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Abstract. The present work presents a study on several constitutive models for incompressible elastomers and soft
tissues published in the technical literature. Classical models are considered as well as recent contributions to the
field. The corresponding expressions for the strain energy are implemented in a computational code to recover the
congtitutive constants for each model through the optimization of the differences between theoretical and experimental
stress (calibration), the later obtained from uniaxial tensile, pure shear and biaxial tensile testings. The theoretical
stress predictions are compared against experimental values for two samples of elastomers under different strain
ranges, allowing a subjective analysis comparing all models, and a discussion about the performance of each one. An
estimator is proposed to evaluate quantitatively the goodness of fit of the theoretical predictions with the experimental
curves, as a substitute for correlation coefficients which are not suited to non-linear curve fitting. The proposed
estimator istested for the samples under several strain ranges, and it is shown its efficiency as an aid to select the best
models for a given application. Many of the models studied here cannot deliver satisfactory theoretical predictions for
deformation modes different from the used in the calibration. Therefore, a compromise optimization scheme is
investigated in order to improve the quality of faulty predictions without destroying the good ones.
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1. INTRODUCTION

The evolution of the constitutive models for hypastic materials and soft tissues is strongly marky a
proliferation of models during the last decade. Sehbyperelastic models can be grouped hierarchiaattording with
their genealogy and chronology in five general faasj as illustrated in Fig. 1.

A common issue in the selection and validation gberelastic models is the absence of ranking @itahich,
along with the large variety of models availabl@kes the selection process difficult, subjectivel highly susceptible
of misinterpretation task. The usual ways for meiag the quality of the fit is through the evaloatof relative errors
between the theoretical predictions and the expartad curves, or alternatively, directly by visuagpection of the
plots. Any of these methodologies are inefficiefitew one is looking for an accurate analysis of eaolel as, for
example, when understanding the influence of aiipéerm of the strain energy density function. nfore significant
and useful parameter is the regression coefficiwhich contains minimal information about the figi the near the
unity, the better is the fit. Regression coeffitgeare, however, unsuitable for nonlinear regressiike the ones found
in calibration of elastomers. This concept willthe base for developing a specific goodness ofitlestimator in the
present work.
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Figure 1. Common types of hyperelastic models.
2. CLASSICAL AND NON-CLASSICAL HYPERELASTIC MODELS

Modern design practices in rubber industry aredrased on finite element simulations, and tleuecy of these
relies on the ability of the constitutive model dise predicting the mechanical behavior of the makeTherefore, the
main point when modeling a particular hyperelastiaterial is the selection of a suitable constimitequation. The
present work considers several constitutive modeisilable in the literature for incompressible miais. Most
constitutive models can be roughly grouped in ohémo broad categories: phenomenological and mieranical
models, as illustrated in Fig. 2. Details aboutstrain energy functions studied here can be fouhtbss (2009).
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Figure 2. Classification of several hyperelasticdele reported in the literature.

After a deep examination of the historical andheatatical details of the models shown in Fig. 8,ttgperelastic
families can be suggested as listed in Tab. 1. ptoposal is a tentative sub-classification whiglhsato group the
several models according to their similarities Ire tanalytic formulation, relationship with other deds, or by
chronological proximity of the original publicatienThis classification — one of the contributiorfishe present work —
is suggested not only to reduce the amount of teplbts, but also to group those models with b&haand features
potentially (but not necessarily) similar. Therefoit is expected that the advantages and disaalgest as well as
fitting and prediction patterns are shared amomgrttembers of each group, although this rule has bisated in
many cases (for example, when the associationredypahronological).

In practice, it is impossible to make definitivatstments about the usage for of each model, bert aft extensive
set of tests using different materials, very gelnedas of application for each model can be tra¢égure 3 presents a
gross suggestion of deformation limits to emplas tmodels reviewed in Fig.2 (Hoss, 2009).

3. CURVE FITTING

The present work employs two samples of materiaélobr's data (Treloar, 1975) and natural rubber5BIR
(Marczak,et al., 2006). Figure 4 shows a visual graphical analgéithe models MRI9 and PSI fitted for Treloaratal

in uniaxial test up to a maximum deformatia) ¢f 700%. The convention used for the stress vs. straimec(jrxe)

in this and all other figures is as follows: expagntal results are plotted with dashed lines, wthigmretical predictions
are continuous lines. Uniaxial tensile (T) tests plotted in black, with pure-shear (S) tests imeband biaxial (B)
tensile tests in red. As mentioned by Humphrey 220003), if the characteristic stiffening of theastomer is
significant and starts to occur at moderate straimeny classical hyperelastic models (like MoonéyiR Blatz-Ko
and others) cannot deliver good results. Althougtagicular model may fit the experimental reswigsy well, the
same may not happen with the theoretical predistfon other loadings, a fact commonly omitted imnmaases in the
literature. Results for the MRI9 model shown in.Eiglustrate one of such cases, while the PSI hedemplifies the
opposite case, delivering good predictions for defdion modes different from the one used in tHéions of the
constitutive constants.
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Table 1. Hyperelastic groups.

HYPERELASTIC GROUPS

MRI2 Mooney Rivlin (N=2) PLI Peng e Landel
MRI3 Mooney Rivlin (N=3) Ml Martins
GROUP: MViRi5 Mooney Rivlin (N=5) GROUPs KLI  Kilian
MRI9 Mooney Rivlin (N=9) VDWI Van der Waals
HNI1 Hartmann e Neff (N=1) Y12 Yeoh (N=2)
HNI2 Hartmann e Neff (N=9) Y13 Yeoh (N=3)
GROUP, HNI3  Hartmann e Neff (N=9) GROUP, Y15 Yeoh (N=5)
P13 Polynomial (N=9) YMI Yeoh Modified
NHI  Neo-Hookean YKI Yamashita-Kawabata
GTl  Gent-Thomas Al Amin
GROUPs HSAI Hart-Smith Improved GROUPs DTI Davis-De-Thomas
HSI  Hart-Smith GYI Gregory
FI Fung THI Takamizawa-Hayashi
VWI  Veronda-Westmanns EVI Edwards-Vilgis
GROUP, KI  Knowles GROUP, ABI5  Arruda-Boyce
HYl  Humphrey-Yin Gl Gent
Ol2 Ogden (N=2) YFI Yeoh-Fleming
0OI3  Ogden (N=3) G3l Gent a 03 Parameters
GROUPs  —1B12 Bechir (N=2) GROUP1o PGSI  Pucci-Saccomandi
HBI3 Bechir (N=3) HGSI  Horgan- Saccomandi
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Figure 3. Gross limits of application for hyper¢iasnodels.
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Figure 4. Curve fitting and prediction results iRI9 and PSI models.

As shown in the example of Fig. 4, a purely visaabessment of a given constitutive model may bg ver
misleading, making the selection process susceptibkrrors and misinterpretation. A method usednlayy authors
for check the quality of the fit and the predictda to calculate the relative errors between téal and experimental
results. This percentage error is given:

te (1) -t.(4)
te(4)

wheret, (/]) et (/]) corresponds to the experimental and numericadstralues, respectively.

Residual Error (%F x 10 (1)

Figure 5 shows an analysis using this conceptvior ¢onstitutive models, and it exemplifies an akgitation
where the analyst cannot be confident about chgosime of them using Eq. (1). Both models wereditte uniaxial
tension0<e<700% using the Treloar's data and, despite the goodopeance of the Gent's model (GI), Eq. (1)

seems to indicate the contrary. This is a bad cheniatic of Eq. (1), since it does not take intwa@unt the relative
magnitude of the stresses involved along the dedftiom range.
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Figure 5. Residual error between experimental hadretical results measured by Eq. (1).
4. ANEW ERROR ESTIMATOR PROPOSAL

The derivation of a more suitable error estimatoverify and compare the quality of the fittingoahl obey three
basic rules. First, it has to be compatible witm+ioear regressions, since this is the case whealirdy with
hyperelastic constitutive models. This is not tkeec of the linear regression?j commonly used in the literature.
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Second, the estimator must be of simple computaltionplementation. Such estimator could be theeefocluded in
commercial software to help the analyst to choosersy so many models available in them, somethimgently left to

the user. And at last, the estimator must be madkieally consistent in order to reflect faithfultiie behavior and
quality of the fitting and theoretical predictionsegardless the deformation/stress range. Usingethales, the
following estimator is proposed, based on the saaoreept of the linear regression coefficient, bdaed for non-
linear curve fitting:

_ S
Sgot

n 2

Sreg = Z(te _tt) (2)

i=1

r=1

2

Sqot = iwl (te _Q)
i=1

where t, and t, are the experimental and theoretical stress saltgspectively. In general, the coefficient is

computed from de sum of the squares of the diffe@erusing from the best curve obtained by a naatimegression.
This sum of the squares is calfgg,, which has the same units of the variables invitigical axis, but squared. In

order to normalize the estimatdg,, is divided by the sum of the squares of the diffiee to the mean value up to the
point in question S, . If the curve fits the data satisfactoril§,, will be much smaller thargg,, . Figure 6 illustrates

these ideas.

o
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Figure 6. Evaluation of the new estimator. (a) fptetation of Sg, . (b) Interpretation ofS, .

In to provide an assessment of Eq. (2), it wastbtte most representative models of each hypéefamily of
Tab.1. In the next examples, it is shown that Bjjcén be effectively used not only as an indictdaaid the selection
of hyperelastic models, but also as a comparisoanpeter between two or more models. In order tadaproliferation
of graphs, the results will be presented only foiaxial and biaxial tests. The estimator are preskby bar diagrams
representing the lowest value obtained in the aedition range, for the deformation mode used inctii#oration and
the other deformation modes as well. This providesndication of the goodness of fit for deformatimodes other
than the one used in the calibration.

4.1 Natural Rubber — Large Deformations

Treloar's data (Treloar, 1975) were used to calédrthe constants in the following deformation range
0< e< 700% for uniaxial stress,0< e< 400% for pure shear, and < e< 350% for biaxial stress.

4.1.1 Fitting for uniaxial tensile test

The hyperelastic constants were obtained with #peemental data in the rang& e< 700%. At the end of each
deformation increment of 100% a new set of constavas fitted, and Eg. (2) was evaluated for thexial mode as
well as for the predictions (pure shear and biasie¢ss). The lowest values obtained for each imer is plotted in
Fig. 7 for the models MRI9, OI2, KI, YI3, Gl and PS
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Note that through plots such as Fig. 7 an engingeahalyst, even without a deep knowledge in hypstieity, can
easily conclude that the PSI model is the bestimfarticular case. The good overall performarfidaePSI model can
be confirmed by the plots in Fig. 8, showing theditetical predictions superimposed to the experiatlatata, and the
behavior of the Eq. (2) along the deformation range
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Figure 7. Performance comparison of some hyperelagidels using Eq. (2) — calibration for uniaxstiess.
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Figure 8. Performance of the PSI model. (a) Cuittiad. (b) Error estimator by Eq. (2).
4.1.2 Fitting for biaxial tensile test

In this case the constants were obtained with Xpermmental data in the randgk< e< 350%. The same procedure
used in section 4.1.1 was used. The estimatorgalatt Fig.9 suggests that the calibration usingiblastress may not
be better than using uniaxial stress, as openlprteg in the literature. Again the PSI model préseénbetter
performance than the other models.
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Figure 9. Performance comparison of some hyperelasidels using Eq. (2) — calibration for biaxitess.
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4.2 Natural Rubber — Small Deformations

In order to assess the behavior of the hyperelastidels in deformation ranges significantly narrowean the
ones studied in section 4.1, here another samptetfral rubber will be used - NR55 (Marczakal., 2006). The
deformation ranges used for each test a@0&e<100% for uniaxial stress,0<e<130% for pure shear, and
0< e< 70% for biaxial stress.

4.2.1 Fitting for uniaxial tensile test

The hyperelastic constants were obtained for thpegmental data in the ranfec e<100%. At the end of each
deformation increment of 10% a new set of constaas fitted, and Eq. (2) was evaluated for the xialanode as
well as for the predictions (pure shear and biastiadss).

Figure 10 compares the estimator obtained for tbdeis MRI9, OI2, KI, YI3, Gl and PSI. In this cae YFI
model presented the best overall performance.woigh to note that some models (MRI9 and PSI) geed useless
predictions, in spite of the good fit for the urigxstress. In order to prove this, Fig. 11 presehe theoretical
predictions and the behavior of the Eq. (2) alomg deformation range for the PSI model, in perepteement to
Fig.10.
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Figure 11. Assessment of PSI model. (a) Graphiatyais. (b) Analysis using the Eq. (2).
4.2.2 Fitting for biaxial tensile test

The hyperelastic constants were obtained with #pe@mental data in the rang@< e< 70% and, again, at the
end of each deformation increment of 10% a newkebnstants was fitted, and Eq. (2) was evalu&tedhe biaxial
mode as well as for the predictions (pure shearwsmaxial stress). Figure 12 compares the perfoomari the models
MRI9, OI2, KI, Y13, GI, and PSI. Clearly the YFI rdel performs better than the others.
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Figure 12. Performance comparison of some hypdiela®dels using Eq. (2) — calibration for biaxéaless.
5. COMPROMISE OPTIMIZATION

Ideally, the best way to calibrate the constantsgneral applications would be to optimize thenaisingle pass
using a multi- criteria cost function. However, tio¢gal stretches of each deformation mode are gdigerery different.
An optimization considering the smallest deformati@nge of all three testing (biaxial testing) wbuleglect a
significant part of the uniaxial and shear experitak data. A possible solution is to employ a coonpise
optimization, based on a linear combination ofd¢bastants calibrated for each deformation mode:

C=wC; +WoCp +WsCp 3)

where C is a new set of average constitutive constams, w., Wy represent the weights for the groups of constants

of the uniaxial tensilg(C; ), pure sheaCp) and biaxial tensilgCg) testing, respectively. Equation (3) does not

represent a global optimum, but on the other haadldws one to tune the importance of each modehanging the
corresponding weight suitably. The following casee studied in the present work: Case 1, same veeiigh all

testwy =Wy =W =1/3); Case 2, majoring the importance of the biaxiatmfw; =w, =3/4wg =¥ 2 ; and Case
3, majoring the importance of the uniaxial m((dreT =Y2w, =wg =¥ 4) . All cases used Treloar’s data.

Figure 13 showing that the compromise optimizafmrthe YI3 model not only improved the predicticsfshe
biaxial test, but also generated acceptable cdordbe three tests.
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Figure 13. Compromise optimization results for Yit8del.

Figure 14 compares the predictions obtained for Y& model using the constants calibrated for timéaxial
testing (Fig. 14a) with the predictions obtained @ase 1 (Fig. 14b). It is clear that the improvatr@btained for the
biaxial mode using Eq. (3) did not imply in a vigildegradation of the predictions for the other axod
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Figure 14. Predictions of the Y13 model. (a) Caiiiwn for uniaxial mode. (b) Case 1.

However, one cannot expect that any weighting coatimn will bring way wrong predictions to accegalevels.
Figure 15 is showing one of such examples, whexeMRI9 model failed to produce reasonable predistiftor any of
the combination cases analyzed. Figure 16a fugkplains this, since the shear and biaxial preslictiare very poor.
In addition, the compromise optimization in thigtmaillar case destroyed the only good predictioig.(E6b). That is,
verification is required when using improved conssahrough Eg. (3), since the combination mayltésipredictions
unable to represent suitably any of the deformatimales.
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Figure 15. Compromise optimization results for MRi8del.
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Figure 16. Predictions of the MRI9 model. (a) Catltipn for for uniaxial mode. (b) Case 1.
6. CONCLUSIONS

The present work reviewed and classified many efribw popular hyperelastic models found in therditigre.
Their direct comparison and/or selection of a pattéir model by visual means is, however, a diffitask.
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This work introduced a goodness of fit estimatoliclhhvas successfully used to assess constitutivdelaas far as
experimental data is available.
The proposed estimator can be directly used ®i@ predictions of the material, it is a quantitatimeasure, removes
the subjectivity of the traditional assessment méthogies, and provides a meaningful character dmparison
between two or more models.

This work also investigated the performance of tiarts/e constants obtained by a linear combinatibthe ones
obtained for each deformation mode. It was shoven ithcan be used to improve the overall perforneantca given
model by correcting moderately wrong predictions.
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