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Abstract. This work proposes a new methodology to solvertbenipressible Navier-Stokes equations. It emplays a
analytical method based on the split of the orijiequations, followed by a genesis of differenéglations. The
problem is solved in two steps. The first step ists1sf applying a split on the Navier-Stokes eiqunest which result in

a set of three inhomogeneous partial differentgli@ions, each containing the time derivative amelwiscous terms.
These equations are solved through mapping themfiirst order ones, which provides the velocitydfidJsing this
result we obtain a variety which defines the strefamction prescribed in the genesis and, ultimatédy plot the
corresponding streamlines. This sequence allowsudee of portable computers to achieve simulatiosults for
engineering problems in small enough processing tithese advantages can be put to use in problecis &s
unsteady turbulent flow calculations or pollutioisgersion simulations in water bodies. Simulatiarese performed
for incompressible viscous flows around a spherdkfeynolds numbers ranging from*16 10.

Keywords: turbulence, analytical method, Navier-Stokes;ois flow
1. INTRODUCTION

Obtaining solutions for the velocity field in turdleat tridimensional flows usually require very highocessing
times. The hybrid method proposed here is basedyormetries (Ibragimov, 1995) admitted by Partiafféential
Equations (PDEs) which describe the velocity andtieity fields around Submersed Bodies (S.B.). Qufethe
advantages of the proposed method resides in megltioé simulation processing time compared to tw@unumerical
methods (Bluman and Kumei, 1989) employed. Theiobthsolutions are particular, although consisvéamieties
containing enough arbitrary elements to satisfyréstrictive conditions of many related problems.

For many years analytical methods were not emplagedolve Transport Phenomena problems due to two
important factors: first it is difficult, if not ipossible, to obtain closed-form solutions for maashlinear problems in
this area; in second place comes the great imprdseived by numerical methods from the developmant
computational resources during the last half cgmtRecent attempts to obtain closed-form solutifimsthe Navier-
Stokes equations for internal flows, although withthe use of symbolic computational solvers, waegle by Lyberg
(Lyberg and Tryggerson, 2007). In some geometricalyplex cases, for which computational times &hetso long
for most numerical methods, symbolic computatiswVers regained the viability for some analyticedthods where
they are more convenient and more efficient if prop applied. Numerical tools like Direct Numeric&imulation
(DNS) (Freire et al., 2002) are used today to geeebenchmarks to validate other methods, butsésta solve
engineering problems is yet at this time not viabigh the computational power available to mostesgshers,
especially if one needs to use mobile computersnédke real-time decisions (White, 1991, pg.397). Sayreat
advances in the solution of turbulent flows weredenahrough the use of Large Eddy Simulation (LESiicl,
excluding transition and other complex regionglisady a viable solution as we will comment furthbead.

2. USING HYBRID METHODS
Analytical solutions for viscous flows traditionalfollow this order of execution:

a') Obtain a closed-form solution for the problem;
b") Particularize the solution through the iniiad classical boundary conditions.

This basic and almost obvious sequence virtuakévgnts obtaining solutions for most boundary valteblems.
This also takes for granted that the equation$éir traditionally employed forms can fully reprasall the physical
phenomena involved. These traditional forms seemesdhat troublesome when dealing with turbulenctheeiby
restricting their use to less complex geometricaharios, or by the need to combine them with ferime models. To
overcome these shortcomings LES applies Sub-Gridle¥sp which replace the direct solution of the [itsls
phenomena by energy generation and dissipationngsns. Those models allowed LES to deal with most
geometrical scenarios, except a few challenging,obet they don't really address the mathematittrpretation of
the physical phenomena.
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The proposed method divides the solution in twpstiirectly related to those classic ones prewosisited:

a”) Obtain a variety that can be applied to thgéded scenarios;

b") Constraint this variety through realistic it and boundary conditions, which will not masle ttnechanisms
that generate the physical phenomena involved.

These particular solutions are those which can beeraasily obtained through the use of symbolic patational
software, but are still ample enough to descrileeptoposed physical scenarios. The method canilbesthto obtain
solutions valid to specific regions of the flowgchuas the upstream or entrance region, the detathegion, the wake
region and the undisturbed region. These regioes e have their solutions bounded by auxiliarg s#tequations
which ensure that they and their derivatives arginoous through the interfaces. The advantageawing a small set
of solutions is that we can particularize eachit®rspecific region, but still have just a handfilregions instead of
thousands of infinitesimal grid subdivisions tov&lThis “analythical grid” contrasts with a typidatrahedrical LES
mesh around a sphere containing 1.2 &riftles and 6.6 x $@lements (Geuzaine).

In order to obtain our solutions for a viscous flamound a sphere we will use both Navier-StokesHldhholtz
equations (Beck, 2005). This choice relies in thet that the former equations still doesn’t haveitalsymmetries
available in the literature for turbulent flows,dathat the floating components of these flows dan he modeled by
the solutions of the later set of equations, bez#usy belong to the null space of the rotatiomarator.

3. SOLVING THE FLOW AROUND A SPHERE

We will first make a split in the equations to geate an inhomogeneous PDE set. This first steptali# us to a
possible solution containing arbitrary parametemd éunctions, which will then be used in a genésirder to
particularize it to accommodate physically consissolutions for turbulent viscous flows.

3.1. Stream Function and Three-dimensional Velocityield

The usual stream function definition found in litire is two-dimensional. In order to plot the atnines around a
sphere in a section of the flow, we will need tdefne the stream function for the three-dimendicase, because the
velocity field renders post-processing harder toieae. We will now define a particular stream fuontfor our case
and the correspondent representation for the ugléeid.

The Continuity Equation for incompressible flowgépresented by a null divergence of the veloaitgter, and the
trajectories defined by the isosurfaces of theastréunction represent the continuous net of poiitere the velocity
vector is tangent to it. A completely vectorial foof tridimensional stream function was implementsdElshabka
(Elshabka and Chung, 1999). Though this vectooainfis physically correct, it doesn't help the pigt process.
Instead, we will use a stream function which hasaitplitude defined by a vectorial field obtainedni a scalar
function {, given byF({ ¢ /). This function has fixed direction, but allows wseasily reproduce the vortex

structures. Let's make an axial vectorepresent the velocity vector’s solenoidal portitre potential portion being
given by the polar gradient af The complete definition of the velocity vector is

V=0OxFyyw)+tOp 1)

which implicitly satisfies the equation of contitpand produces the cartesian velocity componenttsa form

u=29,9% 9y
i i Kk ox o0y o0z

2
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Using the definition w= 0xV , we obtain the cartesian vorticity components, nehthe potential terms are, by

definition, eliminated. The most important diffecenis the treatment of the stream function as ksdiald, through
which we generate a vector one. This choice istitonly possible representation, but it allows gitally realistic
conditions to be implemented and helps to solveptbhblem at the same time.

3.2. Split and Genesis of PDE’'S

A genesis of PDE’s will now be apllied to solve flr@blem through the use of a mathematical conuitibich part
of the equation will have to respect. Let's startamalyzing the Navier-Stokes and Hemholtz equatistructures. By
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conveniently arranging the equations’ terms in egat notation, we obtain for the Navier-Stokes &ipns the
following form

N _ o =—vov-10 p (3)
at = T p

and for the Helmholtz equations

%’—UDZ@:—\[D@—@.D\[ (4)

Both equations can be expressed using the form

Z—E—UDZE =N (5)

whereN represents the remaindered part of each equatimhthe vector functiorF stands for thevelocity fieldin

Navier-Stokes equations and to tharticity vectorin Helmholtz equations. The linear operator appeggin the left
hand side of (5) will from now on be calledl whose formal definition is given by

A:aa(;)—uDz(-) ©

The mathematical property that allows us to malkpld is that the linear portion belongs to the nullcgpaf the
divergent operator, or

D.(aE—UDZE]:O (7)
at

This also means thaﬂ.(N) =0, which shows thaN results from the the rotational operator beingliagpover a
vector field ', such as

N =0 x r (8)
where a potential field which is usually addedhe solenoidal part was intentionally omitted. Bipdit will result, both
for Navier-Stokes and for Helmholtz equations, syatem expressed in the form

AlF]=Q ©)
N=Q
whereQ is, for the time being, an unknown source. Nowoas start to solve the linear portion of gmit, which will
be made easier by using a differential operatoaligpof mapping exact solutions into new and monela solutions
of this equation. This operator, which we will cBll when applied over a vector functiéi will transform it into
another vector functioRy.; that also belongs to the space of solution8[6]=Q. This means that the opera®adds
to our system the auxiliary equation

A[B[F]]=Q (10)

Hence, operatoB induces auto-Backlund transformations over exakttions of A[F]=Q. For sake of simplicity, the
structure of this operator is prescribed as

B=al(), p20), 20), 00), ¢ (12)
dx oy 0z ot
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wherea, b, ¢, gandh are linear functions ix, y, zandt, beingl the identity operator. Next we apply operaBoover
Eq.(10) in order to obtain its functiona, b, c, g and h from the differential equations resulting from

functionF derivatives’ coefficients, as will be explained hex

3.3. OperatorB and sourceQ models

The linear equation of system (9) is givenAj$|=Q, beingQ an arbitrary vector field that obeys to the Cauitipn
Equation. Isolating the time derivative, the equathppears in the form

of _ 9°f o°f  o°f
—=—U| —+—+— |+Q
ot (ax2 ay? GZZJ (12)

Replacing the correspondent expressiol][ifi the time derivative is eliminated before we sitbst the resulting
expression in the auxiliary equatiéfB[f]]=Q.

An equivalent way of simultaneously imposing thetrietions A[f][=Q and A[B[f]]=Q resides in applying the
comutativity condition over operatofsandB. This implies thaB operates Symmetries admissibleA}§]|=Q, in other
words, it transforms previous exact solutions iwmxact solutions of this equation. Besides thgtaadingA[B[f]]=Q
makes clear that the time derivatives f{y,z,t) are null. By making each individual coefficient tife function
derivatives null, we are able to kekps an arbitrary function. Once we apply o#&f]-Q=0 and A[B[f]]-Q=0 all the
restrictions from the coefficients, a#luxiliary equations are identically satisfied, rémrag only the following
differential restriction for the source

0 0 0 X+ B
(A3000+A000:I!:+ BOOOy)aig-'-( 80006'- BOOOI+ 8008& BOO;(-’(yg-F( COE)E Boo)’aiczg"'(w_lj QO (13)

which is equivalent to the fixed-point equatiBfQ]=Q. Solving this equation using the method of chamdstics we
obtain forQ two arguments:1 andu2. To use a convenient notation we can rename timainéng constants thus:
Aooo=Ao» Aooo=A1, Boor=Bo, Booor=B1, BoozB2 ,Booo=B3 € Coo=Co , €xpressing sourd@ in this form:

Q:g[/w @ty{%}— Bx Btx Bxt & At Byd{ £ . y}

Z[ A
“Ra27 20

Since the structure of the sour@ds also valid for the unknown funtion, its form stie valid for every functioh
that satisfies theplit. This means that it can be used to express tleaaiolal portion of the velocity field, as well &t
vorticity field.

(14)

u(-CotBY) Al Ax B Y

3.4. Obtaining the Stream Function from the Velociy Field

The form obtained in (14) posesses enough arbitanstants and functions to allow us to imposeedtrictive
conditions we need. Though manipulating it throwymbolic solution software is more convenient usengnore
suitable generic variety, such as

V, = gy(ay, By) €% 29 (15)

where the indeX is used to show that each of the velocity vectomponents depends upon a different funti¢a,f)

distinct from those of the other components. Fumdi(x,y,z,t) however, is the same for all three cartesian comapts
of velocity. This comes from the fact that the ity field variety is equally valid for the vorttgi field. If we try to
obtain the vorticity field by applying the rotatminover the velocity field, we will conclude that function h(x,y,z,t)
was different for each velocity component, we wohbd/e a vorticity field variety with many terms tead of the
single-termed form previously obtained. Otherwigethe exponential functiom(x,y,z,t)is identical for all velocity
components, the form for thevorticity component would be given by
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oy dy 0z 0z

where the sum between parenthesis can be regasdachew functiony (On+1,, Gvs2,,9'n+1,.9'N22:,0"), corresponding
now to the generic form previously prescribed. Newx¢ force the stream function isosurfaces to malehlocal
velocity field tangents, by imposing that its matkderivative is null

Dy @ d d d
DY 0% O 1y 0%\ O —g 17)
Dt ot 0x oy 0z

Expression (17) defines a hipersurface over whighstream function space and time variations cosgiereach
other mutually, keeping its value constant. In orfgethe stream function be an arbitrary functiériveo arguments;
(x,y,z,t)and @ (x,y,z,t)we should zero all the coefficients of its derivas in Eq.(17). Solving the resulting system we
reach a relationship between these two argumentheofstream function. To do so, first we replace Welocity

components by a model based on Eq.(15), as wélleastream function by// (7 ,6), and then aplying the chain rule to
recast its derivatives, yielding the following egpsion:

DY(7.8) _ 3n(x.y. 290w (1.8), 36(x ¥, 290w ¢ B),

Dt ot an ot FY:
(9, (@ B) N . 2 o)("’ﬂxéxw 2030100) 200 1 2190 ,e)]+ o
(9, (a2 B.)h) (% ¥ 2 D(a”(xé;” z,t)awa(fl77,6)+ae(>;yy z t)awaz,e)}r
(9:(as B)N(% v, 2 t))[a”(xé:v z t)64’/6(/,77,67)+ ae(zzy, z Daz//aeg,e)] o

The system to be solved includes two aditional #gas. The first is the continuity equation for émspressible
flows, which implies that the divergence of theogity vector is null:

D.v:%+%+%:o (29)
T 0x 0y 0z

The second is the condition of independence betwe#marguments of the stream function:

DU.DH:O_”%+O_”%+6_”%:O (20)
OXx 0X 0dyody 0zdz

This restriction is necessary to ensure that theast function really depends on two variables. Byading each
individual derivative coefficient to zero in (18)wobtain an auxiliary system to solve. We starisojating one of the
velocity components in one of the coefficient equat and replacing the equivalent expression indtier two
velocity equations. These definitions will thendgplied in Eq.(19), cancelling the derivative caééts of g, g, and
0s in order to keep themarbitrary. Simplifying the resulting system we dht¢éhe following relations between the

derivatives ofp and @

09 _0ndd jon _ , 00_0nd8 [on (21)

dy 0y dx/ 0x 0z 0zdx 0Xx

If we isolate the time derivative @& in (18), replacing the resulting expression agldtions (21) in Eq.(19),
this last equation is automaticaly satisfied, lagvonly relations (21) to restrict the stream fiorctarguments final
form. It is worth noticing that these remainingtrigsions depend only upon the velocity compondrasging the form
expressed in (15) and not forcibly those of (14),irs the following deductio®/ will not be restricted to the form

initially obtained for the sourc®.
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Now, using relations (21), we can set an arbitfaryn for one of the arguments in order to obtaia tither, and
then we can apply the boundary conditions. If weuldike to do both steps together it would be cament to
arbitrate a form fory and & which could work as ortogonal coordinates in acepaith axes7, 8 and {/ (n7,8). The

most convenient way to apply the boundary conditisrould contemplatey and 8 that could express as a set of
coordinates which

a) for constant values @ reproduce hypersurfaces parallel to the S.B. liksé¢ in a potential flow;

b) reflected the way the disturbances propagatm fiee surface, passing the boundary layer and lukyoat
through the wake towards the undisturbed flow.

Both objectives can be achieved arbitrating on@farguments, for exampgjein this form
n(xy,2=R(xy 3l £(xy)P (22)

wherefc(X,y,z) which we will call from now on theontour function serves to describe the position of each point
relatively to the S.B. boundary position. Specifyift (X,y,z)in such way that it will be unitary wherg=0, that would
be over the isosurface where the stream fundfitie null and over the entire S.B. surface. The highan the unit the

value of7 becomes, the farther the point is located fromstiéace. FunctioRy is, in the region the flow passes by the
S.B., atransversal reference relative to the S.B. surfdaehe region before and after the SR.s refers to the line or
symmetry plane of the main flow direction. For &age, centered in the origin and with the main flawhe direction

of the X axis, in its surroundingg, =/» + y+ 7 - B, which is the distance from the point to the stefaand in the

rest of the ﬂoszT :,/y2+ 7, representing the distance from the point to Xhaxis. When we apply (22) to the
relations (21), we easily obtain a solution in (&atic software) command line to the form&fwhich is

O(xy.z)=d(R(xy2E £(xyP (23)

This way 7 possesses a functida (x,y,z)which allows us to change the S.B. geometry asssary, and? becomes
an arbitrary time dependent function capable ofaeépce other factors related to diffusion and tlebudisturbances.

3.5. Propagation of Disturbances
As we previously stipulated, both stream functioguaents should have such forms that will allowtagxpress
turbulence generating disturbances, as well as pepagation through the body of the flow. As sasnwe eliminate

n time dependence, we have transfered tbe need to express the flow disturbances. To deeswiill consider that
the S.B. roughness can be expressed as a senoidtibfi. Theformal solutionof a differential equation such as

ot

wheref(ry,...,I,,t) is a function of space and time afvds a differential operator, exists and is
f=[e"]f, (25)

wheref, represents in function the initial instarD. To obtain an explicit solution, we expand the angntial of the
differential operator in a Taylor series

o tkAk
=y " (26)
k=0 K:

Let operatorA be such that it transforms (24) in an advectivitudive equation, for simplicity sake unidimensigna
like a Burgers-type equation, given by

of _, of 0 f
=f +u

2-¢+24 27
ot ox  oX @D
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and the unknown functioh be a senoidal disturbance of velocity suchyds= ¢ ser{g 3. The first terms of the series
in the explicit solution would be

SF,.. = (& setty )()+U(£¢f seip )% g sép ) cos@ ))Xr . (28)

The first term simply reproduces the disturbanag,the second term shows the effect which both etilxe and
diffusive terms of the equation exerts over it. Tirst part of the second term represents the siiffu of the
disturbance, which depends explicitly on the refati/¢? . Since the order of magnitude of the viscosityliguids is

10°[m?s], the higher frequencies, which have wave nusigesmaller than 18m, will be amplified by this term
through most regions of the turbulent wake. Th@sddgart of this term represents the advectiomefisturbance, but
it also generates a new fluctuation with wave a lpemnthat igwice that of the original one. It is easy to recogritzat

epsen(@ R cos X)= &W (29)
which means that the new disturbance has twicetiginal wave number and its amplitude multiplied ¢/ 2. If this
factor is higher than one, there will be amplifioat of this new disturbance. It is important to inetthat, since

viscosity doesn't change, the relati<uﬂ¢2 makes each advective part of the next term of #rees geometricaly

amplify the harmonic generated by the previous &Wben any methotinearizessome equation term, it is not only
approximating the solution, but also eliminating #dditional harmonics generated by it. This happeEtause a linear
PDE formal solution is only capable to amplify candpen the disturbance with the original wave numibdhout
producing new disturbances with larger wave numbers

Thinking about physical consistency, terms thategete disturbances with wave numbers smaller timen t
molecular scale of the fluid are not realistic, dmel series must be truncated before them. Thalhysit is important to
observe thabne should only apply a magnitude order analysisliminate terms of the solution, but never to eegl
terms of the corresponding differential equatidimese arguments allows us to conclude that, weesimulate flows
around boundaries of submersed bodies, if we répecinfluence of some term due to its small ofemagnitude we
will probably be eliminating the geration, propagatand amplification of high frequency disturbasdéem this S.B.
towards the bulk of the flow. Classical analysisdsh on the Reynolds Averaged Navier-Stokes equaiiBANS)
(Schlichting, 1979, pg. 450) usually make this akstby eliminating quadratic disturbance terms,dtuhe same time
they recognize the existence of high frequencyudisinces through experimental observation. The e
consequence of these simplifying attempts, causethd® elimination of some of the disturbance-getiegaterms,
induced these same researchers to look for songinasf flow instability in the upstream region aeden in the
undisturbed flow (Schlichting, 1979, pg. 400). Tegsossible sources must not be underrated, but ithetistence
should not prevent an eventual transition from famito turbulent flow inside the boundary layerwé have the
physical mechanisms responsible for generatingutarite present in our formulation, we should be dablsimulate
any flow from its initial undisturbed state all theay to turbulent flow. As important as this, is notice that the
classical boundary conditions are equally inadexjlesticause they are not capable to reflect any méesha from
dimensions close to molecular scale. Spacial and fiverages, represented by second-kind boundaditioms are
valid aproximations only for macroscopic phenomenmhich are restricted by the continuum hypothesid exclude
some of the mechanisms responsible for the onseitrbéilence. It would equally incoherent to consittat a small
layer of fluid particles was attached to the boumdthus respecting the classic conditions, becthe® is no plausible
justification that forbids a second layer to sliyeothe first one: or both layers have some measuséip or both are
solidary to the boundary. The second hypothesiddwoot allow any flow to occur, so we are logicallgjven to admit
thatphysically there cannot exist a no-slip conditibatthere must exist a partial slip conditigRanton, 1996, pg.142)
described by a boundary condition of third-kind.

Resuming all previous considerations, we can stwe classical boundary conditions are not phykicadherent
with microscale-related phenomena. They can onlgdrsidered time and spatial coarsed-grained agsrafjthe real
boundary conditions, and their importance dimingsimethe same measure as we approach moleculergmahomena.
Since turbulence involves such phenomena, we shuatigrally apply an adequate stream function didimiat the
boundaries. To do so, we will translate boundamnyghmess as a summation of senoidal componentshwwhiic
generate a series of disturbances proporcionaktductuations of the velocity components over$hB..

3.6. Restrictive Conditions in Turbulent Flows
A third-kind boundary condition simply makes thendtion derivatives proportional to the functioreifs The less

restrictive way to apply this condition is a di#etial constraint over the function, because itstiteneed to be
associated solely to the boundary, but it can edflect the way the physical phenomena generatateirboundary
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propagate throughout space. In this particular fitroan represent the way a specific phenomenate®ito a specific
flow variable, whether it is one axis, the timeemen an auxiliary variable such ar @. If such condition is related
for example to th& axis, it would have a form like this

M: fl(X,y,Z,t)l,[/ (30)
0X

wheref; is a function which depends upon all argumentsriteothaty/ won't be forcibly linear irx. Integrating Eqg.
(30) generates a stream function in the form

X, Y,2, I)dx (31)

f

wixy.29=g(y 294"
which we can restrict by stablishing asymptoticdibans for great distances, over the boundaryhninitial moment,
and after the flow is fully developed. ObservingX3ve can see that functiaa depends upon all function arguments
except those over which the differential restrictiwas imposed. In order to its form be general ghao fulfill the
above requirements, we can say that funoggras well as the argument of the exponential, shbala sum of various
terms. Each term will be related to some possiideubance propagation or dampening mechanism,hghétn the
spatial variables or in time. So we will apply dfeliential restriction over; in the form of Eqg. (30), making the
disturbance at=0 to be null. Since we have imposed a senoidal fdisturbance, functiog,(6) will be a sine whose
argument vanishes fox0. For the sake of simplicity it will be multipliday t, or makingé such as

f=ct.g,(R(xy3.0- £(xyd) (32)

Over the boundary the exponential must be equaln® in order to =0, so a form capable of satisfying both
conditions would result in a stream function like

w=U,,d"""sen g(6)) (33)

where functiorf, in the argument of the exponential is the genferim of the integral off; seen in (31), being valid for
the downstream region of the flow. For the undistar and upstream regions the stream function ivalgmt toU .77

, which is the usual form of expressing it in twadnsions.

To reflect the disturbance dampening, both in tlénnflow direction and transversally, other terms added to the
argument of the exponential. This same stream ifmmdbrm can be obtained through a microscale maysinalysis of
the fluid behaviour close to the S.B. surface. T@haviour is a summation of the disturbances geeérby each point
of the surface, whose influence can be obtainedutitr a convolution. The resulting form for the atrefunction
would be

_eCGR_QRG_
|n{1+e02(9)]

y=U.1+g,(6)sen(g, (s)) (34)
whereR, is alongitudinalreferencein the flow direction obtained in the same way vié for Ry , and coefficient€;
to C, can be constants or depend upon the S.B. dimensiorvelocity components in the undisturbed flay .
Functiong; represents the contribuitions of all other vamghlvhich are not included in the senoidal distuckan

All the restrictive conditions applied so far stdllow us to haved as an arbitrary function, so we chose the
following simple polinomial form for@

H:\/LUJ“RPt ~(c+Re@- £))+

(o+RO-) (35)
2

wherec, is an arbitrary constant and the fraction to éf$ Is a proporcionality factor multiplied by tim&his factor
takes into consideration many physical featutest can have influence over the disturbance, wimcheases with
velocity, is inversely proportional to its distante the S.B. surface, and is also dampened by fligdosity. We
obtained results truncating this series in thet,fisecond and third terms, but there was no peideptlifference
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between these three attempts, showing that thesseonverges very quickly. So in our simulationsused only the
first term of the series.

4. RESULTS
The following plottings were obtained for a watkwf with main direction over thX axis, using a unitary radius

3D sphere, in a section located over X¥plane. The streamlines resulting from the intarsacof the cutting plane
with the hypersurfaces of the stream functifinclearly display the vortices generated in theaefof the sphere.

Figure 3.1 - flow around a sphere f®e=10,000
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Figure 3.2 — flow around a sphere fRe=100,000

Qualitative characteristics of the wake, such a&swidening of the wake angle around the body, al agethe
increase in length downstreamRssincreases (Landau and Lifshitz, 1987, pg.152),lmawmery clearly observed. Flow
simulations with Reynolds numbers ranging from 0,80 100,000reflect the evolution from alternating vortices to
turbulent flow, showing that the model has goodspectives in flow analysis over a very wide ranfyeatocity values.
The more homogeneous distribution of small dimemsiortices, which is the effect of th@rtex stretchingerm in
Helmholtz Equation, can be clearly seen in the ktman obtained foRe=100,000 of Fig. 3.2, which shows the flow
approaching the transition from laminar to turbtléow. Further development of the method will adhe simulation
of flows with higher Reynolds numbers.

5. CONCLUSIONS

We have shown here that small flow disturbanceslgi@pof generating turbulence can be justified ugto a
physically coherent interpretation of the phenomevtich occour between the fluid and the S.B. swfaBy
associating this interpretation with the proposetthod, and applying it over Navier-Stokes and Healitizhequations,
we obtained qualitatively realistic simulations fascous incompressible flows.

The relative simplicity of the simulation algoritsnallowed us to obtain stream function plottingsaim average
personal computer, in very small execution timegrvbompared to those demanded by numerical sironfatiThe
hardware used had an AMD Opteron 165 dual coreGH& processor, using a total of 2 GB DDR-400 memory
resulting in processing times varying between 2&sds and 5 minutes. Equivalent hardware is todaylable at
reasonably low cost portable computers. The harewartability and the small enough time necessarpdrform
simulations are compatible with real-time decisioaking, both desirable qualities to solve engimegproblems.

All the adequation of coefficients and arbitrarydtions, as well as further adjusting the distudeafunction, must
be done taking into account experimentally obsergeturbance frequencies. These improvements witlhpthis
method towards a more faithful representation efdisturbances generated by a S.B. over the flathpwt the need to
sacrifice its features, e.g., the computationalggerance and its easiness of implementation.
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