H(f), respectively.
The value of � are the values which minimizes Eq.(6). A method indicated to this minimization is the golden section

method with polynomial approximation (Vanderplaats, 1984), since Eq.(6) is an unimodal function.

Obtaining heat flux, q(t) and thermal conductivity, k

Once the thermal diffusivity and the dimensionless heat flux are determined, it remains to obtain the real heat flux,
q(t) and the thermal conductivity, k, of the sample.

The principle consists of applying a heat flux supplied by a resistance glued to the surface of the sample. For all heat
flux generated be totally absorbed by the sample the environment has to be a vacuum. The total heat supplied to the
sample can be obtained using the current and the voltage of the electric resistance.
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It was concluded that the heat flux will be totally absorbed by the surface only after a time tf . If P = V ⋅ I represents
the power per unit area of the heater dissipated buy the resistance and q(t) represents the heat flux effectively supplied to
the sample. Then applying the energy conservation principle after a specific time tf , we can write

∫ tf

0

q(t)dt =

∫ tf

0

V (t)I(t)dt (7)

where V (t) and I(t) represent the voltage and the current supplied. But Eq.(3) allows the thermal conductivity k, be
obtained as

k =

∫ tf

0

V (t)I(t)

[
qref
kref

∫ tf

0

q+(t)dt

]
dt (8)

3. DIRECT PROBLEM

The procedure to obtain the thermal properties involves two optimization problems (inverse problem) which obtain
q+(t) and � through the minimization of Eq.(1) and Eq.(6) respectively. Both estimations involve the evaluation of
temperatures calculated using the thermal model, T1(t) and T2(t), which represent the solution of the direct problem.

From the viewpoint of application of the experimental technique proposed by Borges et al. (2006), the choice of the
method of solution of the direct problem is in open. In other words, whichever numerical method such as finite volume
or finite elements or if possible analytical solutions can be used. As mentioned, this study proposes the incorporation
of analytical solutions in the experimental technique of determination of thermal conductivity and thermal diffusivity
using the method of a partially heated surface without heat flux transducer proposed by Borges et al. (2006) reducing the
computational cost and increasing the precision of the numerical calculations.

In following, the thermal model represented by Fig.1 and the obtaining of its analytical solution using Green’s function
(Fernandes, 2009) is obtained.

3.1 Exact solution of the thermal model using Green’s function

The thermal problem proposed to be reproduced experimentally is given by a sample initially at a uniform temperature
T0. The sample is then subjected to a heat flux [W/m2] while all other surfaces are maintained isolated. Figure 1 shows
the thermal model.

∂2#

∂u
+
∂2#

∂v
+
∂2#

∂w
=
∂#

∂�
(9a)

In region A and �+ > 0, subject to the boundary conditions:

− ∂#

∂v

∣∣∣∣
v=W

= q+(t) in A1 region:
L1

L
≤ u ≤ L2

L
and

R1

R
≤ w ≤ R2

R
(9b)

∂#

∂v
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= 0 in A−A1 (9c)

∂#

∂u

∣∣∣∣
u=0

=
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∂u
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u=L

=
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v=0

=
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w=0

=
∂#

∂w
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= 0 (9d)

and the initial condition,

#(u, v, w, 0) = 0 (9e)

where A is defined by (0 ≤ u ≤ 1, 0 ≤ w ≤ 1) and A1 is region where the heat flux is applied.
In Equation (9) dimensionless group are defined as:

u =
x

L
; v =

y

W
; w =

z

R
(10a)

� =
�ref t

W 2
; #(u, v, w, �) =

T (x, y, z, t)− T0
qrefL
kref

q+ =
q(t)

k

kref
qref

(10b)
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where �ref , represent a reference value of thermal diffusivity.
Equation (9) represent a direct problem of heat conduction. If the dimensionless heat flux q+(t) is specified. On

the other hand, the inverse problem is established when q+(t) is unknown. The various solution techniques of inverse
problems (or optimization problems) have as procedure the evaluation repetitive of direct problems, always using with
estimated or calculated values of heat flux density in an iterative process. Thus the proposed solution of the direct problem
Eqs.(9) will be presented considering a known transient heat flux. In order to simplify the results, the direct problem
solution is presented in its dimensional form considering definitions in Eqs.(10).

T (x, y, z, t) = T0

+
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where m,n, p are the number of terms required for the convergence of series.

4. ANALYSIS AND DISCUSSIONS OF RESULTS

4.1 Analytical Results Comparison

Some results obtained during development of the tridimensional thermal model proposed are shown here. Comparison
with an established analytical solution of a simpler problem to ensure the precision of the proposed analytical solution is
also shown. In following, a comparison with the numerical solution of the proposed problem is made showing the thermal
properties and the computational time.
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Figure 3. Schematic of a retangular solid with heated superior surface and all other surfaces isolated with locations of
positions used for comparison.

In the simpler problem the entire superior surface is heated and the other surfaces are isolated as shown in Fig.3. In
this case, consolidated results are available in literature (Walker and Beck, 2008). The cube of sides 1cm of AISI304
stainless steel (k = 14.9[W/mK] and � = 3.95× 10−6[m2/s]) is subjected to a constant heat flux q = 105[W/m2] for
t > 0.

Initially the cube is at uniform a temperature de 30oC. Figure 3 shows the locations of positions used for comparison.
Table 1 shows the temperature values obtained by the proposed analytical solution (new) and those obtained by Walker
and Beck (2008) the different locations proving the accuracy of the proposed analytical solution.

Table 1. Comparison calculated using analytical solutions

Time[s] T1[oC] T1[oC] T2[oC] T2[oC] T3[oC] T3[oC] T4[oC] T4[oC] T5[oC] T5[oC]
This work Ref.∗ This work Ref.∗ This work Ref.∗ This work Ref.∗ This work Ref.∗

0 30,00000 30,00000 30,00000 30,00000 30,00000 30,00000 30,00000 30,00000 30,00000 30,00000
20 105,38577 105,38591 105,38577 105,38591 80,22371 80,22371 71,84004 71,84004 80,22371 80,22371
40 158,41149 158,41163 158,41149 158,41163 133,24385 133,24385 124,85459 124,85459 133,24385 133,24385
60 211,43163 211,43177 211,43163 211,43177 186,26398 186,26398 177,87472 177,87472 186,26398 186,26398
80 264,45177 264,45190 264,45177 264,45190 239,28412 239,28412 230,89485 230,89485 239,28412 239,28412

100 317,47190 317,47204 317,47190 317,47204 292,30425 292,30425 283,91499 283,91499 292,30425 292,30425
(∗) Walker and Beck (2008)
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Figure 4. Error between the analytical solution of this work and those obtained by Walker and Beck (2008) for different
locations



Proceedings of COBEM 2009
Copyright c⃝ 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

4.2 DPT Code Using Analytical Solution

In the following will be presented results for the use of analytical solution in the thermal diffusivity and conductivity
estimation by using DTP code as describe in section 2.. The comparison with the numerical solution is made using the
three dimensional transient thermal model shown in Fig.1, In this case, only part of the superior surface is heated. The
cast iron block has dimensions of L = 0, 0805m, W = 0, 008m and Z = 0, 06m and the heated region, S1, is defined by
0 < x < 0, 005m and 0 < z < 0, 005m.

As mentioned two thermocouples are used to measure the temperatures. The thermocouples T1 and T2 are located at
(0, 0378; 0, 008; 0, 003) and (0, 0345; 0, 008; 0, 0438) respectively. The results obtained numerically and analytically are
compared in Figures 5 and 6.

It should be mentioned that with the heat flux estimated in the last step of the algorithm of Beck et al. (2006), we
have a direct problem whose results are temperatures. In this sense, Figure 5(a) shows the heat fluxes estimated using
the analytical and numerical solutions. The good agreement between them is clear. The maximum deviation between
the estimated heat fluxes is 3% (Fig.5(b)). Figure 6 shows the temperature evolution at locations T1 and T2 using the
respective estimated heat flux shown in Fig.5(a).
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Figure 5. Heat flux for a cast iron sample
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The maximum deviation observed of 0, 12oC (0,4%) includes not only numerical dispersion but also the influence
of each heat flux on the solution (Fig.6(b)). In this case, the main contribution is in the computational time as shown in
Tab.2. The difference between the two is of order of 7500%. The analytical solution took 5 min and the numerical solution
took 6,7 hours. This time corresponds to all procedures to obtain the thermal properties, including the optimization by
iteration. The deviation in temperatures and in heat fluxes were responsible for deviation in estimated values of thermal
conductivity and diffusivity of 1,7% and 2,6% respectively.

Table 2. Comparison between estimated values of thermal diffusivity and conductivity and the computational time using
DPT with numerical and analytical solutions

Solution type Thermal diffusivity [m2/s] Thermal conductivity [W/mK] Computational Time [s]
Analytical 1.13× 10−5 ± 0.023× 10−5 42.59± 0.51 305.00s (0.085h)
Numerical 1.10× 10−5 ± 0.017× 10−5 43.32± 0.39 23040.00s (6.4h)

5. CONCLUSIONS

The complexity of a thermal model in relation to analytical solutions is in multidimensional transient problems sub-
jected to non-homogeneities such as boundary conditions of prescribed heat flux or boundary conditions such as time-
variable temperature. The use of Green’s function adapts efficiently to this type of problems. This study shows the great
contributions of the use of analytical solutions in inverse problems, once the optimization algorithms usually have to cal-
culate the direct problem several times. The use of analytical solutions not only increases the precision but also reduce
"drastically" the computational time.
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