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Abstract. In refrigeration system compressors, the suction and blowout valves are responsible for, respectively, the 
retention and passage of the refrigerant fluid from the suction chamber to the cylinder and from the cylinder to the 
blowout chamber. Valves with small opening and closing times, low back pressure and with low return of the gas are 
required to increase the efficiency of the compressor. As the opening and closing of the valves are caused by the force 
of the gas flow, the understanding of the flow through the valve is of fundamental importance. The numerical 
simulation of the flow is an efficient method to perform this task. Due to the complex geometry usually found in this 
type of valve, simplified geometries have been used to represent the valve, particularly the radial diffuser geometry. 
Most researchers have performed the numerical simulation of the isothermal flow through the radial diffuser. The 
study of the heat transfer in this geometry is rare in the literature. In the present work, an analysis of the non-
isothermal, incompressible, and laminar flow through a radial diffuser representing the valve is performed numerically 
using the Finite Volume Methodology. The SIMPLE algorithm applied to a staggered mesh was used for solving the 
pressure-velocity coupling problem. The power-law scheme was used as the interpolation function for the convective-
diffusive terms, and the TDMA algorithm was used to solve the systems of algebraic equations. The main goal of the 
work is to investigate the effect of the heat transfer process on the pressure profile on the frontal disk of the radial 
diffuser. The results showed that the dimensionless pressure in the stagnation region of the flow increases for 
increasing surface temperatures, mainly for low Reynolds numbers. 
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1. INTRODUCTION  
 

The compression process in refrigeration reciprocating compressors is developed by the linear alternate piston 
displacement, as can be seen schematically in Fig. 1. The suction and discharge valves are responsible for the 
refrigerant gas retention and flow from the suction chambers to the compressor cylinder and from cylinder to the 
discharge chamber.  

The appropriate design of the valve system is of fundamental importance for elevating the compressor efficiency. 
Valves with small opening and closing times, small pressure drops, and those restricting the gas backflow are required. 
As the valve opening and closing movements are caused by the refrigerant gas flow force, a comprehensive 
understanding of the flow through the valve is essential in order to enhance the compressor efficiency. 

The numerical simulation of this type of flow is an efficient method to perform this task. Due to the complex 
geometry usually found in this type of valve, simplified geometries have been used to represent the valve, particularly 
the radial diffuser geometry shown in Fig. 2. The fluid enters the passage orifice with diameter d and, after being 
deflected by the frontal disk of diameter D, flows through the gap between the frontal disk (reed) and the valve seat. 

 

 
 

Figure 1. Schematic representation of the valve system in hermetic compressors. 
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Figure 2. Radial diffuser used for modeling the compressor valve. 
 

Souto (2002) has presented an extensive review on radial diffuser flows with applications in compressor valves. 
Works on analytical solutions for laminar, incompressible, and steady flows have been performed by Woolard (1957), 
Livesey (1960), Savage (1964) and Killmann (1972), while Ishizawa et al. (1987) have presented analytical solution for 
the incompressible, laminar and unsteady flows. Numerical solution for laminar and incompressible flows has been 
accomplished by Hayashi et al. (1975), Raal (1978), Piechna and Meier (1986), Ferreira et al. (1987), Deschamps et al. 
(1989), Ferreira et al. (1989), Langer et al. (1990), Gasche (1992) and Possamai et al. (1995). On the other hand, 
numerical solutions for turbulent and incompressible flows have been obtained by Deschamps et al. (1988) and 
Deschamps et al. (1996). Experimental works on the subject have been developed by Jackson and Simmons (1965), 
Wark and Foss (1984), Ferreira and Driessen (1986), Tabatabai and Pollard (1987), Ervin et al. (1989), and Gasche 
(1992). 

Some researchers also have obtained numerical solutions for laminar and incompressible flows including the frontal 
disk dynamics: Lopes (1994), Matos et al. (1999), Matos et al. (2000), Matos et al. (2001), and Salinas-Casanova 
(2001). Souto (2002) has experimentally studied turbulent flows through the radial diffuser considering steady and 
unsteady flows. 

The literature review reveals that the most works have considered the flow through the radial diffuser as isothermal 
flow. Prata et al. (1995) have been one of the few researchers that have included the heat transfer process in the radial 
diffuser flow modeling. The local Nusselt number profile on the frontal disk surface has been obtained experimentally 
using the naphthalene sublimation technique. The experimental data have been compared with numerical results 
obtained by using the Finite Volume methodology.  

The objective of this work is to solve numerically the flow through the radial diffuser including the heat transfer 
process in order to verify the influence of the heat transfer on the pressure distribution on the frontal disk surface. 

 
2. METODOLOGY 
 

The governing equations for the incompressible flow of a Newtonian fluid through the radial diffuser (mass 
conservation, momentum and energy equations) are given by: 
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where ρ is the fluid density, µ is the absolute viscosity, Cp is the specific heat at constant pressure, k is the thermal 
conductivity, p is the pressure, V is the velocity vector, and T is the temperature. The necessary boundary conditions to 
solve the problem are indicated in Fig. 3. 
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Figure 3. Boundary conditions. 
 

The influence of the heat transfer process in the fluid flow is considered through the variation of the absolute 
viscosity with temperature, which is given by the equation proposed by the following equation (The U.S. Standard 
Atmosphere, 1962): 
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2
3
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where b=1.458 10-6 kg/(m s K1/2) and S=110.4 K 

 
The governing equations and boundary conditions are discretised using the Finite Volume method. The pressure-

velocity coupling is treated by the SIMPLE – Semi-Implicit Method for Pressure Linked Equations algorithm, while the 
algebraic equation systems are solved by the TDMA – Tri-Diagonal Matrix Algorithm. The power-law relation is used 
as interpolation scheme for the advective/diffusive terms of the Navier-Stokes equations. The final results were 
obtained by using a non-uniform mesh composed by 240 volumes in the z direction and 360 volumes in the r direction, 
which results in a total of 86400 volumes in the whole domain. All numerical results were considered converged for 
mass conservation residue lower than 10-13. 

 
 

3. RESULTS 
 

Before obtaining the final results, a grid convergence test was performed. Figure 4 shows the results for the worse 
case for four different grids. As can be seen, the difference between the results of the two finer grids is very small. 
Therefore, the finest grid (240x360) was used to generate the final results. 

In order to validate the computational procedure, dimensionless pressure profiles acting on the frontal disk surface 
for isothermal flow were compared with experimental data obtained by Gasche (1992) for two flow configurations. 
Figure 5 shows the comparison for Re=1491 and s/d=0.025 and Fig. 6 presents similar results for Re=2033 and 
s/d=0.02. The dimensionless pressure, padm, is defined as: 
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and the Reynolds number is given by: 
 

μ
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5. CONCLUSION 
 

The results showed that the dimensionless pressure increases for increasing surface temperatures, mainly for low 
Reynolds numbers. For Re=600 and s/d varying from 0.005 to 0.04, the pressure increases 11 to 9%, respectively. For 
Re=2000 and the same s/d variation, the pressure augmentation is larger, varying from 10.5 to 3.5%. 
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