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Abstract.In this work we consider a semi-infinite expanse of a rarefied gas bounded by its plane condensed phase on which
evaporation takes place. The analysis is based on the BGK model derived from the Boltzmann equation. In particular,
the strong evaporation problem is considered, where nonlinear aspects have to be taken into account. We present the
complete development of a closed form solution for evaluating density and temperature perturbations. Numerical results
are presented and discussed.
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1. INTRODUCTION

Investigations on the kinetics of vapors close to inter-phase boundaries have been carried out over the last years (Aoki
and Masukawa, 1994; Sone, Takata and Golse, 2001; Frezzotti and Ytrehus, 2006; Yano, 2008) due to the large number of
problems of practical interest for which evaporation and condensation phenomena are relevant. As pointed out in Ytrehus
(1976) work, problems of this type are encountered in several areas as: upper atmosphere meteorology, the sodium cooling
of nuclear reactors, design of spacecraft experiments, petrochemical engineering, vacuum technology and the interaction
of high-power laser radiation with metal surfaces. In addition, the evaporation problem is of theoretical interest, because it
defines a general Knudsen layer problem in which non continuum boundary conditions are essential and where significant
changes are associated with all the gas variables: density, velocity and temperature. For instance, Pao (1971b) studied the
temperature and density jumps used to define boundary conditions for the fluid-dynamic set of equations when the gas is
in contact with a condensed phase (Yasuda, Takata and Aoki, 2005).

When the evaporation/condensation is weak, according to the literature (Yasuda, Takata and Aoki, 2005), the problem
of describing a rarefied gas flow can be treated by a linearized version of the Boltzmann equation. On the other hand,
when evaporation or condensation is strong, either the nonlinear Boltzmann equation (Williams, 1971; Cercignani, 1988)
or nonlinear models should be used to describe the problem. Because of the complexity of the models involved, studies
have mostly been devoted to versions which are of the relevance to cases of weak evaporation and condensation only (Pao,
1971a; Siewert and Thomas Jr., 1973; Thomas Jr., Chang and Siewert, 1974; Thomas Jr. and Valougeorgis, 1985; Sone,
Ohwada and Aoki, 1989; Loyalka, 1991; Siewert, 2003; Yasuda, Takata and Aoki, 2005; Scherer and Barichello, 2009).

In regard to the strong evaporation problem, in general, the distribution function, in the original nonlinear equation, is
linearized around a downstream Maxwell distribution containing a drift velocityv∞. This procedure is described in Ref.
(Arthur and Cercignani, 1980) for the BGK model (Bhatnagar, Gross and Krook, 1954) with one degree of freedom. Still,
in Ref. (Arthur and Cercignani, 1980) it is also showed the existence of a critical value of the drift velocityv∞ for which
the linearized version of the strong evaporation problem has solution. Numerical results for the linearized version of the
strong evaporation problem can be found in Refs. (Siewert and Thomas Jr., 1981; Loyalka, Siewert and Thomas Jr., 1981;
Siewert and Thomas Jr., 1982) where the method of elementary solutions and theFN method are used. Nonlinear aspects
are considered in Refs. (Ytrehus, 1976) and (Sone, Takata and Golse, 2001).

In this work, the ADO method (Barichello and Siewert, 1999) is used to solve the strong evaporation problem. Re-
cently, in a concise way, this method has been used to solve in an unified manner a class of flow (Scherer, Prolo Filho
and Barichello, 2009a) and heat-tranfer problems (Scherer, Prolo Filho and Barichello, 2009b) in rarefied gas dynamics.
Here, firstly, the linearized version of the problem is solved to evaluate density, velocity and temperature perturbations of
the gas. Then, the analytical ADO solution is used in the original nonlinear version of the model, in order to get a second
set of results for the quantities of interest. Numerical results are presented for both approaches.

2. THE KINETIC MODEL

We consider here, the steady-state limit of the following dimensional, time dependent problem, as proposed by Ytrehus
(1976): a liquid (or solid) is initially in equilibrium with its pure vapor which occupies the half-spacex ≥ 0 at uniform
temperature and pressureT0 andp0, respectively. At timet = 0 the pressure level in the vapor changes discontinuously to
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the valuep∞ and it is kept at this (constant) value. Then, evaporation or condensation begins, through the phase boundary,
according to whether the pressure levelp∞ is below or above the saturation pressurep0, respectively.

Continuing to follow Ytrehus (1976) analysis, it is reasonable to assume that far downstream of the boundary, after
a sufficiently long time, a steady state will be accomplished. The flow far from the phase boundary is then a uniform
equilibrium flow with constant parameters%∞, v∞ andT∞. In this way, a kinetic boundary layer will form between the
phase boundary and the downstream equilibrium region, in which, nonequilibrium effects may influence significantly the
motion of the vapor (Ytrehus, 1976).

In this context, we describe here the state of gas by the nonlinear BGK model (Siewert and Thomas Jr., 1981), with
one degree of freedom, which can be written as

ξ
∂

∂x
f(x, ξ) = η[φ(x, ξ)− f(x, ξ)], (1)

wheref(x, ξ) is the distribution function,ξ is the molecular velocity in thex direction,η is an appropriate collision
frequency,φ(x, ξ) is a local Maxwell distribution,

φ(x, ξ) =
%(x)√

2πRT (x)
exp

{
− [ξ − v(x)]2

2RT (x)

}
, (2)

andR is the specific gas constant. We continue to follow Siewert and Thomas Jr. (1981) to define the density%(x), mass
velocityv(x) and temperatureT (x) in Eq. (2), as

%(x) =
∫ ∞

−∞
f(x, ξ)dξ, (3)

%(x)v(x) =
∫ ∞

−∞
ξf(x, ξ)dξ (4)

and

%(x)RT (x) =
∫ ∞

−∞
[ξ − v(x)]2f(x, ξ)dξ. (5)

We assume that far downstream the gas relaxes to an equilibrium distribution characterized by steady drift velocityv∞,
density%∞ and temperatureT∞,

f∞(ξ) = lim
x→∞

φ(x, ξ) =
%∞√

2πRT∞
exp

{
− (ξ − v∞)2

2RT∞

}
. (6)

At this point, we follow Arthur and Cercignani (1980) and we linearizef(x, ξ) andφ(x, ξ) aroundf∞(ξ). In this manner,
we writef(x, ξ) as

f(x, ξ) = f∞(ξ)[1 + h(x, ξ)], (7)

whereh(x, ξ) is a perturbation to the absolute Maxwellianf∞(ξ). Thus, we substitute Eq. (7) into Eq. (1) and linearize
φ(x, ξ) aroundf∞(ξ), to obtain the one-dimensional linearized equation written in terms of the perturbation functionh,

c
∂

∂τ
h(τ, c) + h(τ, c) = π−1/2

∫ ∞

−∞
e−(c′−u)2K(c′, c : u)h(τ, c′)dc′, (8)

where

K(c′, c : u) = 1 + 2(c′ − u)(c− u) + 2
[
(c′ − u)2 − 1/2

] [
(c− u)2 − 1/2

]
, (9)

is the scattering kernel and

τ = ηx(2RT∞)−1/2, c = ξ(2RT∞)−1/2 and u = v∞(2RT∞)−1/2, (10 a, b, c)

are the dimensionless variables. We note thatu is the normalized downstream drift velocity.
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2.1 Boundary Conditions

To obtain the boundary condition for the interface, in terms of the perturbationh, we follow Siewert and Thomas Jr.
(1981) and setx = 0 in Eq. (7), to find (forξ > 0)

h(0, ξ) =
f(0, ξ)− f∞(ξ)

f∞(ξ)
, (11)

wheref(0, ξ) is the Maxwellian distribution, given by Eq. (2), evaluated atx = 0

f(0, ξ) =
%0√

2πRT0

exp

{
− (ξ − v0)2

2RT0

}
. (12)

We then linearizef(0, ξ) aroundf∞(ξ) to obtain the dimensionless boundary condition (forc > 0)

h(0, c) = ∆%0 + 2(c− u)(u0 − u) +
[
(c− u)2 − 1/2

]
∆T0, (13)

with dimensionless variables defined by

u0 = v0(2RT∞)−1/2, ∆%0 =
%0 − ρ∞
%∞

and ∆T0 =
T0 − T∞
T∞

. (14 a, b, c)

On the other hand, whenx→∞, f(x, ξ) approachesf∞(ξ) and, looking back Eq. (7), we then find the condition

lim
τ→∞

h(τ, c) = 0. (15)

2.2 Physical Quantities of Interest

We substitute Eq. (7) into Eqs. (3) to (5) to find, in terms ofh, the density perturbation

∆%(τ) = π−1/2

∫ ∞

−∞
e−(c−u)2h(τ, c)dc, (16)

the velocity perturbation

∆v(τ) =
π−1/2

u

∫ ∞

−∞
e−(c−u)2(c− u)h(τ, c)dc (17)

and the temperature perturbation

∆T (τ) = π−1/2

∫ ∞

−∞
e−(c−u)2 [2(c− u)2 − 1]h(τ, c)dc. (18)

3. A REFORMULATION

To develop an analytical solution to the problem defined by Eq. (8), it is convenient to introduce a new function

G(τ, c) = e−(c−u)2h(τ, c) (19)

such that, we rewrite Eq. (8) in the form

c
∂

∂τ
G(τ, c) +G(τ, c) = π−1/2e−(c−u)2

∫ ∞

−∞
K(c′, c : u)G(τ, c′)dc′, (20)

with boundary conditions given by

G(0, c) =
{
∆%0 + 2(c− u)(u0 − u) +

[
(c− u)2 − 1/2

]
∆T0

}
e−(c−u)2 , c > 0 (21)

and

lim
τ→∞

G(τ, c) = 0. (22)

In the same way, based on the definition given in Eq. (19), we express the density perturbation as

∆%(τ) = π−1/2

∫ ∞

−∞
G(τ, c)dc, (23)
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the velocity perturbation as

∆v(τ) =
π−1/2

u

∫ ∞

−∞
(c− u)G(τ, c)dc (24)

and the temperature perturbation as

∆T (τ) = π−1/2

∫ ∞

−∞
[2(c− u)2 − 1]G(τ, c)dc. (25)

We develop the solution for theG problem: Eq. (20) supplemented by Eqs. (21) and (22), in the next section.

4. A DISCRETE ORDINATES SOLUTION

We seek solutions of Eq. (20) of the form

G(τ, c) = Φ(ν, c)e−τ/ν . (26)

If we substitute Eq. (26) into Eq. (20) we obtain

(1− c/ν)Φ(ν, c) = π−1/2e−(c−u)2
∫ ∞

−∞
K(c′, c : u)Φ(ν, c′)dc′. (27)

We can still derive some normalization conditions (Siewert and Thomas Jr., 1981) to simplify Eq. (27). In fact, firstly, we
integrate Eq. (27), over allc, to find∫ ∞

−∞
cΦ(ν, c)dc = 0. (28)

Continuing, we can multiply Eq. (27) by(c− u) and integrate the resultant equation over allc to find∫ ∞

−∞
c2Φ(ν, c)dc = 0. (29)

Thus, looking back to Eqs. (28) and (29), we rewrite Eq. (27), as

(1− c/ν)Φ(ν, c) = π−1/2e−(c−u)2Q(c : u)
∫ ∞

−∞
Φ(ν, c′)dc′, (30)

with

Q(c : u) = 1 + 2u2 + 2(c2 + u2 − 1/2)(u2 − 1/2)− 4cu3. (31)

Still, at this point we note that the exponential term, in Eq. (30) can be expressed as

e−(c−u)2 = e−(c2+u2)[senh(2cu) + cosh(2cu)] (32)

and, in this manner, we write the final convenient form of Eq. (30)

(1− c/ν)Φ(ν, c) = ψ(c : u)[A(c : u) +B(c : u)]
∫ ∞

−∞
Φ(ν, c′)dc′, (33)

where

ψ(c : u) = π−1/2e−(c2+u2), (34)

A(c : u) = [1 + 2u2 + 2(c2 + u2 − 1/2)(u2 − 1/2)]cosh(2cu)− 4cu3senh(2cu) (35)

and

B(c : u) = [1 + 2u2 + 2(c2 + u2 − 1/2)(u2 − 1/2)]senh(2cu)− 4cu3cosh(2cu). (36)

Now we rewrite the integral term in Eq. (33),

(1− c/ν)Φ(ν, c) = ψ(c : u)[A(c : u) +B(c : u)]
∫ ∞

0

[Φ(ν, c′) + Φ(ν,−c′)]dc′. (37)
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Then we introduce a (half-range) quadrature scheme[0,∞), to approximate the integral term of the above equation, such
that

(1− c/ν)Φ(ν, c) = ψ(c : u)[A(c : u) +B(c : u)]
N∑

k=1

wk [Φ(ν, ck) + Φ(ν,−ck)] . (38)

Hereck andwk are, respectively, theN nodes and weights of the (arbitrary) quadrature scheme. If we now evaluate
Eq. (38) inc = ±ci, for i = 1, . . . , N , and note thatψ(c : u) andA(c : u) are even functions,

ψ(c : u) = ψ(−c : u), A(c : u) = A(−c : u), (39 a, b)

andB(c : u) is an odd function,

B(c : u) = −B(−c : u), (40)

we obtain the discrete-ordinates version of the Eq. (37) as

(1∓ ci/ν)Φ(ν,±ci) = ψ(ci : u)[A(ci : u)±B(ci : u)]
N∑

k=1

wk [Φ(ν, ck) + Φ(ν,−ck)] . (41)

We express now Eq. (41) in a matrix form, as

(I−M/ν)Φ+(ν) = Ψ[A + B]W[Φ+(ν) + Φ−(ν)] (42)

and

(I + M/ν)Φ−(ν) = Ψ[A−B]W[Φ+(ν) + Φ−(ν)], (43)

whereI is theN ×N identity matrix,M, Ψ, A, B andW areN ×N matrices defined by

M = diag{c1, . . . , cN} , (44)

Ψ = diag{ψ(c1 : u), . . . , ψ(cN : u)} , (45)

A = diag{A(c1 : u), . . . , A(cN : u)} , (46)

B = diag{B(c1 : u), . . . , B(cN : u)} (47)

and

Wij = [wj ], (48)

for i, j = 1, . . . , N . Continuing, here,Φ±(ν) areN × 1 vectors, such that

Φ±(ν) =
[

Φ(ν,±c1) · · · Φ(ν,±cN )
]T
, (49)

whereT denote the transpose operation.
We now add and subtract Eqs. (42) and (43) to find the equations

U− 1
ν
MV = 2ΨAWU and V − 1

ν
MU = 2ΨBWU, (50 a, b)

with

U = Φ+(ν) + Φ−(ν) and V = Φ+(ν)−Φ−(ν). (51 a, b)

Φ+(ν) andΦ−(ν) are the vectors defined in Eq. (49). Substituting Eq. (50b) into Eq. (50a) we find a quadratic eigenvalue
problem

[Iλ2 + 2M−1ΨBWλ+ 2M−2ΨAW −M−2]U = 0, (52)

where the eigenvalues are given byλ = ν−1. Following Datta (1995), a quadratic eigenvalue problem, as the one given
by Eq. (52), can be transformed in the standard eigenvalue problem[

0 I
−G −F

] [
U

λU

]
= λ

[
U

λU

]
, (53)
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where

F = 2M−1ΨBW and G = 2M−2ΨAW −M−2. (54 a, b)

From Eq. (53) we obtain the set of2N eigenvectorsU(νj), associated with the separation constantsνj , that we use in
Eqs. (50) to evaluate theN × 1 elementary solutions

Φ+(νj) =
1
2

[
1
νj

M + I + 2ΨBW
]
U(νj) (55)

and

Φ−(νj) = −1
2

[
1
νj

M− I + 2ΨBW
]
U(νj). (56)

In this way, we are ready to write the general solution of the discrete-ordinates version of theG problem, given by Eq. (20),
as

G(τ,±ci) =
2N∑
j=1

AjΦ(νj ,±ci)e−τ/νj . (57)

Since this is a conservative problem, we have to deal with the issue of having degenerate eigenvalues, that approach
zero (separation constants going to infinity) asN tends to infinity. Because of that, we need to look for exact solutions of
the problem given by Eq. (20) to add to the general discrete ordinates solution. For this specific problem we are solving in
this work, the number of eigenvalues with this behavior (number of exact solutions) depends of the value of the parameter
u, in Eq. (9), associated with the downstream drift velocity. Thus, we express the general discrete ordinates solution of
Eq. (20) in the form

G(τ,±ci) = A∗1G1(±ci) +A∗2G2(±ci) +A∗3G3(±ci) +A∗4G4(τ,±ci) +
2N−4∑
j=1

AjΦ(νj ,±ci)e−τ/νj (58)

for u = 0 andu2 = 3/2, and

G(τ,±ci) = A∗1G1(±ci) +A∗2G2(±ci) +A∗3G3(±ci) +
2N−3∑
j=1

AjΦ(νj ,±ci)e−τ/νj (59)

for 0 < u2 < 3/2 andu2 > 3/2, where the introduced exact solutions are given by (Siewert and Thomas Jr., 1981)

G1(c) = e−(c−u)2 , G2(c) = (c− u)e−(c−u)2 , G3(c) = (c− u)2e−(c−u)2 (60 a, b, c)

and (only foru = 0 andu2 = 3/2)

G4(τ, c) = (τ − c)Q(c : u)e−(c−u)2 . (61)

The next step is to determine the arbitrary constants present in the solution (Eq. (58) or (59)). We use the boundary
conditions for doing that. We then substitute the general solution, Eqs. (58) and (59), into Eq. (22) to obtain, foru2 < 3/2,

G(τ,±ci) =
N−2∑
j=1

AjΦ(νj ,±ci)e−τ/νj (62)

and foru2 ≥ 3/2

G(τ,±ci) =
N−3∑
j=1

AjΦ(νj ,±ci)e−τ/νj , (63)

where, here,νj are the positive separations constants. In addition, the discrete-ordinates version of the interface boundary
condition, Eq. (21), is

G(0, ci) =
{
∆%0 + 2(ci − u)(u0 − u) +

[
(ci − u)2 − 1/2

]
∆T0

}
e−(ci−u)2 , (64)
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for i = 1, . . . , N . In this way, if we substitute Eq. (62) into Eq. (64), we obtain foru2 < 3/2 the square linear system
N ×N

N−2∑
j=1

AjΦ(νj , ci)−∆%0e−(ci−u)2 − [(ci − u)2 − 1/2]∆T0e−(ci−u)2 = 2(ci − u)(u0 − u)e−(ci−u)2 , (65)

for i = 1, . . . , N . If we substitute Eq. (63) into Eq. (64), we obtain foru2 ≥ 3/2 the rectangular linear systemN ×N −1

N−3∑
j=1

AjΦ(νj , ci)−∆%0e−(ci−u)2 − [(ci − u)2 − 1/2]∆T0e−(ci−u)2 = 2(ci − u)(u0 − u)e−(ci−u)2 , (66)

for i = 1, . . . , N . Once we solve Eqs. (65) and (66) we find the coefficientsAj and the quantities∆%0 and∆T0 defined
in Eqs. (14b) and (14c).

As we mentioned before in this text, it was shown by Arthur and Cercignani (1980) the existence of solution for this
problem only for specific values of the drift velocity, specifically, foru2 < 3/2. This result was somehow confirmed by
Siewert and Thomas Jr. (1981) calculations. Here, we note that, although, in principle, we can deal with the system given
by Eq. (66), with the least squares method, we have not found convergence, when we increaseN , to suggest a possible
numerical reliable result. So, we consider this fact as an indication of the known theoretical result (Arthur and Cercignani,
1980) and assume Eq. (62) as our general solution for the strong evaporation problem, where the arbitrary constants are
given by the solution of the square linear system defined by Eq. (65).

Thus, we substitute Eq. (62) into Eqs. (23) to (25) and we use the normalization conditions given by Eqs. (28) and
(29) to express the final form of the density perturbation

∆%(τ) = π−1/2
N−2∑
j=1

Aje−τ/νj

N∑
k=1

wk[Φ(νj , ck) + Φ(νj ,−ck)], (67)

velocity and temperature perturbations, respectively,

∆v(τ) = −∆%(τ) and ∆T (τ) = (2u2 − 1)∆%(τ). (68 a, b)

5. A NONLINEAR APPROACH

Once the discrete-ordinates solution for the linearized version of the strong evaporation problem is completely estab-
lished, we proceed to define what we call a “post-processing (PP)” procedure. In this sense, we consider the proposed
nonlinear model, given by Eq. (1) to (5), with boundary conditions defined in Eqs. (6) and (12), rewritten in terms of the
dimensionless variables given in Eqs. (10). We then use the quantities evaluated by the ADO method, Eqs. (67) and (68),
into Eq. (2), which defines the Maxwellian distribution. Continuing, we substitute this distribution in the right-hand side
of Eq. (1), which is then solved for a known distributionφ(x, ξ). The solution defines the originalf distribution, which is
then used to evaluated again Eqs. (3) to (5) – the macroscopic quantities for the gas. We do not write explicit derivations
here, for this procedure, because of the requested length of this paper. We present, however, in the next section some
numerical results and comparisons between this procedure and the linear version.

6. COMPUTATIONAL ASPECTS AND NUMERICAL RESULTS

To start the computational procedure, the first step is to define the quadrature scheme. Then, once we have theN
quadrature pointsck and the weightswk defined, the solution is concise and easy to implement. We proceed with:

• the solution of an eigenvalue problem, Eq. (53), to obtain the separation constantsνj and the elementary solutions
Φ±(νj);

• the solution of a linear system, given by Eq. (65);

• the evaluation of the density, velocity and temperature perturbations, Eqs. (67) and (68). Still, from the solution of
Eq. (65) we are able to get the quantities∆%0 and∆T0, Eqs. (14b) and (14c).

• The quantities listed above are then used, in what we called “post-processing” procedure, in Eqs. (1) to (5).

The numerical results showed here where obtained by a FORTRAN program, using, in general,N = 200 quadrature
points. The computational time required for generating all quantities of interest for one value ofu is less than one second
in a Pentium IV (2.66GHz, 1.5GB RAM). If we increaseN up toN = 400, all digits listed in the tables are preserved
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(plus or minus one in the last digit). Still, in regard to our quadrature scheme, as we have explained in previous works, we
define a half-range scheme, in[0,∞). We use the transformation

u(c) = e−c (69)

to map the interval[0,∞) into [0, 1], where we are then able to make use of the usual Gauss-Legendre quadrature scheme,
after using a new change of variable

v(u) = 2u− 1. (70)

In regard to the numerical results, we first checked some previous results available in the literature (Siewert and
Thomas Jr., 1981), for the linearized problem, for%∞/%0 andT∞/T0. We obtained agreement with all digits listed in
that reference. Results we generate from the linearized version are listed in Tab. 1, referred as “Linear” case. In Tab. 1
we also show the results we generate with the “Post-processing (PP)” approach. Both are compared with Ytrehus (1976)
results for a numerical treatment of a set of moment equations – where the Boltzmann equation seems to be satisfied in an
average sense – which seem to take into account nonlinear terms. These results (Ytrehus, 1976) seem to be in agreement
with experimental works.

Table 1.%∞/%0 andT∞/T0 for u0 = 0.0

%∞/%0 T∞/T0

u Linear PP Ytrehus (1976) Linear PP Ytrehus (1976)
0.0 1.000000 1.000000 1.0000 1.000000 1.000000 1.0000
0.1 0.881170 0.873324 0.8494 0.919458 0.920433 0.9567
0.2 0.796123 0.772378 0.7283 0.842106 0.845652 0.9152
0.3 0.732184 0.690327 0.6303 0.769530 0.776876 0.8756
0.4 0.682430 0.622488 0.5501 0.702368 0.714499 0.8378
0.5 0.642727 0.565542 0.4841 0.640748 0.658453 0.8016
0.6 0.610439 0.517090 0.4292 0.584522 0.608403 0.7671
0.7 0.583801 0.475381 0.3834 0.533391 0.563854 0.7342
0.8 0.561584 0.439135 0.3447 0.486987 0.524234 0.7028
0.9 0.542908 0.407414 0.3120 0.444912 0.488933 0.6729
1.0 0.527130 0.379535 0.406764 0.457345
1.1 0.513774 0.355009 0.372150 0.428882
1.2 0.502498 0.333496 0.340680 0.402986

We found more significant difference, when comparing results from the linearized model with the PP approach, for the
ratio%∞/%0 than the temperature ratio, as showed in Figs. 1 and 2. As expected, major variation is noted whenu increases
and the nonlinear modeling should be more effective. However, we also see that the PP procedure seems generate results
in better agreement with Ytrehus (1976) results.

Still, in Tab. 2, we list results, foru = 1.1, for the distribution profiles, which were not provided in previous references,
where only the ratios showed in Tab. 1 were evaluated.

Table 2. Density, Velocity and Temperature Perturbations foru = 1.1 andu0 = 0.0

∆%(τ) ∆v(τ) ∆T (τ)
τ Linear PP Linear PP Linear PP

0.0 8.160593(–1) 9.6964(–1) –8.160593(–1) –4.9229(–1) 1.158804 1.1256(–1)
0.1 7.659667(–1) 8.5562(–1) –7.659667(–1) –4.6109(–1) 1.087672 1.4023(–1)
0.2 7.331004(–1) 7.8797(–1) –7.331004(–1) –4.4070(–1) 1.041002 1.5578(–1)
0.3 7.056325(–1) 7.3609(–1) –7.056325(–1) –4.2399(–1) 1.001998 1.6702(–1)
0.4 6.813778(–1) 6.9362(–1) –6.813778(–1) –4.0955(–1) 9.675565(–1) 1.7565(–1)
0.5 6.593716(–1) 6.5759(–1) –6.593716(–1) –3.9671(–1) 9.363077(–1) 1.8246(–1)
0.6 6.390771(–1) 6.2631(–1) –6.390771(–1) –3.8511(–1) 9.074896(–1) 1.8794(–1)
0.7 6.201558(–1) 5.9871(–1) –6.201558(–1) –3.7449(–1) 8.806212(–1) 1.9238(–1)
0.8 6.023761(–1) 5.7403(–1) –6.023761(–1) –3.6468(–1) 8.553742(–1) 1.9600(–1)
0.9 5.855710(–1) 5.5173(–1) –5.855710(–1) –3.5555(–1) 8.315108(–1) 1.9895(–1)
1.0 5.696143(–1) 5.3142(–1) –5.696143(–1) –3.4701(–1) 8.088523(–1) 2.0134(–1)
2.0 4.418633(–1) 3.9186(–1) –4.418633(–1) –2.8154(–1) 6.274460(–1) 2.0796(–1)
5.0 2.255993(–1) 2.0160(–1) –2.255993(–1) –1.6778(–1) 3.203510(–1) 1.7012(–1)
7.0 1.478535(–1) 1.3546(–1) –1.478535(–1) –1.1930(–1) 2.099521(–1) 1.3496(–1)



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 1. Density ratio:%∞/%0 Figure 2. Temperature ratio:T∞/T0

7. CONCLUDING REMARKS

The ADO method was used to develop a closed form solution for the nonlinear BGK version of the strong evaporation
problem in rarefied gas dynamics. The analytical discrete-ordinates solution obtained for the linearized version of the
problem was associated with a re-evaluation of the quantities of interest, in order to take into account the nonlinear effects
inherent to the problem. The new approach seemed to improve the results of the linearized version, mainly when the
values of the drift velocity increase, when compared with results available in the literature.
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