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Abstract.  The pressure generation within the lubricant fluid present in the clearance between a thrust bearing and the 

collar attached to the shaft has a fundamental importance to avoid contact between solid parts with axial relative 

motion. Any existing contact can lead to friction, wear and, as a consequence, failure of elements on a rotating 

machine. Therefore, in order to design an effective bearing, it is important to know how the pressure is generated in 

the oil film and the load capacity transmitted from the collar to the bearing throughout the fluid. Thus, it is necessary 

to solve the Reynolds’ Equation to obtain the pressure distribution on the sections under Hydrodynamic Lubrication. 

Then several operation parameters can be obtained, such as, the total load capacity, lubricant fluid flow, position of 

the maximum pressure and so on. In order to evaluate the proposed hydrodynamic lubrication problem, a numerical 

solution model using the Finite Difference Method in polar co-ordinates was applied. Operation characteristics of 

several thrust bearings with different geometries were evaluated. The analysis allowed the comparison amongst the 

effects caused by the set of parameters involved, such as rotating speed, oil viscosity, film thickness and sector radii, on 

the results of pressure distribution and the calculated load capacity, and also the evaluation of the optimum 

dimensions for bearings and its influence on the component efficiency.  
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1. INTRODUCTION 

 

1.1 Thrust Bearings 

 

Bearings are, by definition, two elements with relative motion separated by a lubricant fluid which avoids contact of 

solid parts and, consequently, wear and failure in rotating machines. The fluid film present in the interface of moving 

parts must be able to provide load capacity with the least energy waste as possible and without introducing undesired 

instabilities.  

Thrust bearings are defined by the fact that its surfaces are perpendicular to the rotating shaft. Large axial 

movements of the shaft are avoided due to the pressures generated within the oil present between the bearing and a 

moving collar, which rotates with the shaft. In order to ensure the correct functioning of the system, the clearance where 
the lubricant is must be extremely small, in the order of micrometers, and the bearing must have several pads separated 

by grooves that provide the oil.   

 

1.2 Historical Perspective 

 

Pinkus and Lynn (1958) solved the Reynolds’ Equation for sector thrust bearings using the finite difference method. 

Nevertheless, due to computational limitations, they could use only a 7 x 7 mesh, which may have introduced errors in 

the values of the integrated pressure. Pinkus (1956) solved the Reynolds’ Equation for elliptical journal bearings by 

using this same method. Charnes et al. (1953) obtained a solution for a sector-type bearing with exponential oil-film 

shape. Sternlicht and Maginniss (1957) used computers to study the operating characteristics of journal and thrust 

bearings. Polar co-ordinates were used in this paper, as well as in Charnes et al. (1953) and Pinkus and Lynn (1958). 
In the calculations using the finite difference method in this paper, the mesh used had at least 140 x 140 points. The 

number of points used depended on the dimensions of the pad analyzed.  

 

2. THEORY AND RESULTS 

 

2.1 Description of the Problem 

 

Figure 1 shows the geometry of the pad of a thrust bearing in both polar and cartesian co-ordinate systems. The co-

ordinate r  is in the radial direction with value equal to zero in the center of the bearing; the co-ordinate θ  is the 

angular co-ordinate and increases clock-wisely. Cartesian co-ordinates are related to the polar ones as follows: θrx =  

and ry = . 
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Figure 1. Polar and Cartesian Co-ordinates in a pad of a Sector Thrust Bearing 

 

The inner radius of the pad is given by innerr , the outer radius is given by outerr , resulting, as a consequence, in 

innerouter rrb −= . The angular span of each pad is given by 
o

θ . 

Figure 2 shows the clearance between the collar and the pad.  It is important to notice that the lower surface is 

moving in the direction of increase of θ . This surface is the collar. The bearing will have no load capacity if the shaft 

rotates in the opposite direction.  
 

 
 

Figure 2. Shape of the oil film, governed by Equation 1 

 

In this paper, hydrodynamic lubrication is assumed and the oil shape, as seen in Fig. 2, is given by Eq. (1), where h  

is the film thickness, oh  is the minimum film thickness and hs  is the difference between oh  and maxh , which is the 

maximum film thickness, as seen in Fig. 2,  
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2.2 Reynolds’ Equation and Assumptions 

 

The differential equation which governs the pressure distribution in the lubricant fluid present in the clearance 

between a thrust bearing and the collar attached to the shaft is called Reynolds’ Equation, derived by Osborne Reynolds 

in his paper in 1886. It is convenient to use the Reynolds’ Equation in polar co-ordinates when studying thrust bearings, 
as seen in Eq. (2), which is equivalent to the Reynolds’ Equations used by Charnes et al. (1953). This equation is 

obtained by substituting θrx =  and ry =  into the Reynolds’ Equation written in cartesian co-ordinates. 
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where p  is the pressure generated within the fluid, r and θ  are the polar co-ordinates, as shown in Fig. 1, η  is the 

absolute viscosity of the lubricant and θv  is the velocity of the rotor, and consequently of the collar attached to it, in the 

θ  direction. Constant viscosity and density, velocity of fluid in the direction of the r co-ordinate equal to zero and 

r 
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pressure dependent on r and θ  are assumed. As commonly used in problems related do bearings, the pressure is 

assumed zero on the periphery of the bearing pad. Unlike the assumptions made in the analytical model (Hamrock et 

al., 1994 and Hamrock et al., 2005), side leakages of fluid are not neglected. 

 
2.3 Finite Difference Method 

 

The Reynolds’ Equation was solved by using the finite difference method.  The position of some of the points in the 

mesh used in the solution can be seen in Fig. 3. It is important to notice that the index i  is related to the position of a 

point of the mesh in the radial direction, while the index j is related to the position of a point in the circumferential 

direction. 

 
 

Figure 3. Mesh used in the numerical solution in Polar Co-ordinates  

 

Incropera and DeWitt (2003) present how this method can be very useful to solve numerical problems. 

Dimensionless parameters were used so that the Reynolds’ Equation could be solved using less parameters and 

spending less computational time. The substitutions used can be seen in Eq. (3), where P , H  and R  are the 

dimensionless pressure, film thickness and radius, respectively, and N is the rotation speed of the shaft. 
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Equation (4) shows the Reynolds’ Equation written in dimensionless form: 
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Venner and Lubrecht (2000) demonstrate how the pressure gradient can be calculated for points on different 

positions of the mesh, especially on the periphery, where the pressure is assumed zero. 

Equation (5) is obtained after writing the terms from Eq. (4) as required by the method used. Then, Eq. (5) is 

iteratively solved in order to obtain the values of the dimensionless pressure on each point of the mesh. 
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2.4 Load Capacity and Optimum values  
 

Once the dimensionless pressure has been calculated for all points in the mesh, the respective pressure can be 

obtained by use of Eq. (3). In addition to that, the total load capacity of one pad, which is denoted by the variable W , 

can be obtained by numerical integration of the pressure, using Eq. (6). 
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The optimum values of the variable 
oθ  are calculated by finding the best relationship between the load capacity of 

one pad and its area A , which can be calculated as seen in Eq. (7), with 
oθ  in radians.  
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Pinkus and Lynn (1958) defined the dimensionless thrust factor  T , which is analogous to the Sommerfeld number, 

used in solutions of journal bearings.  This factor is essential in defining the optimum values of 
oθ . Defining the term 

Γ , called by Pinkus and Lynn (1958) as unit loading, as seen in Eq. (8), the load capacity of the pad can then be 

calculated by multiplying the unit loading by the area of the pad. Finally, the thrust factor can be obtained as in Eq. (9).  
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Equation (8) shows that the higher the value of Γ , the higher is the efficiency of the pad, since the rate 
A

W
 is equal 

to Γ  and, as a consequence, increases with Γ . Thus, the lower the value of T , the higher is the result of AW / , what 

means that for pads with different values of 
o

θ , the one with the best relationship between the load capacity and the 

area is the one with the minimum value of the thrust factor T . 
 

Table 1. Optimum values of 
o

θ  for different values of 

outerr

b  and 

oh

hmax . 

 

 outerrb /   

  1/5  1/4  2/7  1/3  3/8  2/5  3/7  1/2  4/7  3/5  5/8  2/3  5/7  3/4 

o
hh /max

  
o

θ  [rad] 

2 <0,349 <0,349 0,349 0,436 0,524 0,524 0,524 0,698 0,785 0,873 0,960 1,047 1,134 1,222 

3 <0,349 0,349 0,349 0,436 0,524 0,524 0,611 0,785 0,873 0,960 1,047 1,134 1,222 1,309 

4 <0,349 0,349 0,436 0,524 0,524 0,611 0,611 0,785 0,960 0,960 1,047 1,222 1,309 1,396 

5 <0,349 0,349 0,436 0,524 0,611 0,611 0,698 0,873 0,960 1,047 1,134 1,309 1,396 1,483 

6 0,349 0,436 0,436 0,524 0,611 0,698 0,698 0,873 1,047 1,134 1,222 1,396 1,483 >1,483 

7 0,349 0,436 0,524 0,611 0,698 0,698 0,785 0,960 1,134 1,222 1,309 1,483 >1,483 >1,483 

8 0,349 0,436 0,698 0,611 0,698 0,785 0,785 1,047 1,222 1,222 1,396 >1,483 >1,483 >1,483 

9 0,349 0,436 0,524 0,611 0,785 0,785 0,873 1,047 1,222 1,309 1,483 >1,483 >1,483 >1,483 

 

The dimensionless rates 

outerr

b , which relates the size of one pad in the radial direction and its outer radius, and 

oh

hmax , which relates the maximum and the minimum film thickness, were used as parameters in order to analyze 
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different geometries of pads and different clearances between the bearing and the collar. Table 1 shows the results of 

optimum values of  
o

θ  (the value of 
o

θ  that results in the minimum T ) obtained for several different rates  

outerr

b  and 

oh

hmax . It was noticed that for higher rates 

outerr

b  and 

oh

hmax  the minimum thrust factor is obtained for longer pads in the 

angular direction, what means that the optimum 
o

θ  increases. 

 

2.5 Lubricant Flows and Comparison with the Analytical Results  

 

Three different lubricant flows exist in pads of operating thrust bearings: the flow of fluid into the clearance between 

the pad and the collar (at the beginning of the pad), the flow out of the bearing (at the end of the pad), and the side 

leakage of oil, which makes the fluid go out of the bearing at both inner and outer radii. Equation (10) defines the 

dimensionless fluid flow, Q , at any part of the bearing, obtained from the fluid flow q . 
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Equations (11) and (12) demonstrate how the flows in the radial direction (side leakages) can be calculated by using 

the finite difference method. The variable outersideQ  is the flow of fluid out of the bearing on the outer radius 

(calculated at 1=R ) and innersideQ  is the flow of fluid out of the bearing on the inner radius (calculated at 

outer

inner

r

r
R = ). These variables were analyzed in graphics with their absolute values, since the direction of each flow is 

already known. Equation (13) shows how the total side flow, sideQ ,  is calculated: 

 

innersideoutersideside QQQ +=  (13) 

 

In order to compare the influence of the geometry and dimensions of one pad over the results of lubricant flows, the 

variable λ  is defined as the rate of the arc length of one pad at its average radius 






 +

2

innerouter rr
 and its length in the 

radial direction (the parameter b ). Using 
o

θ in radians, Eq. (14) shows how λ  was can be calculated. 
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Figures 4 and 5 show the variation of the absolute values of sideQ  as a function of λ . It is clear, from Eq. (14), that 

for bearings with the same length b , higher values of 
o

θ  result in higher values of λ . Thus, the variation of  sideQ  as 

function of the angular span of one pad is similar to what can be seen in Figures 4 and 5.  Figure 4 also shows that the 

rate 

oh

hmax  does not have much influence on the side flow, even though it can be noticed that higher rates produce slight 

increases of the side leakage. Figure 5 shows the influence of 

outerr

b  over the side leakage. Higher values of  

outerr

b  

result in less side leakage. 
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Figure 4. sideQ  versus λ , plotted for 
3

1
=

outerr

b  and 

different values of  

oh

hmax  

 

Figure 5. sideQ  versus λ , plotted for 2max =
oh

h
 and 

different values of  

outerr

b  

 

Comparing the results of pressure distribution obtained from the numerical solution with the results obtained with 

the analytical model proposed by Hamrock et al. (1994), it is clear that the lower the values of λ , less side leakage 

occurs, what causes results of these two solutions closer to each other, as the analytical model neglects the existence of 

sideQ . The numerical results are clearly closer to what really occurs in terms of the hydrodynamic lubrication in thrust 

bearings than the analytical results, since the first one is calculated with much less simplifications than the second one. 

However, it is possible to say that the analytical model gives good qualitative results for preliminary analysis about the 

pressure distribution and the operational characteristics of thrust bearings.  

 

2.6 Dimensionless Pressure Distribution and Position of the Maximum Dimensionless Pressure 

 

 

 

 

      

 

 

 

 
 

 

 

 

 

 

 

 
 

 

Figure 6. Dimensionless Pressure Distribution, plotted for 3max =
oh

h
 and

2

1
=

outer
r

b
 

 

The pressure distribution along the fluid has, in general, the same shape. Although the slope or the position of the 

maximum pressure changes as the operational parameters, such as 

outer
r

b
 and 

oh

hmax , change, the pressure has, in 
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general, a similar distribution. Figure 6 shows the dimensionless pressure distribution in the fluid for one bearing 

operating with  3max =
oh

h
 and

2

1
=

outer
r

b
. 

The position of the maximum pressure is best analyzed by introducing dimensionless variables related to its position 

both in the radial and the circumferential directions, called maxR  and admmaxθ , respectively. Equations (15) and (16) 

demonstrate how these parameters were obtained: 

 

b

rr
R inner

−
= max

max
 (15) 
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θ
θ max
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Figure 7. admmaxθ  versus 
o

θ , plotted for 
7

4
=

outerr

b  and 

different values of  

oh

hmax  

 

Figure 8. admmaxθ  versus 
o

θ , plotted for 2max =
oh

h
 and 

different values of  

outerr

b  

outerr

b  

 

 

Figure 9. maxR  versus 
o

θ , plotted for 
7

4
=

outerr

b  and 

different values of  

oh

hmax  

 

Figure 10. maxR  versus 
o

θ , plotted for 2max =
oh

h
 and 

different values of  

outerr

b  

 

Figure 7 shows that the circumferential position of the maximum pressure, admmaxθ , becomes closer to the exit of 

the pad as 
o

θ  or 

oh

hmax  increases. Nonetheless, the value of admmaxθ  becomes smaller (the maximum pressure becomes 
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closer to the center of the pad) as 

outerr

b  increases, what can be seen in Fig. 8. In general, the values of  admmaxθ lie 

between 0.6 and 0.9. 

Figure 10 shows that the radial position of the maximum pressure, maxR , becomes further from the periphery of the 

pad (the value of maxR  decreases) as 
o

θ  or 

outerr

b  increases. Similarly to what happens to admmaxθ , the value of maxR  

increases as 

oh

hmax  increases, as seen in Figure 9. In general, maxR lies between 0.5 and 0.85.  

Both Figures 8 and 10 show that the positions of the maximum pressure in the circumferential or in the radial 

direction depend very little on 

outerr

b  when 
o

θ  is smaller than º30=
o

θ . 

 

2.7  Maximum Dimensionless Pressure 

 

Figure 11 shows the variation of the maximum dimensionless pressure, 
max

P , as function of 
o

θ  for different values 

of 

oh

hmax . Figure 12 shows the variation of 
max

P  as function of 
o

θ  for different values of 

outerr

b . 

 

 

Figure 11. 
max

P  versus 
o

θ , plotted for 
2

1
=

outerr

b  and 

different values of  

oh

hmax  

 

Figure 12. 
max

P  versus 
o

θ , plotted for 8max =
oh

h
 and 

different values of  

outerr

b  

 

It can be seen from Figures 11 and 12 that for longer pads (higher values of 
o

θ ) the maximum dimensionless 

pressures have higher values. Also, as the 

oh

hmax  increases the maximum pressure also increases (Figure 11).  

Figure 12 also shows that, unlike what happens when 

oh

hmax  varies, the increase in the value of 

outerr

b  causes the 

peak pressure to diminish. 

 

2.8  General Comments 

 

In order to obtain other results and conclusions, some of the operational parameters, such as rotation speed, oil 

viscosity, film thickness, sector radii of the pad, 
o

θ  and the rates 

outerr

b  and 

oh

hmax , were varied so that the effects caused 

by these parameters on the fluid flows, position of the center of pressure, pressure distribution, load capacity and other 

characteristics of the functioning system could be analyzed. 

The area of one pad is directly proportional to its load capacity in thrust bearings. This means that higher values of 

o
θ  or higher values of b result is a higher value of W . However, a great load capacity does not mean that one specific 
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bearing pad has an efficient load per unit area rate. Pads with greater areas dissipate more power and have higher values 

of thrust factor. 

Some conclusions about the effects of the variation of three parameters (

outerr

b , 

oh

hmax  and 
o

θ ) could be drawn.   

Increasing the value of 

oh

hmax  influence the characteristics of one pad with Hydrodynamic Lubrication causing the 

following results: 

- Both the position of the center of pressure and the position of the maximum pressure on each pad become closer to 

the exit of the pad, in both radial and circumferential positions; 

- The dimensionless pressure, P , has higher values; 

- The flow of fluid into the bearing (at the beginning of the pad in the circumferential direction) and the flow out of 

the bearing (at the end of the pad, also in the circumferential direction) decrease; nevertheless, the side leakage 
increases; 

- The thrust factor, T , decreases; 

- The optimum 
o

θ  becomes longer; 

Increasing the value of 

outer

innerouter

outer
r

rr

r

b −
=  influence the characteristics of one pad with Hydrodynamic Lubrication 

causing the following results: 

- The position of the maximum pressure on each pad become closer to its center, in both radial and circumferential 

positions, which means that maxR  and admmaxθ  decrease; The position of the center of pressure in the circumferential 

direction also becomes closer to the center of the pad, but its position in the radial direction becomes closer to the outer 

radius outerr ; 

- The dimensionless pressure, P , has lower values; 

- The load capacity of the bearing increases; 

- All flows into and out of the bearing, in circumferential or in radial direction, decrease;  

- The thrust factor, T , increases; 

- The optimum 
o

θ  becomes longer; 

Increasing the value of 
o

θ  cause the following results: 

- The positions of the maximum pressure and the center of pressure in the circumferential direction becomes closer 

to the periphery of the pad; the positions of the maximum pressure and the center of pressure in the radial direction 

become closer to the center of the pad; 

- The dimensionless pressure, P , has higher values; 
- The load capacity of the bearing increases; 

- The flow of fluid into the bearing (at the beginning of the pad in the circumferential direction) and the side 

leakages flow out of the bearing (at the end of the pad, also in the circumferential direction) increase; however flow out 

of the bearing (at the end of the pad, also in the circumferential direction) decrease; 

- The values of the thrust factor, T , do not change uniformly as 
o

θ  varies; 

The influence of the fluid lubricant viscosity, η , and the rotation speed, N , were also analyzed. These parameters 

were found to be directly proportional to the pressure. As can be seen from Eq. (5), the dimensionless pressure 

distribution does not depend on the viscosity of the lubricant viscosity and the rotation speed. Therefore, the values of 

P  do not change when the oil viscosity or the rotation are modified. Thus, dimensionless variables such as center of 
pressure, position of the maximum pressure and the thrust factor also remain the same. However, the dimension 

pressure p changes and increases if the viscosity or the rotation speed increases, as can be noticed from Eq. (3). 

The maximum film thickness, maxh , and the minimum film thickness, oh , also modify the characteristics of the 

lubrication. Increasing the value of the maximum film thickness maxh  results in smaller load capacity and thrust factor. 

Increasing the value of oh  also results in a smaller load capacity but increases the thrust factor.  

 

With regards to the positions of the maximum pressure, the center of pressure and the maximum dimensionless 

pressure, the influences of  maxh  and  oh  are the following: 

- Increasing maxh  results in positions of the center of pressure and of the maximum pressure closer to the periphery 

of the pad; the maximum pressure increases;  



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

- The minimum film thickness has the opposite influence over these parameters. In other words, increasing oh  

results in positions of the center of pressure and of the maximum pressure closer to the center of the pad; the maximum 

pressure decreases. 

 

3. CONCLUSIONS 

 

The finite difference method was proposed to solve the lubrication model in sector thrust bearings in polar co-

ordinates. The comparison with the analytical model shows reasonable results and the numerical model seems to present 

the necessary robustness to evaluate the hydrodynamic pressure distribution.  
The sensitivity analysis evaluated for several design parameters of the thrust bearing makes possible the 

improvement of the set of parameters involved in the sector thrust bearing project, as film thickness and sector radii, 

concerning their effects on the maximum hydrodynamic pressure developed in the bearing pads. These effects are 

responsible for the supporting forces generated in the bearing gap, i.e., the thrust bearing load capacity, as well as the 

bearing oil leakage in the periphery boundaries.   

Impact of important design parameters as radial width, tapered face angle, and angular extension of the bearing pad 

are discussed and the results present a good possibility of applicability as a computer aided design to this kind of 

rotating machinery components. 
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