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Abstract. The Friction Spot Welding (FSpW) is a spot-like solid-state joining process that allows to joint two or more 
metal sheets in overlap configuration, suitable for welding lightweight materials. The main aim of this work is to study 
and develop a Johnson-Cook damage criterion model to represent the crack initiation, coalescence and the final 
fracture, allowing a better understanding of the fracture phenomenon in FSpW. The Johnson‐Cook (JC) damage 
criterion considers no kinematic hardening and expresses rather the equivalent stress as a function of plastic strain, 
strain rate and the temperature. The base materials used were AA 2024-T351 and alclad AA 2024-T351 aluminum 
alloys. The parameters of JC were calculated and tested numerically. The numerical model results obtained shown 
good agreement with the experimental tests.  
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1. INTRODUCTION  

 
 Nowadays many efforts are being applied in the development of lightweight materials, especially in the 
automotive and aircraft industries. The developments point to a better use of the fuel, saving money and complying with 
environmental laws that restrict the emission of gases. Consequently, these increase on the use of lightweight materials 
result in many mechanicals components produced by different processes, which need to be joined. So far, resistance and 
laser spot welding as well as riveting and clinching processes have been the most commonly used joining techniques for 
such purposes (Pan et al., 2005). 
 Two relatively new solid-state spot welding processes called Friction Stir Spot Welding (FSSW) and Friction 
Spot Welding (FSpW) are still under development. Both friction based spot processes have proven to be able to produce 
high quality spot welds and to have high potential applicability in the industry. Some important characteristics of these 
processes are to be environmentally friend (no fumes, spatters or sparks are generated), allow solid-state welding, ease 
of automation, possibility of joining dissimilar materials, joining of materials difficult to weld by conventional fusion 
welding process, production of low distortion joints with excellent mechanical properties. (Silva et al., 2007). 
 The FSpW process was developed and patented by GKSS Forschungszentrum. The potential applicability of 
FSpW for structural and non-structural components is extremely high and since no bulk melting occurs it becomes an 
important alternative to fusion welding techniques. The technological advantages of this process are no need for 
additional material, minimal or no waste products, no post processing is necessary due to good surface quality, fast 
processing times and ease automation. 
 From the physical point of view, ductile damage is essentially atomic decohesion following dislocations pilling 
in metals, or growth and coalescence of cavities induced by large deformations. From the mechanical point of view, the 
fracture is the growth of a spherical or elliptical hole in a plasticity medium subjected to large strains, and the problem 
can be solved analytically or numerically. From the Continuum Damage Mechanism point of view, this is a reduction of 
the resisting area in any plane of a Representative Volume Element that is governed by the elastic energy and the 
Accumulate Plastic Strain. From this point of view various fracture models have been proposed to quantify the damage 
associated with material deformation and are used to predict fracture initiation. 
 
2. FRICTION SPOT WELDING 

 
2.1. Friction Spot Welding Characteristics 

 
The FSpW process is performed by pressing a three-part rotating tool, composed by pin, sleeve (or shoulder) and 

clamping ring, into the workpieces producing frictional heat. The FSpW welding process consist of four steps, as can be 
seen in the Fig 1, in the first stage the sheets are fixed by pressing the clamping ring against the upper sheet surface, 
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As described before, the joints of unclad aluminium plates have produced three different zones – BM, SZ, TMAZ, 
with different mechanical properties. The properties of base material were obtained by mechanical tests, while the 
properties of the other zones were defined based in the microhardness values observed in each zone.  In the SZ an 
increase of 7.5% in resistance in relation to the BM was considered, while for TMAZ the resistance a decrease of 7.5%, 
when compared to BM, was adopted. In the model that considers the presence of the clad layer, the properties assigned 
to that region were the same of pure aluminium (1xxx series). Fig.7 presents the ultimate tensile strength values 
assigned to each zone for both material used. 
 

 
 

Figure 7 – Tensile Strength assigned to each zone of the joint; a) Unclad AA 2024-T351 b) Alclad AA 2024-T351. 

3. DUCTILE DAMAGE 

The ductile failure of a structure usually consists in three phases: (a) accumulation of damage; (b) initiation of 
fracture; (c) crack propagation. One way to think about fracture initiation is to consider it as result of the accumulation 
of ductile plastic damages. Microscopically, such damages are associated to void nucleation, growth and coalescence, 
shear ban movement and propagation of microcracks. Microscopically, degradation of the material exhibits decrease of 
the material stiffness, strength and reduction of the remaining ductility. These physical changes are often used as 
indicators to predict the onset of fracture, either based on the current value or in a cumulative fashion. In continuum 
damage mechanism, the material deterioration is described by an internal variable of the damage. In many applications, 
the damage can be considered isotropic but still gives good predictions and, therefore, is assumed as a scalar quantity 
herein. Damage should be distinguished and cannot be measured directly. To use cumulative damage as a criterion to 
predict the onset of fracture, the relationship between damage and some measurable parameters has to be established. 

 
3.1. Ductile Criterion Model 

The Ductile criterion is a phenomenological model for predicting the onset of damage. The model assumes that the 
equivalent plastic strain at the onset of damage, , is a function of stress triaxiality and strain rate: , , where 

  , is the stress triaxiality,  is there pressure,  is the Mises equivalent stress, and  is the equivalent plastic 
strain rate. The criterion for damage initiation is met when the state variable, , exceeds 1, 

 

,
1           (1) 

 
the state variable increases monotonically with plastic deformation. At each increment during the analyses the 
incremental increase  is computed as, (Johnson and Cook, 1985, Lemaitre and Desmorat, 2005). 
 

Δ   Δε

,
  0.           (2) 

 
3.2. JOHNSON‐COOK DAMAGE MODEL 

Johnson and Cook have extended the damage model of ductile damage, presented in item 3.1, Eq. 1. They extended 
this strictly triaxial ratio dependent model so as to considerer high strain rates and high temperature effects on the strain 
to fracture of ductile metals, because plasticity and damage are impossible to distinguish during a tensile test. 

The model is an accumulative-damage model that takes into account the loading story, which is represented by the 
strain to fracture, expressed as a function of the strain rate, temperature, and stress. This model is an instantaneous 
failure model, which means that no strength or stiffness remains after failure and failure is dynamic model is based on 
the value of the equivalent plastic strain at element integration points, failure assumed to occur when the damage 
parameter exceeds 1. The damage parameter, , is defined as 

b) a) 
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∑ ∆             (3) 

 
where ∆  is an increment of the equivalent plastic strain,  is the strain at failure, assumed to be dependent on a 
nondimensional plastic-strain rate  
 

    1   ln 1           (4) 
 
where  is a nondimensional plastic-strain rate,  pressure-stress ratio (where  is the pressure stress and  is the Mises 
stress) measures a triaxiality of the stress rate,  are failure measured constants, and  is the reference strain rate 
and the nondimensional temperature ,  
 

   
0

1

                    
                       

 
         (5) 

 
where , is the current temperature,  is the melting temperature, and  is the transition temperature 
(ABAQUS Documentation Version 6.8, 2009, Holmquist and Johnson, 1991, Traña, 2007). 
 
3.2.1.1. Damage model’s constants determination 

To determine the damage model’s constants, the strain to failure is established as a function of the triaxial state 
process, allowing to obtain the constants  ,  , and  . After that, the parameter  and temperature parameter, , can 
be found. All parameters need characterization tests and numerical simulations. 

 
3.2.1.1.1. Triaxial Stress State ( , , and ) 

At least, three tests must be made to build the exponential curve of the strain to fracture as a function of the 
triaxiality,  , and establish the corresponding parameters. In this study, the triaxiality characterization tests are made on 
isothermal condition. 

Three different axissymetric tensile tests were performed to find the different stress triaxiality values to failure. To 
do so, specimens of different shapes, but with the same minimum cross section’s diameter, were tested.  

The state of stress that prevails inside the specimen at its failure is impossible to measure directly during the 
experiment. It is also hard to calculate it analytically from experimental measurement in uniaxial tensile test 
axissymmetric specimens. Even more, the triaxial state of stress changes during the loading process due to the notching. 

After the triaxial states of stress are reached for each specimen, a best strain to failure versus triaxial ratio curve fit 
should be draw. The parameters that provide the best fit curves are then found by least square regression. 

 
3.2.1.1.2. High strain rate stress state ( ) 

For the calculation of parameter  , only torsion tests at different shear strain rates are performed. Tests should 
cover the high strain rate regime that is experimented during the simulated phenomenon. Then few data points of shear 
strain to fracture at different strain rates are converted into equivalent strain to fracture with the Von Mises factors. 
With the equivalent strain at fracture data collected from quasi-static tests, a curve of the strain at fracture versus the 
strain rate can be drawn from quasi-static to high strain rates. 

To obtain parameter  , a curve of a “reduced” strain failure        versus the strain rate 

should be drawn in natural semi-log graph.  is then obtained as the slope of the curve. Note that this curve should be 
built from tests carried out at transition temperature. 

 
3.2.1.1.3. High temperature environment ( ) 

The  parameter is defined using the same technique used to define  , except that the shear strain to failure 
versus the shear strain rate curve must be generated at different temperatures. This experiment should be performed at 
temperatures that are close to that encountered in the problem to be modeled. 

The temperature parameter ,  is found by drawing a reduced strain to failure 

    1   ln    1   ln  versus temperature. All those should be 
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Figure 10 - Failure Strain x Triaxial Ratio for unclad AA 2024-T351. 

The same method was used to determine the constants for Alclad AA 2024-T351. The relation between triaxial 
ratio and time is shown in Fig. 11-a, and the failure strain versus the triaxial ratio is presented in Fig. 11-b. Table 2 
summarizes the JC parameters obtained to both materials.  

 

 
 

Figure 11 – a)Triaxial Ratio x Time to Alclad AA 2024-T35; b) Failure Strain x Triaxial Ratio to unclad AA 2024-T351 

Table 2 - JC damage parameters. 
 

d1 d2 d3 d4 d5 Reference Strain Rate 
AA 2024-T351 0.15 0.18 -1.02 -0.011 0 1 
AA Alclad 2024-T351 0.13 0.15 -1.112 -0.0678 0 1 

 
 To evaluate how the calculated constants represent the materials behaviour, the numerical model analysis of a 
tensile test was compared to the actual uniaxial tensile test. The results can be seen in the Fig.12-a, to AA 2024-T351 
and in the Figure 12-b, to AA Alclad 2024-T351. A very good agreement between test and numerical results was 
observed, confirming that the parameters calculated represent well the phenomenon, therefore the constants can be used 
to analyse the fracture. 

 

 
 

Figure 12 - Comparison of simulation with the actual test results a) to AA 2024-T351; b) AA Alclad 2024-T351. 
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4. FSPW JOINT MECHANICAL BEHAVIOUR 

A numerical model was built to represent the lap-shear test specimen according to the standard DIN EN ISO 
14272, as can be seen schematically in Fig. 13. In the test two plates welded by FSpW in overlap configuration are 
submitted to a uniaxial tensile load. The 3D solid is modeled as three different parts: an upper plate, a lower plate and a 
Stir Zone, assuming the properties shown in Fig. 7. 

 

 
 

Figure 13 – Geometry of FSpW joint parts used in numerical model. 

For the simulation of lap-shear test, just one half of the the actual specimen was modeled once there is symmetry of 
geometry and load across the vertical x-y plane as can be seen in Fig. 14. As shown in the figure, the extremity of the 
lower plate was pinned, what means that the displacement in the orthogonal x, y and z directions were set equal to zero. 
Also, the vertical movement of the external portion of both plates was not allowed, to reproduce the effect of shims that 
prevent out of load direction movements. To simulate the actual load condition experimented during the test a 
displacement of the external surface of upper plate in the x axis was specified. The surfaces of SZ in contact with the 
upper and lower plates were considered tied constrained, what means that there is no relative motion between them. 
This type of constrain fuses two regions even thought the meshes created on the surface of the regions may be 
dissimilar (Mazzaferro, 2008). 

 
 

Figure 14 - Boundary conditions adopted for the shear test model. 

4.1. Damage evolution 

The damage evolution assumes that damage characterized by the progressive degradation of the material stiffness 
leading to material failure. For elastic-plastic material with isotropic hardening, the damage manifests itself in two 
forms: softening of the yield stress and degradation of the elasticity. The overall damage variable , Eq. 3, captures the 
combined effect of all damage mechanisms and is computed in terms of the individual damage variables, . The value 
of the equivalent plastic strain failure, , Eq. 4, depends on the characteristic length of the element and cannot be used 
as a material parameter for the specification of the evolution law, instead, the damage evolution law is specified in 
terms of equivalent plastic displacement, , or in terms of fracture energy dissipation, , this energy is required to 
open a unit area of crack, and it is a material parameter. With this approach, the softening response after the damage 
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initiation is characterized by a stress-displacement response rather than a stress-strain response. The fracture energy is 
then given as, 
 

             (6) 

 
where , is characteristic length. 
 This expression introduces the definition of the equivalent plastic displacement, , as the fracture work, 
conjugated of the yield stress after the onset of damage (work per unit area of the crack). Before damage 
initiation  0; after damage initiation . This definition of the characteristic length is used because the 
direction in which fracture occurs is not known in advance. The damage evolution based in effective plastic 
displacement, , is defined as 
 

            (7) 
 
 The evolution of damage variable with the relative plastic displacement can be specified in tabular, linear, or 
exponential form. Instantaneous failure will occur if the plastic at failure   , is specified 0. 
 In this work was assumed an exponential damage evolution of the damage variable given as 
 

1  
 

  

            (8) 
 
 The exponential formulation of the model ensures that the energy dissipated during the evolution process is 
equal to  . In theory, the damage variable reaches value of 1 only asymptotically at infinite equivalent displacement. In 
practice, when the dissipated energy reaches a value of 0.99 ,  will be set equals to on. 
 
5. RESULTS AND DISCUSSION 

For the AA 2024-T351 simulation and experimental tests, the fracture mode identified was plug pull-out, as can be 
seen in the Fig. 15, where the detail of element mesh separation is represented too.  

 

 
 

Figure 15 - The plug pull-out fracture. 

 In the Fig.16, the failure steps during simulation are represented, to allow a better visualization the upper plate 
was not shown. At the Fig. 16-a, the value of Johnson-Cook damage initiation criterion (JCCRT) is very near 1, on the 
region around SZ. After, at the Fig. 16-b, the elements that first reached the limit value of JCCRT were deleted. The 
crack begins when more elements were deleted as can be seen on the Fig. 16-c. Finally, the plug pull-out fracture occurs 
as shown in the Fig.16-d. 
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Figure 16 - Fracture steps - a) JCCRT is very close to 1; b) when the JCCRT is 1, some elements were deleted; c) some 
more elements were deleted; d) the fracture happens. 

For the AA Alclad 2024-T351 simulation and experimental tests, the fracture mode identified was through weld 
accompanied by circumferential crack, as can be seen in the  Fig.17. 

 

 
 

Figure 17 - Through weld accompanied by circumferential crack 

 The failure steps are shown in Fig. 17, to better visualization the upper plate was extract. In the Fig. 17-a, the 
value of Johnson-Cook damage initiation criterion (JCCRT) is very close to 1 around SZ. After, in the Fig. 17-b, the 
elements that first reached JCCRT limit value were deleted. The crack begins when more elements were deleted as can 
be seen on the Fig. 17-c. Finally, a through weld accompanied by circumferential crack fracture occurs, as shown in the 
Fig. 17-d. 
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Figure 17 - Fracture steps - a) JCCRT is very near to 1; b) when the JCCRT is 1, some element were deleted; c) some 
more elements were deleted;  d) the fracture happens. 

6. CONCLUSIONS 

The results of numerical model developed correspond to the fracture modes observed in lap-shear actual tensile 
tests. The simulations produced very similar fracture geometries when compared with experimental tests. 

For unclad AA 2024 – T351 all simulations point to the initiation of the fracture occurring around the joining area, 
in the region of contact between the upper and lower plates where occurs the highest stress levels. The mode of fracture 
identified is plug pull-out. 

To AA 2024 – T351 all simulations produced the through weld and circumferential crack mode of fracture. 
To both models the fracture happens and the crack propagates around the SZ, where the higher stress levels occur. 
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