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Abstract. Non-Newtonian fluids are known to display distinct differences from Newtonian fluids in many kinds of geophys-
ical and engineering flow situations. Rivlin (1957) was perhaps the first to investigate the relation between the laminar
flows of non-Newtonian fluids and the turbulent flows of Newtonian fluids qualitatively. He noted that there is some intrin-
sic similarity between their constitutive equations. Speziale (1996) used a CEF (Bird et al., 1987) constitutive equation to
propose a closure model for the Reynolds stress tensor as a function of the basis constituted by the rate-of-strain tensor,
its square, and its contravariant convected time derivative. For steady-state problems this assumption leads to the three-
basis tensor explored in Jongen and Gatski (1998), Schmitt and Hirsh (2000) and Schmitt (2007a,b). This model is used
to fit DNS data for the channel flow. The results are given as function of entities that are defined in a non-Newtonian vis-
coelastic context. The turbulent viscosity exhibiting a shear-thinning behavior, is fitted with a Carreau-type model. First
and second normal Reynolds stress differences in shear and a Turbulent Weissenberg number, based on a characteristic
turbulent time, the relation between first normal stress difference and apparent kinematic viscosity, are given for different
Reynolds numbers. The results give another way of understanding and interpreting turbulence results and new insights
are in order.
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1. INTRODUCTION

Non-Newtonian fluids are known to display distinct differences from Newtonian fluids in many kinds of geophysical
and engineering flow situations. Rivlin (1957) was perhaps the first to investigate the relation between the laminar flows
of non-Newtonian fluids and the turbulent flows of Newtonian fluids qualitatively. He noted that there is some intrinsic
similarity between their constitutive equations. Later, Liepmann (1961), Moffatt (1965), Townsend (1966), Crow (1968)
have performed some research work on the molecular or structural features, elastic behaviour and entrainment process in
the flows of Non-Newtonian fluids, and Lumley (1970), Proudman (1970) Builtjes (1977) proposed some new nonlinear
models for the constitutive relation for the Reynolds stress considering viscoelastic features. Recently, Tao et al. (1996),
Chen et al. (1999), Huang et al (2003, 2004) have performed some "nonlinear" or "viscoelastic" corrections to the previous
models to describe the anisotropy and history effects in the flows of Newtonian and non-Newtonian fluids. Especially,
Groisman and Steinberg (2000) observed experimentally that the flow of a sufficiently elastic polymer solution can become
irregular even at low Reynolds number, high viscosity and in small length scale state, it shows all the main features of
developed turbulence.

Speziale (1996) used a CEF (Bird et al., 1987) constitutive equation to propose a closure model for the Reynolds
stress tensor as a function of the basis constituted by the rate-of-strain tensor, S, its square, S2, and its contravariant
convected time derivative. For steady-state, homogeneous, 2-D problems, the dependence on the contravariant convected
time derivative reduces to a dependence on tensor SW −WS, making explicit the contribution of vorticity, W, on the
model. This three-basis tensor was explored by Jongen and Gatski (1998), Schmitt and Hirsh (2000) and more recently by
Schmitt (2007a,b) in the context of nonlinear eddy viscosity models (NLEVM). This class of models are an intermediate
step, concerning complexity, between the linear Boussinesq equation and differential models such as RANS-type models
(Reynolds average Navier-Stokes). It must be mentioned, that the general assumption of the dependence on such a basis
of tensors, also determines a set of tensor invariants the coefficients associated to this basis must depend on. The aim of
the present work is to use DNS data obtained for the channel flow to construct functions for the coefficients. One of the
basic assumptions made is that these coefficients are strong functions of second invariant of the rate-of-strain and weak
functions of the other invariants involved. The general backbone usual in a non-Newtonian viscoelastic context is used to
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present turbulent data and to construc such functions. Therefore, besides the concept of turbulent viscosity introduced by
Boussinesq, we have a turbulent first and second normal Reynolds stress coefficients in shear. A Turbulent Weissenberg,
WiT , based on a characteristic turbulent time, the relation between first normal stress difference and apparent kinematic
viscosity, is given for different Reynolds numbers. It provides a measure of the importance of the normal turbulent stress
with respect to the shear turbulent stress.

From Boussinesq hypothesis,we have the tensor form of turbulent Reynolds stress

R = νTS (1)

where Rij = 2
3δijK − uiuj .

In the 2-D nonlinear framework, a new projection initiated for algebraic stress models (Jongen and Gatski 1998) was
adapted to nonlinear eddy viscosity models (Schmitt and Hirsch 2000;Schmitt2007a,b) was proposed as follows,

R = νTS− β(SW−WS)− γ(S2 − 1
3
{S2}I) (2)

where the coefficients νT , β and γ are given as follows,

νT =
{RS}
{S2}

=
−2uv
a

(3)

β =
{RSW}
{S2}{W2}

=
uu− vv
a2

(4)

γ =
−6{RS2}
{S2}2

=
6
a2

(
2
3
K − ww) (5)

2. VISCOMETRIC MATERIAL FUNCTIONS

The mechanical properties of non-Newtonian flows are fully determined when 3 functions are known, either exper-
imentally or theoretically. These functions are called viscometric functions or material functions, and are expressed
against the strain variable a (see e.g. Schowalter, 1978; Barnes, Hutton and Walters, 1989; Irvine and Capobianchi, 1998)
as follows,

−uv = τ(a) = −η(a)a (6)

uu− vv = N1(a) = a2Ψ1(a) (7)

vv − ww = −N2(a) = −a2Ψ2(a) (8)

so we have using the approach in (3-5):

νT (a) =
−2uv
a

=
2τ(a)
a

= −2η(a) (9)

β(a) =
uu− vv
a2

=
N1(a)
a2

= Ψ1(a) (10)

γ(a) =
6
a2

(
2
3
K − ww) =

2
a2

[(uu− vv) + 2(vv − ww)]

=
2
a2

[N1(a)− 2N2(a)] = 2[Ψ1(a)− 2Ψ2(a)] (11)

(τ ,N1,N2) or (τ ,Ψ1,Ψ2) are viscometric functions or material functions. N1 and N2 (or Ψ1,Ψ2) are called the first and
second normal stress differences. For an unknown viscometric flow, these functions are experimentally estimated and
some general properties of the flow are inferred. For Newtonian flows, τ(a)/a is a constant independent of a, so if this
ratio depends on a, the flow possesses non-Newtonian characteristics.

To explore the analogy, we assume here that the total stress (turbulent stress + viscous stress) of a 2-D shear flow
corresponds to a viscometric flow, and see what can be said on the different viscometric functions.

First, the viscous stress for a Newtonian flow can be written as Rv = νS, so that the total stress is given by Rtotal =
Rv + R = νS + R, so

Rtotal = (ν + νT )S− β(SW−WS)− γ(S2 − 1
3
{S2}I) (12)
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So finally, the quadratic constitutive equation for the total stress could be denoted as

Rtotal = (ν + νT )S−Ψ1(a)T2 − 2[Ψ1(a)− 2Ψ2(a)]T3 (13)

where

T2 = SW−WS,T3 = S2 − 1
3
{S2}I (14)

3. DNS RESULTS

For 2-D turbulent channel flows, turbulent quantities are normalized as follows,

y+ =
y

y0
, U+ =

U

uτ
, τ+ =

τ

u2
τ

(15)

where the uτ =
√
τw/ρ is the characteristic velocity, and y0 = ν/uτ is the characteristic length scale, τw is the shear

stress at the wall and ρ is the density of the fluid. Here we want to build a universal model for 2-D turbulent channel flows,
so we consider the viscometric functions and coefficients using non-dimensionalized quantities. So

νT (a+) = −2η(a+) =
2τ+

a+
(16)

Ψ1(a+) = β(a+) =
uu+ − vv+

(a+)2
,Ψ2(a+) =

ww+ − vv+

(a+)2
(17)

λ =
Ψ1

2νT
= −uu

+ − vv+

4a+uv+ ,Wi = λa+ = −uu
+ − vv+

4uv+ (18)

Here Wi is the Weissenberg number, and λ is relaxation time.
In 2-D turbulent flows, total shear stress, denoted as τtotal, takes the form

τtotal = −uv + ν
dU

dy
= (−uv+ + a+ 1

Reτ
)u2
τ (19)

so,

τ+
total =

τtotal
u2
τ

= −uv+ + a+ 1
Reτ

(20)

Then we get the apparent viscosity

νapparent =
τ+
total

a+
= −uv

+

a+
+

1
Reτ

(21)

also we can define the parameters of Weissenberg number and relaxation time using νapparent,

λ′ =
Ψ1

2νapparent
,Wi′ = λ′a+ (22)

We consider here different publicly available DNS databases characterized by a range of Reynolds numbers from
Reτ=180 to Reτ=2000. The variation of velocity gradient versus y+ is shown in fig. 1 to verify the databases for the
cases of Reτ=180, 395, 590, 640, 950, 1020 and 2000. As expected, a+ is very large in the near wall region and very
small in the center region of the plane channel. There is also some similarity for the variation of a+ in the modest y+

region for all the cases.
Figure 2 shows the relationships between turbulent and apparent viscosities and shear rate. This result shows that

apparent viscosity can be used to remove the divergence problem of turbulent viscosity at large a+, since the curves
collapse for higher values of this variable. Additionally, it can be noticed that the viscosity is close to be a constant at fully
developed turbulent region of a+ < 10. There is a very good universal slope of about 0.9718 for apparent viscosity at the
near wall region of a+ > 10 for all the Reτ cases. It indicates that the values of apparent viscosity considered here cannot
correspond to a laminar Newtonian flow because νapparent depends on the shear, but the form of the νapparent curve can
give more information in the framework of a viscoelastic analogy that it has the same shape, which is first increasing, then
decreasing, as a pseudoplastic flow.
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Figure 1. The profiles of velocity gradient a+ vs. y+ in log-log plot.

The distributions of Weissenberg number is shown in fig. 3 versus a+ and y+, respectively, it exhibits that Weissenberg
number is close to be a constant to a+.

Fig. 4 (a) shows the curve of turbulent Reynolds stress −uv. We observe a power-law region of small a+ and also
some certain weak Reynolds number effects in this turbulent region. Also there is some same evolution law for the total
stress plotted in fig. 4 (b), the slope is a little larger than the value of 1, this indicates that the traditional gradient transport
hypothesis is not enough to describe the relationship between turbulent stress and mean shear rate. Also the results of
total stress illuminates that there is some benefits for us to model viscous stress and turbulent stress together to eliminate
some divergence problem.

Figure 5 plots the curve of the first viscometric function Ψ1 and second viscometric function Ψ2, it shows that there
is a good slope for us to build the model for Ψ1(a), and the value of the slope is very close to 5/3. The link with the K41
5/3 exponent is not clear here.

The results of viscosity and viscometric functions lead us to recall one of the Non-Newtonian fluid, the Carreau Model
which is expressed by following equation

η − η∞
η0 − η∞

= [1 + (λca)2]
n−1

2 (23)

Where η0 is the zero shear viscosity, η∞ is the limiting viscosity at high shear rates (suppose to be zero here) and λc is a
time constant calculated from the reciprocal of the strain rate at which the zero strain rate component and the power-law
component of the flow curve intersect.

Here we use this Carreau model to build a new model for viscosity and the viscometric functions, first for νapparent
we get the parameters (Fig. 2 (a)) as follows

ν0
apparent = 0.0755, n = 0.0282, λc = 1/12 (24)

so

νapparent = ν0
apparent[1 + (λca+)2]

n−1
2 = 0.0755[1 + (

a+

12
)2]−0.4859 (25)

For the first viscometric function Ψ1, since the two slopes in fig. 5) are very close, so we can consider a model with
the following form

Ψ1 =
(
ψ1 + ψ2[1− exp(−λca+)]

)
(a+)(n−1) (26)

For small a+ close to zero, Ψ1 tends to be ψ1(a+)(n−1) , and for large a+ goes to infinite, Ψ1 tends to be (ψ1 +
ψ2)(a+)(n−1). Refer fig. 5 (a), we can obtain the values of the parameters

ψ1 = 0.3792, ψ2 = 0.8372, λc = 0.3, n− 1 = −1.8275(fit1)or − 1.75(fit2) (27)

here in fit 1 the slope n− 1 = −1.8275 is evaluated from the small shear rate, however in fit 2 the slope n− 1 = −1.75
is evaluated between the values of the two slope -1.8275 and -1.7145, it looks model fit 2 is better than fit 1. so we have
the model for Ψ1

Ψ1 =
(
0.3792 + 0.8372[1− exp(−0.3a+)]

)
(a+)−1.75

=
(

1.2164− 0.8372e−0.3a+
)

(a+)−1.75 (28)
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For viscometric function Ψ2, we have (Fig. 5 (b))

Ψ0
2 = 0.006, n = −0.6036, λc = 1/9 (29)

so

Ψ2 = Ψ0
2[1 + (λca+)2]

n−1
2 = 0.006[1 + (

a+

9
)2]−0.8018 (30)

Finally, we have found a way to build this viscoelastic model for turbulent plane channel flow, using the model for
apparent viscosity and viscometric functions, the model can be written as follows,

Rtotal = (ν + νT )S−Ψ1(a)T2 − 2[Ψ1(a)− 2Ψ2(a)]T3

= {0.0755[1 + (
a

12
)2]−0.4859}S−

(
1.216− 0.837e−0.3a

)
a−1.75T2

−2{
(
1.216− 0.837e−0.3a

)
a−1.75 − 0.012[1 + (

a

9
)2]−0.802}T3 (31)

where

T2 = SW−WS,T3 = S2 − 1
3
{S2}I (32)

For this model for turbulent channel flow, we have introduced a viscoelastic model to find a new way to model the
parameters of νapparent, β and γ, instead of the old way of building the model by introducing some empirical constants
and the scale of turbulent kinetic energy and dissipation rate. So obviously, this new viscoelastic model for turbulent flow
will do benefits for us to consider the characteristics of memory effects and multiple scale properties of fully developed
turbulence.

4. FINAL REMARKS

We have developed a way to construct functions from DNS data to represent the coefficients of a basis of tensors
conceived to represent the Reynolds stress tensor. These coefficients are considered functions of the second invariant of
the rate-of-strain tensor. The idea is to give a further step on the Boussinesq hypothesis and find, besides the turbulent
viscosity, a turbulent first and second normal stress coefficients. This leads to the creation of a dimensionless number,
the Turbulent Weissenberg number (analogous to the classical Weissenberg number in non-Newtonian fluids). The results
have shown that, to work with the apparent functions, instead of the turbulent ones, generally give more reasonable
behavior, easier to reproduce with a master curve.
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Figure 2. The profile of apparent viscosity νapparent (a) and turbulent viscosity νT (b) vs. shear rate a+ in log-log plot
and Carreau model fitting.
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Figure 3. The distributions of Weissenberg number Wi′ = λ′a+ vs. a+ (a) and vs. y+ (b) in log-log plot.
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Figure 4. The profile of turbulent Reynolds stress −uv (a) and total stress τtotal (b) vs. shear rate a+ in log-log plot.
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Figure 5. The Carreau model fitting of viscometric functions Ψ1 (a) and Ψ2 (b).


