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Abstract. In this work a new multi-objective optimization algorithm is presented. This new evolutionary algorithm, 
called M-GEOreal, is based on the M-GEO algorithm. The motivation to develop this algorithm is to increase the 
efficiency and efficacy of the previous one. As a brand new algorithm, it is necessary to perform some tests with well-
known test functions. In this test, the performance of the M-GEOreal will be compared with some commonly used 
optimization algorithm. Besides, in order to test the M-GEOreal algorithm in a real problem, it is used to determining 
the gains of a non-linear control law type, which controls the attitude of a rigid-flexible satellite. A multi-objective 
approach is employed in order to minimize, simultaneously, the time and the energy during the satellite attitude 
control. The use of a multi-objective approach allows that a set of optimized trade-off solutions (non-dominated 
solutions) be determined and become available to the designer for posterior choice of an individual solution to be 
implemented. The non-dominated solutions set in the design space (Pareto optimal set) and in the objective functions 
space (Pareto front) were obtained through this new multi-objective version of GEO. 
 
Keywords: rigid-flexible satellite, non-linear attitude control law, evolutionary algorithm, multi-objective optimization, 
generalized extremal optimization. 

 
1. NOMENCLATURE 

 
EA – Evolutionary Algorithm; 
GEO – Generalized Extremal Opmization; 
M-GEO – Multi-objective GEO; 
GEOreal – GEO with real codification; 
M-GEOreal – Multi-objective GEOreal; 
L – The length of the M-GEO string of bits; 
N – Number of design variables; 
m – Number of objective functions; 
Fm(x) – The value of the m-th objective function; 
x – Vector of the design variables; 
Ai – The adaptability of the i-th bit; 
ki – The rank of the i-th bit; 
τ – Free parameter of M-GEO and M-GEOreal; 
rt – The number of restarts of  M-GEO and M-

GEOreal algorithms; 
wm – The weight related to Fm(x);  
xi – The i-th design variable; 
x’ij – The j-th variation of xi; 
Aj – The adaptability of x’ij; 
kj – The rank of x’ij; 
P – Number of different values of x’ij per iterations 

of M-GEOreal; 

Nj(0,σj) – A random number with Gaussian 
distribution; 

σj – The standard deviation; 
NSGAII – Non-Dominated Sorting Genetic 

Algorithm II; 
p – The modal state of the satellite beam; 
θ – The rotation angle of the satellite central body; 
ω – The beam first mode of vibration; 
ξ – The torque that controls the satellite attitude; 
K1, K2 and K3 – The gains of the control law; 
Ah – Cross section of the satellite beam; 
ρ – Alumininum density; 
l – Beam length; 
E – Young’s modulus; 
a1l – Eigen value associated to the beam first mode 

of vibration; 
Ih – Moment of inertia of the beam cross section 

about the neutral axis; 
Io – Satellite’s main body moment of inertia about 

its center of mass; 
ω – Beam first mode of vibration; 
R1 – Half of the satellite central body edge. 

 
 
2. INTRODUCTION 
 

Evolutionary algorithms (EAs) are stochastic methods of optimization that is based on nature process. It is widely 
used to tackle engineering and scientific optimization problem (Davis et al., 1999; Bäck and Schwefel, 1993). This kind 
stochastic method employs a population of candidate solutions that is “evolved” during the search as better individuals 
(new solutions) are generated from previous ones in the sense that they are closer to the global minimum. The main 
advantage of the evolutionary algorithms is the capacity to avoid local optimal solutions, allowing searching for the 
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global optimum. In fact, evolutionary algorithms are very robust methods. They are capable to tackle problems with 
non-linearities in the objective functions. They can easily deal with constrains and their non-linearities, and also deal 
well with problems that have differently kinds of design variable. 

Recently, a new EA, called M-GEO, capable to tackle multi-objective problem was proposed (Galski, 2006; Galski et 
al., 2005). This algorithm is the first multi-objective version of the Generalized Extremal Optimation (GEO) algorithm 
(De Sousa et al., 2003). It was developed to obtain the Pareto Front maintaining the main characteristics of GEO 
algorithm. That is, the easy implementation to optimization problems; derivatives are not used during the search; can be 
applied to unconstrained or constrained problems and non-convex or even disjoint design spaces, in the presence of any 
combination of continuous, discrete or integer design variables. 

Although, GEO and M-GEO have showed good performance to tackle optimization problems, they codify the 
variables with strings of bits. This characteristic imposes a precision to the variables and this can lead to a sub-optimal 
solution if the bit coding does not capture the variable optimal values. In order to avoid this limitation a new version of 
GEO was developed dealing directly with real variables (Mainenti-Lopes, 2008; Mainenti-Lopes et al., 2008). Called 
GEOreal, this new version showed better performance than previously versions of GEO by tackle test functions. 
Meanwhile, the GEOreal cannot tackle multi-objective problems. 

In this context, a new version of M-GEO algorithm is present in this work. Called M-GEOreal, this new algorithm is 
based on GEOreal and it was develop to tackle multi-objective problems in the same way of M-GEO, but using real 
variables. As a preliminary test, its efficiency and efficacy will be test by tackling two well know test functions for 
multi-objective algorithm, ZDT1 and TNK. Besides, a real problem will be used to test this algorithm. Considering that, 
satellite attitude control is one of the most complex subsystems of the satellite; the chosen problem was to optimize the 
gains of the satellite’s control law. In most satellites, this subsystem makes use of fuel. Therefore, it is very important to 
minimize the energy spent by this subsystem. Knowing that the time to control the satellite needs to be minimized too, 
this multi-objective problem becomes a good test for M-GEOreal to prove its efficiency and efficacy in real problems. 

The paper is divided in several sections. In section 2, the M-GEOreal algorithm is described. Following by the test 
functions characteristics and the M-GEOreal performance in section 3. In section 4, it is presented the satellite attitude 
control problem and, in section 5, is described how the M-GEOreal tackles this problem including the results. Finally, the 
section 6 concludes this work. 
 
3. M-GEO AND M-GEOreal ALGORITHMS 
 

Multi-objective optimizations problems consist in optimize simultaneously two or more conflicting objectives. 
Because the objectives are conflicting, it is impossible to obtain one solution that optimizes all objectives. Therefore, 
one can obtain a set of solutions that, for each solution, it is impossible to optimize one objective without losing 
optimality in the others. This set of solution in the design space is called Pareto Set and in the objective space is called 
Pareto Front. The main goal of an algorithm capable to tackle multi-objective problems is to obtain Pareto Set and 
Pareto Front.  

M-GEOreal was based on the second algorithm presented by Mainenti-Leal et al. (2008), called GEOreal2. The main 
difference between GEOreal2 and M-GEOreal is how each one deals with the best solution. As a mono-objective 
algorithm, GEOreal2 stores the best solution along the run and returns only one solution. While M-GEOreal stores the non-
dominated solutions along the run and for each new solution a test is made to determine which solution will be kept and 
which will be discarded. The following steps give this test that will be called Pareto Front Test in this work: 

(i) test if the new solution is dominated by any solution in the stored Pareto Front. That is, if any solution in Pareto 
Front is at least equal in all objective functions except for one that is better than the new solution. If the new solution is 
dominated, keep the Pareto Front and go to the step (iii). Otherwise, include the new solution and go to the next step; 

(ii) determine all solutions that the new solution dominate and discard them from the Pareto Front; 
(iii) finish the Pareto Front Test. 
M-GEOreal was developed to recover the Pareto Front and the Pareto Set maintaining the main characteristic of GEO 

algorithm. This new multi-objective version will compared to previously one, called M-GEO. The M-GEO algorithm 
can be described using the following steps: 

(i) initialize randomly a string of L bits, which codifies N design variables. Calculate the value of all functions Fm(x) 
with this set of variables, where m is the number of objective functions. Store Fm(x) in Pareto Front and x in Pareto Set; 

(ii) set the value of the index i to 1 and chose a integer number j between 1 and m; 
(iii) flip the i-th bit, calculate all functions Fm(x) using that new set of bits and run the Pareto Front Test. Assign the 

adaptability Ai to that bit as Fj(x). Return the original value of the i-th bit, increment the value of i and repeat this step 
until i > L. 

(iv) assign a rank ki to each bit according to the Ai value, ki = 1 to the best value and ki = L to the worst value; 
(v) chose with uniform probability one of the bits, accept this choice with probability equal to ki

-τ, where τ is a free 
parameter. If the choice was accepted flip the chosen bit and go to step (vi). In the other wise, repeat this step; 

(vi) test a stopping criterion. If it is accepted go to step (viii). Otherwise, test a population restart criterion. If it is 
accepted go to step (vii). Otherwise, go back to step (ii); 
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(vii) initialize randomly a string of L bits that codifies N design variables, calculate all objective function value 
Fm(x) with this set of variables and run the Pareto Front Test. Go back to step (ii); 

(viii) return the Pareto Front and the Pareto Set. 
The flowchart of M-GEO is presented in Fig. 1. 
 

 
 

Figure 1. M-GEO flowchart. 
  
The M-GEOreal can be described by the following steps: 
(i) initialize randomly a string of N design variables, calculate the value of all functions Fm(x) with this set of 

variables, where m is the number of objective functions. Store Fm(x) in Pareto Front and x in Pareto Set; 
(ii) set the value of the index i to 1;  
(iii) set the value of the index j to 1; 
(iv) generate randomly m weight wm between 0 and 1, each one associate to each objective function and calculate the 

adaptability of x given by 
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with j = 0. A0 represents the probability to maintain the variable value unchanged. That is, x’i0 = xi. Therefore, there 

is a chance to keep the variable value if it is a good value. This is one of the differences between this version and the 
mono-objective version; 

 (v) Change the value of the variable xi using a equation given by 
 

ijjiij xNxx ),0(' σ+=  (2) 

 
calculate Fm(x) using the value of x’ij instead of xi and run the Pareto Front Test. Calculate the adaptability of x’ij 

using the Eq. (1), where Nj(0,σj) is a random number with Gaussian distribution and σj is the standard deviation; 
 (vi) return the value xi to the vector x, increment the value of j, return to step (iv). Repeat this sequence until j > P; 
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(vii) assign a rank kj to each x’ij according to the Aj value with j = 0, 1, …, P , where kj = 1 to the best value and kj = 
P + 1 to the worst value; 

(viii) chose with uniform probability one of x’ij (including the solution unchanged represented by x’i0), accept this 
choice with probability equal to kj

-τ. If the choice was accepted store the choose x’ij, but do not change the value of xi 
yet, and continue to next step. In the other wise, go back to step (viii); 

(ix) increment the index i and go back to step (iii). Repeat this process until i > N. 
(x) change each element xi of the vector x according to the value x’ij chosen in step (vii). Calculate Fm(x) using the 

new vector x and run the Pareto Front Test. Test a stopping criterion. If it is accepted go to step (xii). Otherwise, test a 
population restart criterion. If it is accepted go to step (xi). Otherwise, go back to step (ii); 

(xi) initialize randomly a string of N design variables, calculate all objective function value Fm(x) with this set of 
variables and run the Pareto Front Test. Go back to step (ii); 

(xii) return the Pareto Front and the Pareto Set.  
The flowchart of M-GEOreal is presented in Fig. 2. 
 

 
 

Figure 2. M-GEOreal flowchart. 
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The population restart test is made to increase the algorithm capacity to recover all Pareto Front. In this work, the 

criterion to restart the population was given by the free parameter rt that represents the number of restarts along the 
search. 

A disadvantage of M-GEOreal compared with M-GEO is the increase of free parameters. In M-GEO algorithm, there 
is only two parameter; the value of τ and rt. In the M-GEOreal, there is P+3 new free parameters (P standard deviations, 
the P, τ and rt values). The intention of using several values of standard deviation for a same variable is to capacitate 
the algorithm to search in a greater range of value in a single iteration. Therefore, it is interesting to select high and low 
values of σj. To reduce the amount of free parameters the following rule it was adopted. 

 

is
i

i .1

σσ =+  (3) 

 
where i = 1, 2, …P and s is a arbitrary number greater than one. In this work, it was chosen s = 2. In that way, it is 

enough define σ1 and all the other values of σj will be automatically defined. Therefore, there are as many high values 
as low values of σ. Now, it is needed to define four free parameters σ1, P, τ and rt. 

However, M-GEOreal algorithm can change all variables per iteration. While M-GEO change only one bit, that is, it 
can change just one variable per iteration. Besides, M-GEO chooses one function Fm(x) to calculate the adaptability per 
iteration. This procedure leads the algorithm to find solution at the edge of the Pareto Front. While, M-GEOreal uses a 
weight sum of the functions. 

 
4. TEST FUNCTIONS AND M-GEOreal PERFORMANCE 

 
The performance of M-GEOreal was compared to the performance obtained by the multi-objective algorithms M-

GEO and NSGAII (Deb et al., 2000) using 2 test functions: ZDT1 and TNK. NSGAII is a multi-objective evolutionary 
algorithm widely used in engineering and scientific problems. One used the modeFRONTIER software to find the 
Pareto Front of the test functions using the NSGAII algorithm. It was used default parameters of NSGAII given by that 
software. The parameters of M-GEO used was τ = 1.5 rt = 50 for ZDT1 and τ = 4.25 and rt = 50 for TNK. 

The main features of the test functions are presented in Tab. 1. 
 

Table 1. Main features of the test functions. 
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The reason of this choice was that: ZDT1 presents a great number of variables, while it is easy to find an analytical 

result; and TNK presents a non-convex region and discontinuity in its Pareto Front. The Pareto Fronts of these test 
functions are presented in Fig 3. The right graph is the Pareto Front for ZDT1 and the left is for TNK. 
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Figure 3. In the right graph is the Pareto Front for ZDT1 and in the left is for TNK. 
 
One used 105 objective function evaluations. For test function ZDT1, it was tested the τ values between 0.5 and 10 

with variation of 0.5 among one test and another. A new test was accomplished using values between the best values of 
τ found in the previous test (0.5 and 2.5). Meanwhile, the variation between one test and another this time was 0.1. The 
chosen value was 1.8. After that, it was tested the following values: P = 3; 4 and 5; σ1 = 1, 2 and 3; rt = 10, 20, 30 and 
50. 

The selected values were: P = 3; σ1 = 2; rt = 20. 
For test function TNK, the tests to set the best parameters follow the same proceeds of ZDT1, except for the second 

test of τ value with variation of 0.1. The selected values were: τ = 9.5; P = 3; σ1 = 1; rt = 20. 
The side constraints were treated rejecting all solutions that did not respect them. The constraints C1 and C2 was 

treated adding a penalty to the objective function given by the following equations 
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if C1 < 0 and 
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if C2 > 0.5. 
The performance of M-GEOreal is presented in Fig. 4 for ZDT1 and in Fig. 5 for TNK. 
 

 
 

Figure 4. ZDT1 Pareto Front. In blue is the Pareto Front given by NSGAII; in red by M-GEO; in green by M-GEOreal 
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Figure 5. TNK Pareto Front. In blue is the Pareto Front given by NSGAII; in red by M-GEO; in green by M-GEOreal 
 
M-GEO shows the worst performance in all test functions. Although, M-GEO recovers the shape of the TNK Pareto 

Front, there are lacks in some regions of the Pareto Front and some solutions are in dominated region of the objective 
space. In ZDT1 test function, the algorithm cannot find the Pareto Front. This occurred because of the great number of 
variables of the test function. At each iteration, M-GEO performed 240 objective function evaluations. Therefore, M-
GEO had few iterations to recover the Pareto Front of ZDT1. 

M-GEOreal algorithm was capable to recover the shape of the Pareto Fronts of the test functions, especially for TNK. 
M-GEOreal returns few solutions in ZDT1 because the algorithm had difficult to deal with the great number of variables. 
However, NSGAII was capable to return much more solutions. Therefore, the M-GEOreal algorithm needs to be 
developed to become a competitive algorithm. 

 
5. MATHEMATIC MODEL OF THE RIGID-FLEXIBLE SATELLITE 

 
In this test the M-GEOreal algorithm was used to optimize, simultaneously, the time to control a rigid-flexible 

satellite and the energy spent by the attitude control to perform this task. The satellite model used to check the M-
GEOreal performance was based in a model used by Hassmann e Fenili (2007). The satellite was modeled as a rigid cube 
with edge equal to 1.5 m with a flexible beam of 2 m clamped in one of its edge. The satellite is free to rotate only in the 
XY plane. A graphic representation of the satellite model is presented in Figure 9. 

 

 
 

Figure 6. Graphic representation of the rigid-flexible satellite. 
 
In order to model the flexible beam, it was used an Euler-Bernoulli formulation (Rezende et al., 2004). Considering 

only the first vibration mode of the beam, this model can be described by the following equations 
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where p is the modal state, θ is the rotation angle of the central body, ω is the beam first mode of vibration and C1, 

C2 and C3 are constants given by 
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That system of equations in the state space form of 1º order can be written as 
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where 2

2314 4 CCCC −= , x1 = θ, x2 = dθ/dt, x3 = p and x4 = dp/dt. The full mathematic development of these equations 

can be found in the work of Mainenti-Lopes (2008). In this work, one used a non-linear control law (Rietz and Inman, 
2000) given by 

 

2132211 xxKxKxK −−−=ξ  (14) 
 
where K1, K2 and K3 are gains of the control law. The parameters value of the satellite and a brief description of each 

parameter is presented in Tab 2. 
 

Table 2. Parameters value of the satellite. 
 

Parameter Description Value Unit 
Ah Cross section of the beam 7.5 × 10-4 m2 
ρ Alumininum density 2700 kg/m2 
l Beam length 2.0 m 
E Young’s modulus 7 × 1010 N/m2 
a1l Eigen value associated to the beam first mode of vibration 1.878 - 
Ih Moment of inertia of the beam cross section about the neutral axis 1.5625 × 10-9 m4 
Io Satellite’s main body moment of inertia about its center of mass 1125 kg.m2 
ω Beam first mode of vibration 18,0001 rad/s 
R1 Half of the central body edge 0,75 m 

 
6. M-GEOreal PERFORMANCE IN OPTIMAL SATELLITE ATTITUDE CONTROL 

 
In this performance test, the M-GEOreal was used to identify the set of gains (K1, K2 and K3) that minimize the time 

to control the satellite and the energy spent by the controller, considering that the initial attitude angle as 28.65o and the 
final attitude angle needs to be 0o. 
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In order to integrate the equations of motion, one uses the fourth order Runge-Kutta algorithm (RK4). For each set 
of gains tried by M-GEOreal, it called the Runge-Kutta algorithm that allowed to calculate the value of energy spent and 
time to control de satellite using the following equations 

 
TF =1  (15) 
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where T is the instant that the satellite is controlled. In other words, the instant that fulfill the following conditions: 

θ  < 1,75 × 10-3 rad and θ�  < 5,23 × 10-4 rad/s. h is the step of RK4, x1i and x2i are the angle shift and angle velocity of 

each i-th iteration of RK4, respectively. That is, the energy spent by the controller. Equation 14 and 15 were minimized 
considering 0 < K1 < 20000, 0 < K2 < 20000 and 0 < K3 < 20000. The constraints were treated discarding all solutions 
unfeasible. 

The M-GEOreal performance was compared to its previous version M-GEO and the LQR method (Stengel, 1994). 
The LQR method can be treated as weighed sum method. Therefore, the LQR can only returns all Pareto Front if the 
weighs is changed several times. In this work, only one solution of LQR will be used. The M-GEO Pareto Front and the 
LQR solution was obtained by Mainenti-Lopes (2008). Figure 7 shows the comparison of performance between these 
three algorithms. 

 

 
 
Figure 7. Pareto Front of the optimal control problem. In blue is M-GEOreal solution, in red, the M-GEO and in green is 

the LQR solution. 
 
M-GEOreal shows good performance in this problem. It recovers a larger extension of the Pareto Front than its 

previously version and its solutions dominated a great number of solutions given by M-GEO and the LQR solution. 
Besides, M-GEOreal uses only 3.2 × 105 function evaluations, while M-GEO uses 6.6 × 105. 

 
7. CONCLUSION 

 
In this work, a new multi-objective was proposed. Called M-GEOreal, this evolutionary algorithm was based on its 

mono-objective version (GEOreal) and the multi-objective version of GEO algorithm (M-GEO). M-GEOreal algorithm 
uses real codification of the design variables; on the contrary of M-GEO that uses binary codification. 

As brand new algorithm, it becomes necessary to test its performance against test functions. The chosen test 
functions were ZDT1 and TNK. ZDT1 shows a great difficult because of its large number of variables and TNK has 
discontinuities and non-convexities in its Pareto Front. M-GEOreal performance was compared to NSGAII algorithms. 

In this test, M-GEOreal algorithm shows good performance recovering all extension of the Pareto Front, especially 
for TNK. However, M-GEOreal returns few solutions in ZDT1 because the algorithm had difficult to deal with the large 
number of variables. NSGAII was capable to return much more solutions than M-GEOreal. 

A second test of performance made in work had as goal the optimization of an attitude control of satellite. A rigid-
flexible satellite model with a non-linear control law was used. M-GEOreal was used to optimize, simultaneously, the 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 
time to control the satellite and energy spent by the controller in this task. M-GEOreal results were compared to M-GEO 
performance and with LQR solution. 

M-GEOreal shows great performance to tackle this satellite attitude control problem. The solutions in its Pareto Front 
dominated several solutions given by M-GEO and the LQR solution. Besides, it was capable to recover a large 
extension of the Pareto Front and it takes less functions evaluation to do this job. 
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