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Abstract. In this work, numerical simulations of the flow field for different instants of the SARA Sub-orbital platform 
trajectory are performed to be used in the determination the flow thermal properties. These results are employed in the 
solution of the coupled conduction-ablation problem in the TPS (thermal protection system) of SARA. The Interface 
Tracking Method is used to solve the moving boundary problem. The pressure field in the vehicle surface, obtained 
from the numerical simulation, is used to estimate the film coefficient and compared to that obtained from the usual 
approximation, the Newton’s Pressure Method. Results for the region near the stagnation point of SARA show that, 
although significant differences in the coefficients appear, the temperature field and ablation rate are quite close for 
both methods of surface pressure estimation, allowing the use of the models and computational tools developed in this 
work for studying and dimensioning of thermal protection for hypersonic flight. 
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1. INTRODUCTION 
 
 Space and sub orbital vehicles reach high speeds within the atmosphere, i.e., below 100 km of altitude. Such high 
velocities result in aerodynamic heating. The heat exchange at the wall surface involves heat convection and thermal 
radiation processes. In the case of recoverable payloads, the heating occurs in both, ascendant and reentry trajectories. 
Air temperature surpasses 2000o C at the stagnation point (Machado & Pessoa Filho, 2007). As a consequence, 
aerodynamic heating plays a very important role in the vehicle design. Besides the effects of high temperatures on the 
mechanical behavior of the structure and onboard devices, it is mandatory to preserve the payload, by using an efficient 
TPS (Thermal Protection System). TPS design is a critical aspect of a rocket design, since its under dimensioning may 
result in the loss of the payload and the over dimensioning implies in increasing weight and cost. For many years 
ablative materials have been effectively used as TPS of space vehicles. Ablation involves phase change and chemical 
reactions. In these processes the kinetic energy of the rocket is converted into heat, which consumes the TPS through 
ablation (Rogan & Hurwicz, 1973). It is a complex phenomenon, related with several physical processes happening 
simultaneously (Silva, 2001). 

The coupling between the heat transfer processes in the surface and within the layers represents an additional 
difficulty. The external heat exchange occurs by convection and radiation, and the heat transfer to the wall (TPS and 
structure) occurs by conduction. In order to obtain the temperature profile and the heat load in the structure, the energy 
conservation equation has to be solved. A common approach is to consider the heat conduction as one-dimensional, in 
the normal direction relative to the local surface. However, such hypothesis becomes inaccurate as temperature 
gradients in the tangential direction, change of material or a great thickness variation occur (Mazzoni et al, 2005). 

The convective heat transfer coefficient can be estimated through some engineering methods, based on empirical 
results. Usually, the models employed are based extensively in Eckert’s reference enthalpy (Hurwicz and Rogan, 1973) 
where the heat transfer inside a compressible boundary layer can be estimated through the relations for incompressible 
flow, with all properties evaluated in the reference condition. This calculation is strongly dependent on the surface 
pressure where the heat exchange occurs. 

The pressure within the boundary layer can be calculated through the solution of the complete boundary layer 
equations, via computational simulation and employing a discrete method, for example. However, such way of solution 
demands a high computational effort that is not desirable during the initial phases of vehicle design. In this case, some 
approximate methods are used, in order to get results that are accurate enough for the design development. Usually the 
Newton’s Method (Anderson, 1989) is employed, which basically involves geometry description concerned to the flow 
filed around the surface. This method presents good accuracy when applied near the stagnation point, in velocities 
higher than Mach five. Although the strongest heating occurs in these conditions, it is necessary to estimate the heat 
transfer in other regions and velocities as well. 

The objective of this work is to present a computational simulation of the aerodynamic heating and ablative process 
in the vicinity of the stagnation point during the flight of the SARA Sub-orbital Platform, taking into account the effects 
of the two-dimensional conduction within the TPS. The surface pressure, used for heat transfer coefficient estimation, is 
determined through the solution of the N-S equations, employing the Spalart&Allmaras (Morgenstern Jr. et al, 2007) 
turbulence model, and compared with the results of the Newton’s method. Such procedure will allow a more accurate 
dimensioning of the TPS, contributing for project optimization. 
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 The SARA Sub-orbital Platform. Fig.1, is planned as a recoverable platform for experiments in microgravity 
environment, and is being developed by the Institute of Aeronautics and Space (IAE) of Brazil. It has a total weight of 
250 kg and a payload of 25 kg. The orbital version will be able to perform microgravity experiments and keep in an 
orbit of 300 km during 10 days (Moraes, 1998). SARA trajectory characteristics are showed in Fig. (2)  
 

 
 

Figure 1. SARA and its subsystems. 
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Figure 2. Trajectory of  SARA sub-orbital. 
 
2. PHYSICAL PROBLEM AND MATHEMATICAL MODEL 
 
2.1. Aerodynamic heating 
 

To predict the heat transfer on SARA, it is necessary to know pressure, temperature and velocity fields around the 
vehicle. That can be accomplished by numerically solving the N-S equations.  However, such a procedure is expensive 
and time consuming. In the present work a simpler, but reliable, engineering approach is also used. The following 
simplifying assumptions are made: 
- Zero angle of attack; 
- VSB-30 rotation around its longitudinal axis is neglected; 
- Atmospheric air is considered to behave as a calorically and thermally perfect gas (no chemical reactions); and 

The free stream conditions ahead of the nose cap are those given by v∞, T∞, p∞, corresponding, respectively, to 
velocity, temperature and pressure. By knowing v∞ and altitude, as function of time, together with an atmospheric 
model (U.S. Standard Atmosphere, 1976), it is possible to evaluate the free stream properties, such as p∞ , T∞, and c∞ , 
which represent free stream pressure, temperature and speed of sound, respectively. For supersonic flow (M∞ >1), a 
detached shock wave appears ahead of the nose. By using the normal shock relationships (Anderson, 1990), it is 
possible to calculate v1, T1 and p1 after the shock. 

The heat flux over the external surface was calculated through the Zoby’s method (Zoby et al, 1981; Miranda & 
Mayall, 2001), namely: 
 

)( waw TTHq −=                             (1) 
 
where q is heat flux, Tw is the wall temperature and Taw is the adiabatic wall temperature, also called recovery 
temperature, Tr, given by: 
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where cp is the specific heat, Te the temperature and ve the velocity.  The subscript e refers to conditions at the boundary 
layer edge. FR is the recovery factor, equal to wPr , for laminar flow and 3

wPr for turbulent flow. Prw is the Prandtl 
number evaluated at wall temperature, Prw =0.71.  The convective heat transfer coefficient comes from the Reynolds 
analogy, namely: 
 

F
a

wepe CPrvc5.0H −= ρ                           (3) 
 
where a is equal to 0.6 for laminar flow and 0.4 for turbulent flow. To take into account compressibility effects, a 
modified friction factor is obtained (Anderson, 1989) 
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In the equation above, Reθ  is the Reynolds number, based on the boundary layer thickness, θ: 
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θ =                             (5) 

 
The superscript “*” refers to properties evaluated at Eckert’s reference temperature (Te*). Viscosity, µ, is evaluated 

according to Sutherland´s equation, as function of temperature (Anderson, 1989) and ρ is the specific mass. In Eq.(4) 
K1= 0.44, K2 = -1 and K3 = 1, for laminar flow.  For turbulent flow, K2 = K3 = -m, and 
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For laminar flow, the boundary layer thickness is given by (Anderson, 1989): 
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where y is measured along the body’s surface and y=0 corresponds to the stagnation point, and R is a geometric 
parameter schematically shown in Fig. 3, were the curved red line represents the nose cap surface. 
 

            r
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   R 
  y = 0      z

 
 

Figure 3. Coordinate system. 
 

In this work the numerical integration of  Eq. (7) was obtained according to the trapezoidal method.  As R → 0, Eq. 
(7) becomes undetermined.  By taking the limit of Eq. (7) as R → 0, the following expression is obtained (Miranda & 
Mayall, 2001): 
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In this work Eq. (8) is applied for y < 0.1 RN, where RN is the radius of curvature at the stagnation point.  

The boundary layer thickness for turbulent flow is obtained by solving the following first order differential equation: 
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After obtaining the boundary layer momentum thickness, θ, Reθ, CF and H can be evaluated by using Eqs. (5), (4) 

and (3), respectively. Along the transition region between laminar and turbulent flow, the following relationship is 
used11: 
 

)qq)(y(Fqq LTLTr −+=                             (10) 
 
where the subscripts Tr, L and T represent, respectively, transitional, laminar and turbulent flow. The transitional factor, 
F(y), is given by (Dhavan & Narasinha, 1958): 
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Transition is supposed to occur for 163 < Reθ < 275. 
Properties evaluation at the boundary layer edge is performed assuming isentropic flow between the stagnation 

region and the location “i” where properties are needed, namely 
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The local pressure, pe,i , is obtained from the modified Newton´s method (Anderson, 1989; Machado & Villas-Boas, 
2006) and γ=1.4. In this work, this pressure was also obtained by solving the N-S equations (Morgenstern et al, 2007). 
The results of both methods are then compared. The subscript “s” appearing in Eqs. (12) refers to the stagnation 
condition. Eckert’s reference temperature is obtained from (Anderson, 1989): 
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The solution procedure can be summarized as follows: 

i. From a given trajectory the US Standard Atmosphere (1976) is used to obtain the free stream properties, 
including the stagnation ones; 

ii. Normal shock relationships are used to obtain the fluid flow properties behind the shock; 
iii. By using the modified Newton method, pressure distribution is obtained along the payload; 
iv. Equations (12) provide the local properties at the boundary layer edge; 
v. If y < 0.1 RN, Eq. (8) provides the laminar boundary layer thickness, leading to the estimation of Reθ, CF 

and  H, provided by Eqs. (5), (4) and (3), respectively; 
vi. If y> 0.1 RN and Reθ < 163, Eq. (7) is numerically integrated up to the location where the momentum 

thickness is to be estimated.  Such an integration is performed by using the trapezoidal method; 
vii. If y> 0.1 RN and Reθ > 275, Eq. (9) is numerically integrated by the trapezoidal rule leading to the turbulent 

boundary layer thickness; 
viii. If y> 0.1 RN and 163 < Reθ < 275, Eqs. (10) and (11) are used to estimate H; 

It should be pointed out that such a procedure is performed along the payload’s surface (following the y-coordinate), for 
different trajectory times.  Therefore, H=H(y,t). 
 
 
 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

2.2. Pressure distribution 
 

Pressure distribution over the SARA surface was determined by simulating the flow field with a numerical solution 
of the governing equations. The Navier-Stokes equations were solved by discretizing the equations with a second order 
accurate Euler three-point backward time discretization. A finite volume approach is used in the treatment of the spatial 
discretization of the fluxes with second order central differences. A suitable choice of the factorization procedure yields 
a scheme with fast convergence and low computational time per iteration (Morgenstern & Moraes, 2003; Morgenstern 
et.al. 2007). The flow fields considered in these simulations were determined as a function of the SARA predicted 
trajectory. Hence, the flow conditions considered in these simulations were those presented in Table 1. 

 
Table 1. Flow field trajectory conditions for SARA. 

Mach Reynolds 
3,56 18,06 106 
5,1 6,558 106 
7,0 1,697 106 
8,1 3,1 104 

 
The results of the numerical simulations over the upper region of SARA for the flow conditions considered are 

presented in Fig. 4 in the form of isometric lines of constant Mach number in a chromatic scale of Mach number 
intensity. These plots show the characterization of the flow field with a subsonic region in the vicinity of the stagnation 
point, the acceleration of the flow as it moves over de spherical region of the ogive up to the conical region of the 
geometry. The shock stand-off distance and the inclination of the shock wave as a function of Mach number can also be 
seen. 
 

   
 
                  (a) M∞=3.56, Re = 18,06 x 105                                                                          (b) M∞=5.1, Re = 6,6558 x 105 

     
                       (c) M∞=7.0, 1,697 x 105                                                         (d) M∞=8.1, Re = 3.1 x 104 

 
Figure 4. Mach numbers isometric lines of. 

 
The pressure distribution is shown in Fig. 5, starting at the stagnation line of the flow, up to the stagnation point on 

SARA surface, following along its surface for the flow fields considered. It can be observed the shock stand-off 
distance as a function of Mach number, characterized by the start of the pressure jump, with the distance from the ogive 
getting smaller as the Mach number increases. After going through the shock wave, with the deceleration of the flow in 
the subsonic region, it can be seen a pressure rise up to its maximum value at the stagnation point on the SARA ogive. 
Following along the spherical region of the nose, a steep reduction in pressure can be observed, with a corresponding 
increase in velocity, and the flow field returning to a supersonic regime. The following conical region presents an 
almost constant pressure distribution, with a negative pressure jump due to the pressure expansion on the geometric 
transition from the conical to cylindrical regions of SARA. 
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Figure 5. Pressure distribution comparison along the SARA surface. 
 
2.3. Heat conduction and ablation 
 

Once the convection heat transfer and the adiabatic wall temperature are known, wall temperature distributions can 
be obtained. SARA Sub-orbital platform nose cap is made of a composite material (Si-Phenolic), which works as an 
ablative TPS. Until the ablation temperature is reached, we have a transient heat conduction problem. Once the TPS 
surface reaches the ablation temperature, its thickness is reduced; therefore, a transient, coupled conduction moving 
boundary problem appears. Although ablation in a composite material is a complex phenomenon, involving 
simultaneously physical and chemical processes, in this work it will be treated as a single-phase change problem, where 
a representative value for the latent heat of sublimation will be used as the heat of ablation. Such a technique allows for 
the estimation of the instantaneous position and velocity of the moving boundary corresponding to the surface of the 
nose cap, from now on called the interface between the solid region and the airflow. 

The set of equations used to represent the physical problem is written according to the interface tracking method 
(Juric, 1996). The nose cap and the airflow around it are represented as parts of a continuous domain of calculation. The 
application of the energy conservation principle to an infinitesimal volume element of the mathematical domain, Fig. 4, 
leads to a partial differential equation for the temperature, namely: 

 

QTK.
t

)T.C.( p +∇∇=
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                            (14) 

 
where K is the thermal conductivity and Q is a source term that takes into account the net heat exchange at the boundary 
(Machado & Villas Boas, 2006): 
 

∫ −=
A F dA)xx(qQ δ                             (15) 

 
where x is the position in the coordinate system, V is the interface velocity, and q is the source term of energy per unit 
of surface of the interface: 
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where L is the heat of ablation.  

Although the airflow is included in the domain, its effects are implicit in the convection coefficient H. As a 
consequence, this region is considered adiabatic, and the heat capacity and thermal conductivity are assumed to be null. 
Once ablation temperature is reached, the interface condition becomes: 
 
 0TT AF =−                                 (17) 
 
3. METHOD OF SOLUTION 
 

The moving boundary problem was solved by the Interface Tracking Method, introduced by Unverdi & Trygvason 
(1992), and employed by Juric (1996) in the solution of phase change problems. In this method, a fixed uniform 
Eulerian grid is generated, where the conservation laws are applied over the complete domain. The interface acts as a 
Lagragean referential, where a moving grid is applied. The instantaneous placement of the interface occurs through the 
constant remeshing of the moving grid, and each region of the domain is characterized by the Indicator Function, which 
identifies the properties of the wall and the air around it. 
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This method allows for the representation of any geometry used in the TPS, and also the characterization of every 
wall layer (structure plus TPS) separately. It is accomplished without a high increase in the computational cost and does 
not need any pre-processing (construction of unstructured grid or coordinate transformation). In this work, this method 
is employed to estimate the ablative performance of the TPS, considering a two-dimensional approach in both, the heat 
conduction and the moving boundary problem. 

The interface is represented as a parametric curve, R(u), where the normal and tangent vectors and curvature are 
extracted from. The interface points are interpolated by a Lagrange polynomial, which allows one to obtain the 
geometric parameters and remeshes the curve, keeping the distance d between curve points within the interval 0.9 < d/h 
< 1.1, where h is the distance among the fixed grid points, as shown in Fig. 6. 
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Figure 6. Eulerian and Lagrangean meshes. 
 
The Indicator Function varies from 1 (air) to 0 (solid), and it is numerically constructed using the interface curve to 

determine a source term G(x). The jump across the interface is distributed over the fixed grid points, yielding a gradient 
field in the mesh: 
 

∫ −=∇=
A

f dA)xx(nIG(x) δ                            (18) 

 
which should be zero, except over the interface, as represented by the Dirac delta function, δ. However, such a 
representation is not convenient for a discrete number of points. The Distribution Function is used to represent the 
interface jump. Such a function is similar to a Gaussian distribution function and its value depends on the distance |xij - 
xk| between the Lagrangean and Eulerian points: 
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where Dij is the Distribution Function for a point k in the Lagrangian mesh with respect to a Eulerian point. One should 
note that increasing h, the interface becomes thicker. The function f is the probability distribution, Fig. 7, related to the 
distance h as (Unverdi & Tryggvason, 1992; Juric, 1996): 
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Figure 7. Probabilistic distribution profile. 
 

The divergence of the gradient field is found by numerical derivation of Poison’s equation: 
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G.I2 ∇=∇                                 (21) 
 

Despite being considered constants in each phase, the properties inside the domain must be treated as variable in the 
formulation. A generic property φ  (ρ, µ, Cp or K) is expressed as: 
 

φ(ξ) = φl + (φv - φl) I(ξ,τ)                            (22) 
 
The coupling between the moving mesh and the fixed grid is done at each time step, through the Distribution Function, 
that represents the source terms in the balance equations and interpolate the fields with infinitesimal discontinuities into 
a finite thick region at the interface. 

The initial interface shape, R(u), is first specified and then the Indicator Function is constructed. From the initial 
conditions, the property and temperature fields are determined. Out of the ablative period, the interface temperature 
keeps bellow the ablation temperature, and the energy equation is solved as a pure heat conduction problem, via the 
Finite Volume Method, employing an explicit time marching schedule. 

As the interface reaches the ablation temperature at a given point, an iterative process starts up, in order to determine 
the interface velocity at each time step, which must satisfy the temperature condition, Eq.(17), at that interface point. 
The process goes on as far as the point temperature is equal to ablation temperature. The steps to be followed are: 
1. Using the current value of V, the interface points are transported to a new position, calculated explicitly through the 

equation Vn= (dxf /dt).n; 
2. Density and specific heat are calculated at the new interface position; 
3. Vn+1 is estimated via Newton iterations, using a numerical relaxation schedule. 
4. Heat flux q crossing the interface is calculated through Eq. (16) and distributed into the fixed grid; 
5. According to the boundary conditions, energy equation, Eq. (14), is used to obtain the temperature at time step 

n+1; 
6. Temperature is interpolated to find TF at the interface; 
7. The jump condition is tested and if it is lower than the reached tolerance, the fields of viscosity and conductivity 

are updated for the new position, and one step in time is advanced. If that is not the case, a new estimate for Vn+1 is 
calculated and the process returns to step 5. 

The convergence criterion used in step 7 is the residual in Eq. (17). Once it has reached the desired tolerance, 
convergence for interface velocity is assumed. Otherwise, the velocity is corrected via Newton Iterations (Unverdi & 
Tryggvason, 1992; Juric, 1996), given as: 
 

)T(R.VV n1n ω−=+                               (23) 
 
where ω is a constant and R(T) is the residual for the temperature jump condition at the interface. Iterations are repeated 
until R(T) in every point become smaller than the prescribed tolerance. The optimum value for ω is found by tentative, 
at the beginning of the calculation. The method was compared with the analytical solution for a simple phase change 
problem (Ruperti, 1991), resulting in an excellent agreement. 

 
4. RESULTS 
 
 The results were obtained for the region near the stagnation point of SARA Sub-orbital platform, which corresponds 
to a circular segment with radius 279 mm and base diameter of 1015 mm. Since the flight is considered with zero angle 
of attack, the problem is axy-symmetric. A 60 x 50 grid over a domain of  6 mm x 5 mm was used, with a tolerance of 
10-6 in Eq. (18). A resulting 68 points Lagrangean mesh was obtained from the interface. Properties considered for Si-
Phenolic composite were (Gregori et al, 2008): Cp = 1256 kJ/kg.K, ρ = 1730 kg/m3, K = 0.485 W/m.K, L = 12 MJ/kg, 
TA = 538o C and ε = 0.8. As initial condition, temperature in the whole domain was taken as T0 = 27o C. 
 
4.1. Validation 
 

Initially, the program was employed to estimate the aerodynamic heating and ablation at the stagnation point of 
SARA and the results were compared with that from 1-D calculation. In Fig. 8.a, the film coefficient and recovery 
temperature for stagnation point with the time are plotted. In Fig. 8.b, results for wall temperature (structure plus TPS) 
are compared for the two ways of solution. Results present good agreement, especially during the ablative period. The 
small discrepancies may be due to the two-dimensional effects. In Fig. 9, the values obtained for the ablation velocity 
during the ascendant and reentry periods are quite close. Better results for the interface capturing method can be 
obtained with the used of a more refined mesh. The small difference observed in the ablation velocity has produced a 
higher discrepancy in the final thickness, Fig. 10, since the effect of an error in this parameter is cumulative. 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

0 200 400 600

time, s

0

1000

2000

3000

4000
R

ec
ov

er
y 

Te
m

pe
ra

tu
re

, K

0

100

200

300

C
on

ve
ct

iv
e 

C
oe

ffi
ci

en
t H

, W
/m

2 .
K

H
Tr

   
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

time (s)

0

50

100

150

200

250

300

350

400

450

500

550

Te
m

pe
ra

tu
re

(o C
)

External Temperature - Interface Tracking
External Temperature - 1- D
Internal Temperature - Interface Tracking
Internal Temperature - 1- D

 
 (a) h, Tr               (b) Wall temperatures     

 
Figure 8. Comparison among 1-D and Interface tracking results at SARA stagnation point. 
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Figure 9. Ablation velocity at SARA stagnation point 
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Figure 10. Thickness variation of SARA TPS at stagnation point. 
 
4.2. Two-dimensional solution 
 

Once the program was validated, it was used to simulate the aerodynamic heating during the first 54 seconds of 
SARA trajectory, employing the surface pressure data obtained from the N-S solution, and compared with results from 
the use of Newton’s Method. Due to some numerical difficulties, in the region very close to the stagnation point, it was 
used only the Newton ‘s Method estimative for surface pressure in that region. 
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In Fig. (11) the Indicator Function and temperature fields are showed, denoting the presence of the interface 
between the air and the TPS, where the higher variation of these parameters occur. In Fig.(12) results for convective 
parameters are presented as function of the y-coordinate, for several times. As it was mentioned, the values are the same 
close to the stagnation point and present higher discrepancies far from that region. It is possible to observe a tendency 
for convergence from a certain point in y. However, only the domain extension would verify this behavior. 

In Fig. (13.a), the results of the wall temperature for the N-S solution are higher than that from the Newtons’s 
Method. However, as the temperature limit is the ablation temperature, the influence of this parameter in the result of 
the ablative process is small, as it is showed in Fig. (13.b), where the resulting thickness is the same, as observed by 
Machado e Villas-Boas (2006). 
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Figure 11. Two-dimensional results for t = 54 s. 
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Figure 12. Convective parameters during the trajectory 

. 

y, m

In
te

rfa
ce

te
m

pe
ra

tu
re

,o
C

0 0.01 0.02 0.03 0.04 0.05 0.06
0

100

200

300

400

500

t = 15 s

t = 10 s

t = 20 s

t = 30 s

t = 25 s

t = 40s

t = 35 s

Newton
Numerical

    y, m

Lo
ca

li
nt

er
fa

ce
th

ic
hn

es
s,

m

0 0.01 0.02 0.03 0.04 0.05 0.06
0.03

0.031

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045

Numerical

Newton

Before ablation

After ablation

 
(a) Interface temperature       (b) Interface thickness 

 

Figure 13. Ablative parameter during the trajectory. 
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4. CONCLUSION 
 

In this work, the aerodynamic heating and ablation of the SARA Sub-orbital Platform was simulated. The 
convection coefficient was estimated using the surface pressure, which was calculated by the N-S solution and by the 
Newton’s Method. The moving boundary problem of TPS ablation was simulated using the Interface Tracking method 
developed by Unverdi & Tryggvason. After validation of the model with one-dimensional cases, results for two-
dimensional solutions employing surface pressures from the Newton’s Method and CFD simulations were compared 
and showed small differences in the final thickness of the TPS, even though the pressure distributions obtained by these 
two methods presented some discrepancies. As a continuation of this work we intend to extend the solution to the rest of 
the domain, in order to verify the temperature sensibility to the surface pressure distribution. 
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