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Abstract. In this paper, it is investigated the design of a passive vehicle suspension system using a Swarm Optimization 

Algorithm in order to reduce vibrations. A simple quarter-car suspension model is used, where suspension spring, 

sprung mass, unsprung mass, tire spring and damping are modeled as a two degree of freedom system. The excitation 

of the road is assumed as a zero mean-random field and modeled as a single-sided Power Spectral Density in the form 

of a split power law. Variances of pavement load, the suspension deflection and dynamic loads are evaluated by means 

of the corresponding Power Spectral Densities in the frequency domain and used as objective function to be minimized. 

Some experiments are accomplished to evaluate the performance of the proposed algorithm. As result, a simple design 

example is compared with the literature regarding the optimum suspension parameters. The results show that the 

algorithm effectively leads to reliable results with low computational cost. 

 

Keywords: swarm optimization algorithm, vehicle suspension design, optimization. 

                             

1. INTRODUCTION  
 

Generally speaking, vehicle’s vibration depends mainly on the roughness of road surface and on the vehicle 

suspension system. Regarding the vehicle’s vibration, this can lead to whole body uncomfortable sensations (low 

frequency vibrations), cause pain or injuries on lumbar area, hands and feet of the passenger/driver (low and high 

frequencies).  In the vehicle durability’s point of view, mechanical fatigue or excessive wear can occur as well. The 

design of vehicle’s suspension systems should take into account these parameters. So, the design can be stated as: find 

bounded suspension parameters such as spring constant and viscous damping, in such a way that they will minimize 

vehicle’s vibrations and the dynamic load received/applied by the vehicle to the road. This design is performed for a 

certain vehicle speed and road roughness profile. Such problem can be classified as a non-linear optimization problem 

with constraints. In the design process, the time domain approach is not suitable to solve such problem since very large 

time histories should be simulated in order to evaluate systems statistics like variance of the deflection vibration or 

dynamic loads. In this case, a frequency domain approach is worthwhile since statistical parameters can be easily 

evaluated in the frequency domain; besides road surface roughness, which is by itself a random process, can be better 

characterized in terms of Power Spectral Densities and wave numbers. The optimization process can be accomplished 

using several methods available in the literature since they account for the non-linear nature of the optimization 

problem. In this case, the proposed approach by a swarm optimization algorithm is suitable since this algorithm 

accounts for non-linearity and local optima in the optimization process by only using functions evaluations instead of 

function gradients.  

 

2. BIBLIOGRAPHICAL REVIEW 
 

The optimization of suspension parameters has been investigated by several authors in the last decades. The main 

idea behind such research is the minimization of the vehicle vibrations or the load applied into the road in order to avoid 

stress fatigue, human vibration discomfort or even extend the road life time.  There are many ways to model the 

dynamic behavior of vehicles. The simplest one is to model as a quarter car suspension that represents all the vehicle 

mass, suspensions system and wheels. This approach, although simple, can model and predict some global dynamic 

behavior and serves as a first approach to study the phenomenon. More sophisticated models that use a mode elaborated 

system of connected spring, masses and dampers can be used in order to predict more sophisticated behavior like 

dynamic modes of vibration, dynamic interaction between parts of the vehicle. But this approach can lead to a hard 

problem to be solved mainly if it is modeled in the time domain.  Sun (2002) presented the concept of the design of 

“road-friendly” vehicles stating that the load applied to the pavement as the main variable to be minimized. This 

research used a walking-beam suspension model which allows a series of dynamic behavior for the vehicle. It was used 

a one dimensional road profile in the frequency domain. The paper revises three commonly used objective functions to 

be optimized: ride quality, suspension stroke and road adhesion, but the probability of peak value of tire load exceeding 

a given value is taken as objective function of suspension design. It is found a well-known behavior for vehicles: for 

high air pressure and suspension systems with small damping this will lead to large dynamic tire loads. All the analyses 

were performed in the frequency domain. Spetzas and Kanarachos (2002) developed a methodology to design an 

active/hybrid car suspension system taking as control parameter the passenger comfort (minimization of passenger 

accelerations). It was used a heuristic algorithm (Neural Network) to learn the unknown control function. The heuristic 
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algorithm was trained using a semi-stochastic optimization method and latter validated with two cases of minimization 

of passenger accelerations. The numerical comparisons were accomplished in the time domain and the vehicle was 

modeled as a 2 DOF model. Yldirim and Uzmay (2004) proposed a neural network scheme (Model Reference Adaptive 

Control) for controlling a bus suspension system. It was used traditional controllers (PI, PD and PID) to compare the 

results with the neural controller and the simulations showed a superior performance of the later controller against the 

traditional ones. It was used the time domain to perform the control of the suspension and the relative displacements as 

the objective function to be minimized. The vehicle was modeled as a 1 DOF system. The highlighted advantage in the 

use of such controller was the unnecessary knowledge of the system parameters in a precise way which leads to a more 

robust control.  Sun et al. (2006) proposed a methodology to account for the contact area between tire and road surface. 

It is stated that the tire-pavement should be modeled as a contact area instead of a point contact. It was found that the 

distributed contact acts as a low pass filter governed by the weight function and contact interface. So, statistical 

parameters like spectral densities could be evaluated based on the counterparts of the original distributions. It was also 

found that compared with the one point contact, the distributed contact model smoothes the high frequency components 

of the road random field. It is said that the methodology could be easily coupled with optimum designs of vehicle 

suspensions system. 

Regarding the algorithms used in the optimization tasks, Sun et al. (2007) used a genetic based algorithm to design 

and optimize a vehicle suspensions system. It was used the dynamic load applied to the road as the parameter to be 

minimized. The suspension model was a simple quarter car and the optimization was accomplished in the frequency 

domain. The road surface was modeled as a one variable stochastic process with a power spectral density function 

indicated by ISO 8606 Standard (1995). In the paper it is concluded that the numerical method of the genetic algorithms 

can be used as an optimization tool for such hard non-linear optimization problem.  

Regarding the road surface roughness simulation, Andrén (2006) described a literature survey of power spectral 

densities approximations that can be used to represent road profiles. They were proposed by several authors and some 

are adopted by Standards. It was found ten approximations for the PSD representation. Based on the least square 

residual, the fit of approximations to measured data increases as the complexity adopted for the PSD. The author 

concludes that a two or three parameter PSD is probably enough for road rough identification.  

 

3. VEHICLE SUSPENSION MODEL 
 

In this paper a simple quarter-car suspension model is used to model the dynamic vehicle behavior. It is composed 

of an equivalent sprung mass 1m  that models vehicle’s chassis/ body, passengers, engine, etc., an equivalent unsprung 

mass 2m  that represents wheels and axles, the suspension stiffness 1k , the tire stiffness 2k , suspension damping 1c  

and tire damping 2c . The roughness along the road ( )x  related to the mean surface road level is indicated by ( )xξ . The 

vertical absolute sprung mass displacements are measured by variable 1( )y t  and the absolute vertical unsprung mass 

displacements are measured by variable
2 ( )y t . In Fig. 1 it is sketched this quarter car suspension model with the 

definition of the used variables. 

 

 
 

Figure 1. Quarter-car suspension model. 
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 The related equations regarding to force equilibrium in Fig. 1 in the vertical direction are: 

 

2 1 1 2 1 2 2 1 2 1 2 2

1 2 1 2 1 1 2 1

( ) ( ) ( ) ( ) 0

( ) ( ) 0

m y c y y c y k y y k y

m y c y y k y y

ξ ξ+ − + − + − + − =

− − − − =

&&& & & &
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      (1) 

 

     If it is named 
1 2 1( ) ( ) ( )z t y t y t= −  and 

2 2
( ) ( )z t y tξ= − , respectively the relative displacements for unsprung and 

sprung masses and if this new variables are substituted in the previous equation, this yields: 

 

2 2 1 1
2 2 2 1 1 1

2 2 2 2

1 1
2 1 1
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0

0

c k c k
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c k
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 If it is applied the Fourier Transform to the previous equations, assuming a excitation in the sinusoidal form of 
i t

e
ωξ =  , the following equation in the frequency domain is obtained: 

 
2 2

22 2 2 2 1 2 1 2

2 2 2
11 1 1 1

( )/ / / /

( )/ /

Hi c m k m i c m k m

Hi c m k m

ωω ω ω ω
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   − − +  
=    
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    (3) 

 

where 1( )H ω and 2 ( )H ω  are the Frequency Response Functions (FRF) for sprung and unsprung masses, 

respectively. These functions are indicated below: 
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where, for the sake of simplicity, it was defined 
1 1 1

/c mα = , 
2 2 2

/c mα = , 
1 1 1/k mβ = , 

2 2 2/k mβ = , 
1 2

/h m m= . 

 

4. ROAD ROUGHNESS MODELLING 

 
As indicated by Andrén (2006), the PSD of the road profile can be used both to assess the road roughness and as 

input to a vehicle model. ISO 8608 (1995) specifies the way to report the measured data for road roughness as the 

correct notation. A series of models can be found in the literature that approximates the road roughness profiles by 

simple formulae. These formulations use a series of parameters that are road dependent. The ISO model, based on 

Dodds and Robson (1973) works, is taken as: 
 

( ) ( )
w

G Cξ
−Ω = Ω             (6) 

 

where Gξ  is the single sided power spectral density for road roughness (m2 / cycle / m), Ω   means is the wave number 

(cycle/m), C is the general road roughness coefficient (m3/ cycle), which is related to the road surface condition, w is 

the wavelength distribution. A better formulation is the BSI (1972) recommendation that states for the road profile 

roughness the following formula: 
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where the single sided PSD was split into two straight lines at the discontinuity frequency 0Ω  (cycle/m).  The 

discontinuity frequency is usually set as 
0 1/ 2 0,16πΩ = ≅ cycle/m, which corresponds to a wavelength of about 6.3 

m. 1w  and 2w  are wavelength parameters distributions. Other sophisticated models are available but they use more 

parameters to describe the road profile roughness. Instead of following this way, in this paper the two split model with 

0 0,1Ω = cycle/m, distributions parameters
1 2 2.0w w= =  and the general road roughness coefficient as 0.01C =  

m
3
/cycle will be used. 

 

5. SYSTEM RESPONSE IN THE FREQUENCY DOMAIN 
 

In order to evaluate the system response in the frequency domain due to inputs, according to the random vibration 

theory, the Power Spectral Densities of the displacements responses of the unsprung 
2
( )zS ω  and sprung masses 

1
( )zS ω  are respectively written as: 

 

 2

1

2

2

2

1

( ) ( ) ( )

( ) ( ) ( )
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ω ω ω

=
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         (8) 

 

where ( )Sξ ω  is the Power Spectral density of the elevation of the road surface profile (roughness). The Power 

Spectral Densities are defined for all frequencies. In order to evaluate ( )Sξ ω  it is necessary to transform the given 

single sided Power Spectral Density (defined for positive frequencies) of the road roughness ( )G Ω , in the space 

domain, into this double sided Power Spectral Density. Remembering that a constant speed v  the wave number Ω  and 

the angular frequency ω  are related through 2 vω π= Ω , the following relationship yields for the transformation: 

 

 
1

( ) ( )
4

S G
v

ξ ξω ω
π

=           (9) 

 

The power spectral density of the dynamic load as function of the power spectral density of the road profile is 

given, as indicated by Sun and Deng (1998) as: 

 

 
2

2 2 2
( ) ( ) ( ) ( )

P
S k ic H Sξω ω ω ω= +         (10) 

 

In order to evaluate parameters that represent such stochastic processes, the variance of the corresponding values 
will be used. In this case, the corresponding values of the variance of the vehicle deflections and dynamic loads are 

evaluated, respectively as: 
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and 

 
1
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Such integrals are evaluated over the frequency range of 0 to 500(
02 vπ Ω ). The algorithm used for these one-

dimensional integrations was the Romberg Method. This method uses trapezoidal approximations over an even number 

of subintervals and then compares sequential estimates by summing the areas of the trapezoids. The method terminates 

when the four most recent estimates differ by less than the value of a tolerance (10
-6

). This integration is suitable for this 

purpose since the functions are not periodic functions. Figure 2 shows a plot of the single sided power spectral density 

for vehicle deflections in the frequency domain and vehicle velocity of 20m/s. 
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Figure 2. Single sided power spectral density for vehicle deflection. 

 

 More details about the theory of Power Spectral Densities generation and evaluation can be found in Bendat 

and Piersol (1986). 

 

6. SWARM OPTIMIZATION ALGORITHM 

 

The particle Swarm optimization (PSO) has been inspired by the social behavior of animal behavior such as fish 

schooling, insects swarming and birds flocking. This method is used to search for the global optimum of wide variety of 

arbitrary problems. It was first introduced by Kennedy and Everhart (1995). The initial intent of the particle swarm 

concept was to graphically simulate the graceful and unpredictable choreography of a bird flock, the aim of discovering 

patterns that govern the ability of such bird flock to fly synchronously and suddenly change direction with regrouping in 

an optimal formation. Rigorously speaking, it is a stochastic, population based evolutionary computer algorithm. The 

basis for the method relies on the social influence and social learning which enable persons to maintain cognitive 

consistency. So, the exchange of ideas and interactions between individuals may lead them to solve problems. The 

particle swarm simulates this social plot. As stated by Li et al.(2007), the method involves a number of particles, which 

have a defined position and velocity and they are initialized randomly in a multidimensional search space of an 

objective function. Each particle represents a potential solution of the problem and the measure of this potentiality is its 

objective function. The set of particles are generally referred as “swarm”. These particles fly through the 

multidimensional space and have two essential reasoning capabilities: their memory of their own best position and 

knowledge of the global or their neighborhood's best. In a minimization optimization problem, "best" simply means the 

position of the particle (
ix ) with the smallest objective value, min ( )if x . Members of a swarm communicate good 

positions to each other and adjust their own position and velocity based on this information of good positions. So, 

related to each particle there are a set of design variables ( ix ) and the respective velocities (
i

v ) that represents the 

potential solution of the optimization problem.  

At each iteration, the basic swarm parameters position and velocity are updated using the following equations: 

 

 
1 1

, 1 1 , , 2 2 ,

1 1

, , ,

[ ( ) ( )]
k k k k k k

i j i i j i j j i j

k k k

i j i j i j

v v r xlbest x r xgbest x

x x v

χ ϖ λ λ+ +

+ +

= + − + −

= +
      (13) 

 

where ϖ  is the inertia weight for velocities (previously set between 0 and 1, in this paper ser as 0,7), ,

k

i j
x  is the current 

value (k) of design variable j of particle i,  
1

,

k

i j
v +

 is the updated velocity of design variable j of particle i, 
,

k

i j
xlbest  is the 

best design variable j ever found by particle i, k

jxgbest  is the best design variable j ever found by the swarm, 1r  and 2r  

are uniform random numbers in the [0,1] range, 1λ  means the cognitive component (self confidence of the particle) and 

2λ  means the social component (swarm confidence) and they are constants that influence how each particle is directed 

towards good positions taking into account personal best and global best information , respectively. They usually are set 

as
1 2 1.5λ λ= = . The role of the inertia weight  ϖ  is crucial for the P.S.O. convergence. It is employed to control the 

impact of previous velocities on the current particle velocity. A general rule of thumb indicates to set a large value 

initially to make the algorithm explore the search space and than gradually reduce it in order to get refined solutions. In 
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this paper it is initially set as 0.8ϖ =  and updated based on coefficient of variation ( /cov σ µ= ) of the swarm 

objective function accordingly to 0.4[1 (cov,0.6)]minϖ = + . The χ  parameter is used to avoid divergence behavior in 

the algorithm and it is given by the following expression, which was developed based on convergence assumptions for 

the algorithm, as indicated by Bergh and Engelbrecht (2006).  

 

 
2

1 2 1 2 1 2

1.6

2 ( ) ( ) 4( )
χ

λ λ λ λ λ λ
=

− + − + − +

       (14) 

 

This coefficient is crucial to keep the algorithm stable and avoid divergence in the iteration process. There are 

variations in the algorithm that add a third term in the previous velocity update that accounts for neighborhood 

information. This requires the user to set an influence region to define the neighborhood. In this paper the just the 

simple algorithm was used in order to reduce the number of heuristic parameters. For the generation of initial particles 

of swarm it is common to set randomly distributed particles across the design space, so: 

 

 0

, ( )
i j j min j max j min

x x r x x= + −          (15) 

 0

, 0i jv =             (16) 

 

where 
0

,i jx means the initial position for design variable j of particle i, r means an uniformly random generated number 

in the [0,1] range, j minx and j maxx means the lower and upper bounds for design variable j. It is implicit in this 

formulation that the iterations mean the time step of the process. A simple way to understand this updating procedure is 

depicted by Hassan et al.(2005) and indicated in the following Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3. Vector representation of velocity and position updates in Particle Swarm Optimization Algorithm (Hassan et 

al., 2005). 

 

The easier way to set a convergence criterion for the algorithm is monitoring the differences in the global best 

design variables between iteration or even the global best objective function. However a more effectively one can be 

built based on the Coefficient of Variation of objective function in the swarm. In this paper a combination of the three 
criteria was simultaneously employed. In the following a pseudo-code for the implemented Swarm Optimization 

Algorithm is depicted in the Fig. 4. 

 

7. EXAMPLES 

 

7.1 Minimization of the applied load 
 

In this example it is desired the dynamic vehicle loads to be minimized in order to decrease the damage on the 

pavement. It is intended to compare the solutions obtained with those obtained by Sun at al. (2007). So it is assumed the 

following vehicle constant parameters: 550tm =  kg, 4450sm =  kg, 0 /
t

c Ns m= , 20 /v m s=  ( 72 /km h )  and for 
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the pavement a roughness parameters in the split power law, it is assumed the following parameters 210spC −= , 

0.1 /
l

cycle mΩ =  and a 
1 2 2.0w w= = . 

 

 

Set the algorithms parameters: number of particles n, number of design variables m, cognitive parameter 1c , social parameter 2c , 

velocity momentumω , coefficient to avoid divergence χ , minimum coefficient of variation
mincov , upper and lower bound for 

design variables 
min

x  and 
maxx . 

Create initial random Swarm and initialize the local best values 

For each particle i in the swarm 

   For each design variable j 

          r=uniform[0,1] 

        
0

, ( )i j j min jmax j minx x r x x= + −  

        0

, 0
i j

v =  

         Set the local best design variable as the current one 

         
,i j

xlbest =
,i j

x  

   End 

   Set the local best objective function as the current one 

  ( )i if xlbest = ( )if x  

End 

Iterates with the Swarm to find particle with design variables that lead to a minimum objective function 

Loop until convergence criterion of Coefficient of Variation(
min

cov cov<  ), global best objective function (
1( )

i
f +xgbest -

( )
i

f xgbest <tolerance) or global best design variable (
1i i+ −xlbest xlbest <tolerance) of the Swarm is met  

   Evaluate for each particle the objective function ( )
i i

f x  

   Update the local best and their objective function 

   For each particle i 

        If ( )if x < ( )
i i

f xlbest  then ( )
i i

f xlbest = ( )
i

f x  and 
i

xlbest =
i

x     

   End  

   Find the minimum particle objective function min( ( )
i

f x ) 

   If min( ( )
i

f x ) < ( )
i

f xgbest  then ( )if xgbest = min( ( )if x ) and 
ixgbest = [min( ( )]i iindex f x

x      

   For each particle i in the swarm 

        r1= uniform[0,1] 

        r2= uniform[0,1] 

       1

1 1 2 2
( ) ( )k k k k k k

i i i i i i
c r c rω+ = + − + −v v xlbest x xgbest x  

        1 1k k k

i i i
χ+ += +x x v  

   End 

End 

 

Figure 4. Pseudo-code for the simple Particle Swarm Optimization. 

 

Similarly to Sun et al. (2007) example, the following constraints to the design variables were set: 
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        (17) 

 

The constraints in the optimization problem are treated as usual, using the penalty methodology with high 

penalization coefficient (in this work 1000).  The used parameters for the swarm optimization algorithm are indicated 

by Tab. 1. 
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Table 1. Swarm optimization parameters. 

 

Velocity momentum 

ω  

Constant 

1c  

Constant 

2c  

Number of Particles 

 m 

Tolerance 

tol 

0.5 2.0 2.0 30 6
1 10x

−  

 

This optimization took 16 algorithm’s iterations to find a minimum of 2 11 21.88 10P x Nσ = . The total number of 

functions evaluations was 320. No information regarding the number of function evaluations is reported by Sun et 

al.(2007). The final design variables were:
5

1
1 10 /k x N m= , 

6

2
1.5 10 /k x N m=  and 4

1 2.355 10 /c x Ns m= . The 

variance of the suspension deflection using the optimum variables is 
1

2 20.165
Z

mσ = . IN this example, the two initial 

design variables, 
1 2,k k  assumed lower bound values and the suspension damping 

1c  assumed an intermediate value. 

Table 2 compares the obtained results with those by Sun et al. (2007). 

 

Table 2. Comparison between Swarm results and Genetic Algorithm results (Sun et al., 2007). 

 

Velocity momentumω  
1k ( /N m ) 

2k ( /N m ) 
1c ( /Ns m ) 2

Pσ ( 2N ) 
1

2

Zσ (
2

m ) 

Sun et al.(2007) 5
6.2218 10x  61.705449 10x  42.6582 10x  

11
2.9 10x (*) -(**) 

Present work 5
1 10x  

61.5 10x  
42.355 10x  

111.88 10x  0.165  

(*) estimated from Figure. 

(**) not specified 

  

Figure 5 shows the objective function (dynamic vehicle load) decrease behavior during swarm optimization 

process. 

 
 

Figure 5.  Objective function decrease (dB) during swarm optimization iterations. 

 

Figure 6 shows the design variables convergence during swarm optimization iterations. 
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Figure 6. Design variables k1, k2 and c1 during swarm optimization iterations. 

 

Figure 7 shows the variance in the dynamic vehicle load during iterations of the swarm optimization. 

 
 

Figure 7. Variance in the dynamic vehicle load during swarm optimization process iterations. 

 

7.1 Minimization of suspension deflections 

 

In this example it is desired the vehicle’s deflections ( 1z ) to be minimized in order to increase the passenger’s 

comfort during the journey. In order to accomplish this intent the objective function is set as the variance of the vehicle 

suspension deflection (
1

2

zσ ). So, it is assumed the same vehicle’s parameters, and road roughness from the previous 

example. The same design variable constraints from the previous example were used. Again, the constraints in the 

optimization problem are treated as usual, using the penalty methodology with high penalization coefficient (in this 

work 1000). The swarm optimization parameters used were the same indicated for the previous example indicated in 

Tab. 1. This optimization took 17 algorithm’s iterations to find a minimum of 
1

2 3 21.713 10
Z

x mσ −= . The total number 

of function evaluations was 340. No information regarding the number of function evaluations is reported by Sun et 

al.(2007). The final design variables were: 6

1
3 10 /k x N m= , 6

2 1.5 10 /k x N m=  and 5

1 3.0 10 /c x Ns m= . The variance of 

the suspension deflection using the optimum variables resulted in a dynamic load of 2 11 21.07 10
P

x Nσ = . The two initial 

design variables 
1 2,k k  converged to upper and lower bound values, respectively, and the suspension damping 1c  

converged to the upper bound value. Figure 8 shows the variance in the vehicle’s deflection during iterations of the 

swarm optimization. 

 
 

Figure 8. Variance in the vehicle’s deflections during swarm optimization process iterations. 

 

8. CONCLUSIONS 
 

This paper presented a methodology to improve the design of suspension systems of vehicles. The design of the 

suspension system was treated in the frequency domain and the vehicle’s suspension system modeled as quarter car 2 

degree of freedom model. The road roughness was modeled as a random process with prescribed PSD following the 

ISO8606 Standard. The parameters to be optimized were the suspension and tire stiffness and suspension damping. A 

new algorithm was used to perform the optimization. Since the design problem is a hard non-linear problem, a Swarm 

Optimization algorithm was selected based on its capabilities dealing with this kind of problems and low number of 

heuristic parameters to be fitted. The main steps of the method were explained and the pseudo-code for the algorithm 

used in the evaluations was depicted. Two examples of design optimization of a suspension system were developed. On 
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the first one, dynamic load applied of into the road by the vehicle suspension was used as objective function to be 

minimized. This example was compared with a literature and presented better results. In the second example, 

suspension deflections were used as objective function to be minimized. The two initial design variables   converged to 

upper and lower bound values, respectively, and the suspension damping   converged to the upper bound value. Both 

examples showed the robustness and the low number of function evaluations required by the algorithm in the 

optimization. 
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