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Abstract. In this paper, the modified Rayleigh-Ritz method (pb-2) is applied to find the solution of moderately thick 
plates, under constant transverse load. Using the Mindlin plate formulation, a semi-analytical approximation is 
applied to generate displacement solutions for several types of boundary conditions. The influence of the shear strain 
in the displacement and resultant stresses is also investigated. A convergence study is presented to validate the results, 
which are discussed and compared with similar solutions from the literature. 
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1. INTRODUCTION 

 
The increasing use of numerical tools to simulate the mechanical behavior of several structural classes has been 

bringing issues about the validity of the results. These tools are used to obtain the approximate solutions of the 
differential equations that govern the component behavior. However, numerical tools must be tested with analytical or 
semi-analytical solutions, regarding the governing equations. Yet, many tools recently implemented on commercial 
software are not satisfactorily tested, and the absence of analytical solutions for many cases leads the developers to test 
their models against other numerical solutions of overly simplified structural theories. Besides the importance of 
analytical or semi-analytical solutions in benchmarking, these solutions are a great aid for designers in obtaining quick 
solutions for practical problems, without the need of numerical modeling. In addition, benchmark solutions are 
frequently used to support regulatory councils in many engineering fields, reducing the conservatism in cases where 
there are no similar solutions. 

The field of shear deformable plates still lacks analytical benchmark solutions for many cases of geometry, 
boundary conditions and loading. It is usual to find inconsistent relations between tri-dimensional elasticity solutions 
and plate theories, but it is important to mention that they are generally not directly comparable, since the differential 
equations that govern each other are different, and the boundary conditions are incompatible. Therefore, the study of 
semi-analytical and/or analytical solutions still find place as necessary tools for validating numerical models or to assist 
engineers in preliminary designs. 

Many researchers have published solutions for thick plates. Salerno and Goldberg (1960) were among the first to 
obtain a solution for plates including the transverse shear strain. Using the Reissner theory, they derived analytic 
solutions for Lévy plates under constant transversal load. Using the finite difference method, Craig (1987) obtained 
numerical solutions for simply supported plates using the Reissner formulation. The author explored the case in which a 
concentrated load is applied on the center of the plate. Kant and Hinton (1983), using the Segmentation Method, 
obtained numerical solutions for Lévy plates with Mindlin formulation. Cooke and Levinson (1983) published a general 
solution for Lévy plates, considering the Mindlin plate theory, but a mistake when simplifying the system of equations, 
making their solution valid only for Navier plates. More recently, Lee et. al. (2001) obtained analytical solutions for 
Lévy plates, departing from relationships between the classic plate theory and the Mindlin plate theory. Their solutions 
were based on series expansion of hyperbolic functions. Therefore, due a characteristic of the Lévy solution and the 
nature of hyperbolic functions, these solutions didn’t show full symmetry in cases with symmetric loads and boundary 
conditions. Following the same line of latter authors, Wang et. al. (2001) related the Mindlin plate theory with the 
Reissner plate theory. The authors presented analytic solutions for Reissner plates. Because of the same problems found 
in Lee et. al. (2001), again fully symmetric solutions have been not achieved. 

The objective of the present work is to derive semi-analytical solutions for thick plates using the Mindlin (1951) 
plate model. The displacement field will be approximated by a linear combination of polynomial functions. The internal 
strain energy and the external work will be calculated through this displacement field. A modified Rayleigh-Ritz 
method (pb-2) will be applied to obtain stationary conditions and generate the final displacement field. 

The modified Rayleigh-Ritz (RR) method, called pb-2, is based on a multiplicative decomposition of the 
approximation field, so that the approximation space not necessarily contains only cinematically admissible functions. 
The boundary conditions are imposed by multiplying the approximation function by a suitable set of functions. This 
modification greatly increases the versatility of the conventional method and, if used with computer algebra software, 
opens new possibilities for derivation of analytical solutions for many structural classes. The pb-2 method has been 
applied previously for a number of plate problems (static, dynamic, buckling, etc.). Kitipornchai et. al. (1994) applied 
the method to achieve dynamic solutions of trapezoidal plates under different boundary conditions. Wang and Aung 
(2007) used the method to obtain plastic buckling loads of thick plates. Wang et. al. (1997) used the method to obtain 
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resultant stresses on corner supported rectangular plates. Singh and Elaghabash (2003) use this methodology to get 
numerical solutions for large displacements of rectangular and rhombic thin plates.  

 

2. MATHEMATICAL MODELING 
 
The well known displacement field of Mindlin (1951) is described as: 
 

( ) ( )213321 ,,, xxxxxxU αα φ−= ,  ( ) ( )2133213 ,,, xxuxxxU =      (1) 
 

where αU  are the longitudinal displacements, 3U  the transverse displacement, αu  the membrane (in-plane) 

displacements, 3u  the transverse displacement, andαφ  the rotations along the coordinate axes. The coordinate 3x  is 

normal to the plate’s middle surface. Herein, Greek indices vary from 1 to 2. Only transverse loadings are analyzed 
here, so the in-plane displacements will be not considered. Small displacements and isotropic linear constitutive 
behavior are also assumed throughout the text. 

Using the displacement field of Eq.(1), the infinitesimal strain tensor for the plate deformation can be described as: 
 

)(2 ,,3 αββααβ φφ +−= xE , ααα φ−= ,332 uE         (2)  
 

where αβE  are the deformations on the plate middle surface and 3αE  are the transverse shear strains. Using the Hooke’s 

law, the stress tensor are derived as functions of the displacement field: 
 

( ) 








−
++−= αβγγαββααβ δφ

ν
νφφσ ,,,3 212

Gx , ( )ααα φκσ −= ,3
2

3 uG      (3) 

 

where αβσ  are the stress on the plate middle surface and 3ασ  are the shear stresses. 2κ  is the conventional shear 

correction factor. 
The resultant stresses are obtained through integration of the Cauchy tensor over the thickness, resulting: 
 

0=αβN ,  

( ) ( ) 
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νφφν ,,, 212

1DM         (4) 

( )ααα φκ −= ,3
2 uGhQ      

 

where αβN  are the normal ( βα = ) and shear resultant stresses ( βα ≠ ) on the plate middle surface; αβM  are the 

bending ( βα = )  and twisting ( βα ≠ )moments; and αQ  are the transverse resultant stresses. The bending stiffness is 

given by ( ) ( )νν −=−= 16112 323 GhhED y , where yE  is the Young modulus. As expected, the normal and planar 

shear resultants on the plate middle surface are null due to the absence of membrane strains. 
The conventional form of the RR method evaluates the weights of each function in the approximation function the 

minimization of the total energy functional: 
 

eU VΠ = −           
 

where U is the strain energy and eV  is the loading potential. The minimization of this functional reads: 
 

( ) 0eU VδΠ = δ − =            (5) 
 
The interpolation of the displacements field considered in this work will be constructed in the following way: 
 

33333
ˆ θc guu =≅ ,  44411

ˆ θc g=≅ φφ        and       55522
ˆ θc g=≅ φφ      (6) 

 

where 3c , 4c  and 5c  are the constant sets for the displacement variables. The length of these vectors is nc , which is 

the number of functions in the interpolation. 3θ , 4θ  and 5θ  are the interpolation functions for each one of the 

interpolated variables. The functions 3g , 4g  and 5g  are such that: 
 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

( )∏
=

−=
n

k
ccji

ccxxg
1

δ            (7) 

 

where ccj xx −  is the equation of the boundary lines of the plate. The exponent ccδ  can assume two values, associated 

to the type of boundary condition: 0 for free edges and 1 for fixed edges. In this case of the transverse displacement, the 
value 0 represents free edge and the value 1 represents a supported edge. On the rotational displacement, 0 represents 
free rotation and 1 represents fixed rotation in the edge. In supported edges, the transversal displacement receives ccδ  1 

and the rotation normal for this edge 0. In clamped edges, both values are 1. The sub-indexes i  and j  assume integer 

values, ranging from 3 to 5 and 1 to 2, respectively. Equation (7) is responsible for “stapling” the functions 3θ , 4θ  and 

5θ  along the plate boundary, according to each boundary condition. Therefore Eqs.(6) automatically result in a set of 

cinematically admissible interpolation functions. 
The first variation of the functional in Eq.(5) is now re-stated as: 
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WU

ccc
δ           (8) 

 
As mentioned before, the interpolation space chosen is polynomial. This is due to the fact that Eqs.(7) is also 

polynomial, and therefore the integration of the functional Ε can be exactly accomplished by Gaussian quadrature. 
The resulting product of the interpolation functions by the boundary condition functions is now mapped to a natural 

coordinate system. This mapping is identical to the well know finite element mapping used in isoparametric 
formulations. The new coordinate system is limited to [-1,+1]. 

The interpolation functions are built following the equation: 
 

ingi
m xx −= 213θ  , ingi

m xx −= 214θ  e ingi
m xx −= 215θ         (9) 

 

where gn  is the degree of the primary polynomial (the degree of the interpolation polynomial before the imposition of 

the boundary conditions), and 
 

( )( )
i

nn
m gg −

++
=

2

21
          (10) 

 
Therefore, the final number of constants for each interpolation depends directly on the degree of the primary 

polynomial. The relation between the definitive number of constants and the degree of the primary polynomial is given 
by: 

 

( )( )
2

21 ++
= gg nn

nc            (11) 

 
3. MATRIX FORMULATION 

 
The application of the RR method demands the evaluation of the strain energy and the external work. The first one 

is evaluated by the integral of the internal product between the stress and strain tensors in the plate’s volume. The 
second one is evaluated by the integral of the load times the lateral displacement over the area of the plate. Thus, the 
internal deformation energy is given by: 

 

∫Ω Ω= dU T
e CEE

2

1
           (12) 

 
where: 

 

( ){ }Tuuxxx 22,311,31,22,132,231,13 φφφφφφ −−+−−−=E       (13) 
 

and 
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The vector that groups the strains can be decomposed as: 
 

HεE =             (15) 
 

where: 
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The vector in Eq. (16) can be written in terms of the displacement variables using a linear operator: 
 

∆dε L=             (17) 
 

with: 
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and 
 

{ }Tu 213 φφ=∆            (18) 
 

Now the displacements interpolation of Eq. (6) can be written as functions of their corresponding constants, grouped 
in the following vector: 

 

{ }TTTT
543 cccλ =            (19) 

 
so that the interpolated displacements are recovered through the following matrix multiplication: 
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where the matrix N  contains the cinematically admissible interpolation functions for each displacement. 

After this modification, Eq.(12) can be rewritten as: 
 

∫Ω Ω= dU TTTT
e NλCHdHdNλ LL2

1
         (21) 
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While the loading potential is simply: 
 

T T T
eV d d

Λ Λ
= Λ = Λ∫ ∫∆ P λ N P          (22) 

 

where { }21 mmq=P ,  and q  is the transverse load, 1m  e 2m  are distributed moments applied on the plate’s middle 

surface.  
The first variation of the total potential in Eq. (8) now becomes: 
 

( ) 0T T T Td d
Ω Λ

Ω − Λ =∫ ∫L LN d H CHd N λ N P         (23) 

 

After the integrations are carried out, Eq.(23) generates a linear system of equations which can be solved for λ . 
Before proceeding to the solution of Eq. (23), it is interesting to further reduce it. Observing that the matrices N  and 

Ld  are independent to 3x , the system of equations assume the form: 
 

( ) 1T Td d
GΛ Λ
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'

L L LB R B λ N P          (24) 
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The load can be parametrized as: 
 

44
01 hEaqq y=            (26) 

 

where 0q  is the actual load applied, 1q  is its normalized counterpart, a  is a characteristic dimension of the plate (e.g. 

dimension of the plate side). This parameterization has been used by several authors (Lee et. al., 2001; Wang et. al., 
2001), and adds numerical stability to the final system of equations. 

Observing that the shear modulus divides the integral on the right side of Eq. (24), it suggests another 
parameterization: 

 

( ) 44
012 12 Ghaqqq =+= ν           (27) 

 
Hence, the load vector P , from Eq. (22), can be written as: 

 

{ }
4 4 4

2 2 2
4 4 4

0 0 1 0 0

T
q Gh q Gh q Gh

a a a

  = ∴ = = 
  

'P P P       (28) 

 
It is worth to note that the final result will not depend on the transverse Young modulus, when the loading is 

parametrizaded with this constitutive parameter. So, using the load parameter explicated in Eq. (27), the answer will 
depend  the material compressibility, it is, the Poisson coefficient, only. 

Finally, the solution of Eq. (24) is given as: 
 

( ) ∫∫ Λ

−

Λ
ΛΛ= ddq TT '

L
'
LL PNBRBλ

14
2η          (29) 

 

where ah=η . Due the geometry parameterization, the upper and lower limits of the integrals are -1 and 1, 

respectively, for the two independent variables. 
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4. RESULTS 

 
The formulation presented in sections 2 and 3 was implemented in a symbolic algebra software (Maple v.8) and 

tested for some well known benchmarks. Quadrilateral plates under four types of boundary conditions were analyzed 
under unitary transverse loading. The boundary conditions used are: all edges simply supported (SSSS), two opposite 
edges supported and the other two free (SFSF), two opposite edges simply supported and the other two clamped 
(SCSC), and all edges clamped (CCCC). The results obtained are normalized for easier verification against other 
references. The adopted normalizations are: 

 
4

01 aqwDw = , cwww 12 = , 2
0aqMM αβαβ = , aqQQ 0αα =       (30) 

 

where cw  is the convergence value found in the numerical analysis for each boundary and geometric conditions.   
 

4.1 Convergence analysis 
 

A convergence study was accomplished in order to estimate a value for gn  which could deliver accurate results for 

most cases. From this study it was found that SSSS, SFSF and SCSC plates needs only for odd values of gn . Even 

values produced the same results than the odd one immediately below, for displacements and resultant stresses as well. 
In the case of CCCC plates, convergence was incremented only when increasing even gn . Therefore only even 

numbers of terms were used for CCCC plates, and odd number of terms for the other boundary conditions.  
Figure 1 shows the convergence behavior for square SSSS and CCCC plates. Note that convergence is not 

monotonic, but progressive with the increase of gn . The maximum value tested was 19gn = . For larger values the 

software used become unstable, but at that point the error was in the fourth significant digit of the normalized 
displacement. It was also found a visible influence of the plate thickness (h) on the convergence rate, particularly for 
lower values of gn , as shown in Fig.1. Also, the larger the aspect ratio the greater the value of gn  necessary for 

convergence.  
 

  
 
                (a)                    (b) 

Figure 1 - Convergence curves for square plates. (a) SSSS. (b) CCCC. 
 

4.2 SSSS plates 
 
Table 1 shows the center displacement values obtained for SSSS plates with different aspect ratios (b/a) using the 

proposed method. The results are compared with other solutions from the literature, and show very good agreement. 
Although interpolation methods usually show a significant degradation of the stress values when compared to the 

displacement values, in the case of the SSSS plate the results for moments and shear stress resultants were also in good 
agreement with other solutions, as shown in Tab.2. Also worth to note in the results of Tabs.1-3 is the visible 
dependence of the plate thickness, differing from the classical plate theory (CPT) for larger values of h. Another  
interesting point to note is the clear lack of symmetry between 1Q and 2Q in all the solutions of Tab.3, not only in the 

classical results of Kant (1982), but also in the more recent works of Lee et. al. (2002) and Wang et. al. (2001). This is a 
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direct consequence of the non-symmetric series expansions used in those works, demanding a huge number of terms to 
achieve full symmetry for the stress resultants. The present results are perfectly symmetric. 

 

Table 1 – 1w  in the plate center SSSS (ν  = 0.3 and gn = 13) 

ah  1=ab  2=ab  5=ab  

 
Present 
work 

Lee el al. 
(2002) 

Salerno & 
Goldberg 
(1960) 

Kant 
(1982) 

Present 
work 

Lee el al. 
(2002) 

Salerno & 
Goldberg 
(1960) 

Present 
work 

Lee el al. 
(2002) 

Salerno & 
Goldberg 
(1960) 

0,001 0,0040624 - - - 0,010129 - - 0,012971 - - 
0,010 0,0040645 0,00406 0,00406 0,00406 0,010132 0,01013 0,01013 0,012974 0,01297 0,01297 

0,050 0,0041149 0,00411 0,00411 - 0,010210 0,01021 0,0102 0,013060 0,01306 0,01305 

0,100 0,0042728 0,00427 0,00424 0,00424 0,010454 0,01045 0,01041 0,013328 0,01333 0,01327 

0,150 0,0045360 0,00454 0,00446 - 0,010861 0,01086 0,01075 0,013774 0,01377 0,01365 

0,200 0,0049040 0,00490 0,00478 0,00480 0,011430 0,01143 0,01123 0,014398 0,01440 0,01418 

0,250 0,0053778 - - - 0,012162 - - 0,015201 - - 

 

Table 2 – Stress resultants for square plates SSSS (ν  = 0,3 e gn = 13) 

ah  ( )0,0 2111 == ssM  ( )0,0 2122 == ssM  ( )0,0 2112 == ssM  

 
Present 
work 

Lee et. 
al. 

(2002) 

Kant 
(1982) 

Wang 
et. al.  
(2001) 

Present 
work 

Lee et. 
al. 

(2002) 

Kant 
(1982) 

Wang  
et. al. 
(2001) 

Present 
work 

Lee et. 
al. 

(2002) 

Kant 
(1982) 

Wang  
et. al. 
(2001) 

CPT 0,0479 0,0479 0,0325 

0,001 0,0478 0,0479 - 0,0479 0,0478 0,0479 - 0,0479 0,0324 0,0325 - 0,0325 
0,010 0,0478 0,0479 0,0478 0,0479 0,0478 0,0479 0,0479 0,0479 0,0324 0,0325 0,0324 0,0325 

0,050 0,0478 0,0479 - 0,0480 0,0478 0,0479 - 0,0480 0,0324 0,0325 - 0,0322 

0,100 0,0478 0,0479 0,0480 0,0482 0,0478 0,0479 0,0480 0,0482 0,0324 0,0325 0,0317 0,0316 

0,150 0,0478 0,0479 - 0,0485 0,0478 0,0479 - 0,0485 0,0325 0,0325 - 0,0304 

0,200 0,0478 0,0479 0,0484 0,0491 0,0478 0,0479 0,0485 0,0491 0,0324 0,0325 0,0299 0,0288 

0,250 0,0478 - - - 0,0478 - - - 0,0324 - - - 

 

ah  ( )0,1 211 =−= ssQ  ( )1,0 212 −== ssQ  

 
Present 
work 

Lee et. 
al. 

(2002) 

Kant 
(1982) 

Wang 
et. al. 
(2001) 

Present 
work 

Lee et. 
al. 

(2002) 

Kant 
(1982) 

Wang 
et. al.  
(2001) 

CPT 0,333 0,333 

0,001 0,33 0,333 - 0,333 0,33 0,338 - 0,338 
0,010 0,33 0,333 0,332 0,333 0,33 0,338 0,337 0,338 

0,050 0,33 0,333 - 0,333 0,33 0,338 - 0,338 

0,100 0,34 0,333 0,332 0,333 0,34 0,338 0,337 0,338 

0,150 0,34 0,333 - 0,333 0,34 0,338 - 0,338 

0,200 0,34 0,333 0,332 0,333 0,34 0,338 0,337 0,338 

0,250 0,34 - - - 0,34 - - - 

 
4.2 SCSC plates 

 
A single case of SCSC plate was analyzed. The results for central displacement are shown in Tab.3, and compared 

with other available solutions. Once again, good agreement of the present results is observed. 
 

Table 3 - 1w  in plate center SCSC (ν  = 0,3) 

ah  1=ab  2=ab  5=ab  

 
Present 
work 

Lee el al. 
(2001) 

Wang et. 
al. (2001) 

Kant 
(1982) 

Present 
work 

Lee el al. 
(2001) 

Wang et. 
al. (2001) 

Present 
work 

Lee el al. 
(2001) 

Wang et. 
al. (2001) 

0,001 0,0019172 - - - 0,0084451 - - 0,012931 - - 
0,010 0,0019202 0,00192 0,00192 0,00192 0,0084492 0,00845 0,00845 0,012935 0,01293 0,01293 

0,050 0,0019918 0,00199 0,00199 - 0,0085481 0,00855 0,00854 0,013021 0,01302 0,01311 

0,100 0,0022087 0,00221 0,00220 0,00218 0,0088500 0,00885 0,00882 0,01329 0,01329 0,01338 

0,150 0,0025558 0,00256 0,00254 - 0,0093379 0,00934 0,00926 0,01374 0,01374 0,01382 

0,200 0,0030211 0,00302 0,00298 0,00293 0,010000 0,01000 0,00985 0,01436 0,01436 0,01445 

0,250 0,0035957 - - - 0,010827 - - 0,01517 - - 
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4.3 CCCC plates 

 
Analytical solutions for fully clamped plates are notably rarer than for other boundary conditions. The results 

obtained with the present method are compared with the excellent work of Taylor and Govindjee (2002) for thin plates 
in Tab.4. In order to achieve 10 digits accuracy, Taylor and Govindjee (2002) used a matrix system of 2000x2000. The 
values obtained by the methodology here presented were generated from a 315x315 system, using a polynomial of 13th 
degree. If the same system order could be used in the present method, the interpolation polynomial would be of degree 
35, so that even more accurate results could be expected. Interestingly, the results for thin plates (h/a=0,001) point out 
for an error in the third digit of the classical solution of Timoshenko and Woinowski-Krieger (1959). 

 

Table 4 - 1w  in plate center CCCC (ν = 0,3) 

ah  1=ab  2=ab  

 
Present 
work 

Taylor & 
Govindjee 

(2002) 

Present 
work 

Taylor & 
Govindjee 

(2002) 

0,001 0,0012654 0,001265319036 0,0025330 0,002532955769 
0,010 0,0012678 - 0,002608 - 

0,100 0,0015046 - 0,002962 - 

0,250 0,0026580 - 0,004837 - 

 
4.4 SFSF plates 

 
Table 5 shows the displacement results in center of the plate and at the middle of the free edge for squared plates. 

Figure 2 illustrates the contour plot of the normalized lateral displacement (Fig.2a) and the normalized bending moment 
(Fig.2b) for a plate with b/a = 5. These results are ploted in the normalized space. This aspect ratio is used to make 
evident the characteristic anti-clastic curvature which appears in plates with this type of boundary conditions. . It can be 
noted that the methodology presented here captures the effect. 

 

 
 

(a)      (b) 

Figure 2 - (a) 1w  in center and (b) 11M  in plates SFSF in normalized coordinates 
 

Table 5 - 1w  in plate center and 1w  in free edge center in square plates SFSF (ν = 0,3) 

ah  Center of the plate Middle of the free edge 

 
Present 
work 

Lee et. 
al. 

(2002) 

Wang 
et. al. 
(2001) 

Kant 
(1982) 

Present 
work 

Lee et. 
al. 

(2002) 

Wang 
et. Al. 
(2001) 

0,001 0,013094 - - - 0,015011 - - 
0,010 0,013097 - - 0,0131 0,015023 - - 

0,050 0,013187 - - - 0,015214 - - 

0,100 0,013459 0,01346 0,01341 0,0134 0,015600 0,01560 0,01557 

0,150 0,013910 0,01391 0,01379 - 0,016161 0,01616 0,01609 

0,200 0,014539 0,01454 0,01433 0,0143 0,016898 0,01690 0,01678 

0,250 0,015347 0,01536 0,01502 - 0,017809 0,01781 0,01762 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
4.5 Parametric solutions for benchmarking 

     
A study on the influence of the plate thickness was carried out using the present implementation, in order to 

investigate the influence of the thickness over the results. This is not necessary in the CPT, since the thin plate 
equations are insensitive to the thickness. In thick plate analysis, on the other hand, the influence of the thickness is of 
the utmost importance, because it is the variable which controls the magnitude of the shear deformability. Due to the 
high memory requirements to deal with the symbolic expressions, the primary polynomial used for SSSS and CCCC in 
this case were of order 5 and 6, respectively, but, as show in Fig.1, the results still have at least 3 correct digits. These 
results are summarized in the plots of Fig.3, for SSSS and CCCC boundary conditions, respectively. By using the 
parametric form of the displacement, the agreement with other solutions is remarkable.  

 
 

 
(a)       (b) 

Figure 3 - 1w  in plates SSSS with (a) b/a = 1 and (b) b/a = 2 
       
In order to retrieve a general solution of the center displacement as a function of the thickness, a curve fitting 

procedure was performed over the present results in Figs.3. The canonical form of the curve used is a third degree 
polynomial in h: 

 

( )32
4

0 hhh
D

aq
wcenter ζγβα +++=          (31) 

 
where the coefficients were adjusted for each type of boundary conditions and aspect ratio of the plate. Table 6 lists the 
coefficients obtained for two examples. One should note that in the limit 0h → , Eq.(31) reduces to the thin plate 
solutions (Timoshenko & Woinowsky-Krieger, 1959) 
 

Table 6 - Coefficients of the semi-analytical equation for 1w  in the plate center. 

SSSS α  β  γ  ζ  

b/a = 1 0,004061 0 0,0211 0 

b/a = 2 0,01011 0 0,0326 0 

CCCC α  β  γ  ζ  

b/a = 1 0,001262 0,00017 0,230964 -0,00584 

b/a = 2 0,002496 0,000811 0,031346 0,004597 

 
5. CONCLUSIONS 

 
The pb-2 Rayleigh-Ritz method was developed and applied for the solution of rectangular shear deformable plates 

under transverse loading. Since the method enforces the boundary conditions through special functions which multiply 
the displacement interpolation functions, one can use general polynomial spaces to generate admissible solution spaces. 
Several cases of geometry and boundary conditions were analyzed, showing good agreement with reference solutions. 
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The method shows a fast convergence, and is particularly suitable for benchmarking purposes. Parametric solutions for 
rectangular plates were generated in semi-analytic form, including the influence of the thickness. The good performance 
of the proposed methodology encourages its extension to geometrically non-linear problems.  
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