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Abstract. A software package based on Mathematica is developed to find three-dimensional velocity fields from two-
dimensional measurements in orthogonal planes located at different positions. The package can also be used to interpolate
any three dimensional velocity field in a Cartesian coordinate system. This particular feature should permit Mathematica
plotting functions to be used for representation of experimental PIV results. Some test results are shown for a spherical
flow around a sink point. The velocity field of this flow is one-dimensional in a spherical coordinate system, but very
complicated in a three-dimensional Cartesian coordinate system.
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1. Introduction

Particle image velocimetry (PIV) has become a powerful tool for the investigation of complex flows. Despite the
significant progress over the last two decades, the characterization of some three dimensional flows is still much troubled.

Because the classical PIV technique records the projected velocity vector field onto an illuminated cross-section of a
seeded flow field, the out-of-plane velocity component is lost. To allow the acquisition of three-dimensional data, several
schemes have been proposed (Prasad and Adrian (1993), Raffel et al. (1995), Elsinga et al. (2006), Dabiri (2008)).
Perhaps the most praised way is to use a second camera to record the data from a different viewing angle. Then, the three-
dimensional displacement field can be reconstructed from the two projected, planar fields. This technique is referred to
as stereoscopic PIV. Holographic PIV uses the interference patterns of two laser beams of the same frequency but out of
phase to visualize all the particles within a volume with their respective interference patterns. However, large difficulties
in this technique occur when trying to extract the z-component (out of plane) of the particles. It is still in development but
has so far not been reliably successful.

In any of the considered techniques, however, many complications arise. In addition to the complications resulting
from the sometimes needed extra hardware, 3D-PIV calibration must be done with great care to ensure accurate results.
The perspective distortion introduced by the angular offset camera configuration must be exactly corrected by a mapping
function and this not always easily done.

The purpose of the present work is to investigate how accurately complex three dimensional velocity fields can be
reconstructed from the interpolation of orthogonal two-dimensional planes. In a conventional two-dimensional PIV mea-
suring system, the influence of the velocity component perpendicular to the light sheet on the determination of the in-plane
particle displacement is not accounted for. The immediate consequence is that the in-plane particle displacement can be
evaluated very simply by multiplying the image displacement by a constant factor. This procedure introduces a systematic
error, but is justifiable for measurements of flow fields with weakly out-of-plane velocity components. With the present
procedure such a problem does not occur.

The present work explores the possibilities of three-dimensional reconstruction of velocity fields from two-dimensional
measured fields through a specially developed computational package. The package resorts to the software MathematicaTM

due to its inherent powerful capabilities of deploying graphical output and interpolating functions. In previous works, Abe
et al. (2000) and Yoon and Lee (2002) have compared three dimensional PIV measured data with two-dimensional results.
Their works, however, do not propose a scheme of the same sort propose here.

In fact, before embarking onto a costly and time consuming experimental campaign, the present work explores the
possibilities of the developed package by investigating spherical flows. The advantages of considering a bench-mark flow
geometry are many. The two-dimensional data are easily obtained in any desired location and the reconstructed fields
can be compared directly with the analytical solution. Spherical flows are very simply described in a spherical coordinate
system, but yield a very complicated flow pattern in a three-dimensional Cartesian system.

A work of warning to readers is here necessary. The language used in the following developments is suited for
readers who are familiar with the Mathematica syntax. Also, as mentioned before, the present focus of the paper is on
three-dimensional interpolation of data obtained from a known analytical flow solution – spherical flows – so as to verify
“exactly” the proposed interpolation procedure. Of course, this cannot be made with field PIV measurements.

The paper does present a consistent method of obtaining 3D fields from 2D measurements, a method particularly
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useful for whole field techniques. In future contributions, an assessment of the technique will be made against 3D- and
2D-PIV field measurements.

2. The package

This section describes briefly the developed Mathematica package named “PIV2Dto3D”.
The package can be loaded by using the Needs function in any computer platform with installed Mathematica software

system.
The present version of the package supports the functions SphericalFlowVelocity, To3D, VelocityInterpolation.
These functions are documented as:

• ?SphericalFlowVelocity?SphericalFlowVelocity?SphericalFlowVelocity SphericalFlowVelocity[Q, { x, xmin, xmax, ∆x }, { y, ymin, ymax, ∆y }, { z, zmin, zmax,
∆z }]

gives the Cartesian coordinates {x, y, z} and the corresponding velocity components {u, v, w} of the radial velocity
- Q/(4 π r2).

• ?To3D?To3D?To3D

To3D[field1, field2] combines 2D field1 and field2 into 3D field. The field1 and the field2 have the form {{x, y, z,
u, v, w}..}, where x, y, and z are the values of the coordinates at 3D

Cartesian mesh, u, v, and w are the value of corresponding velocity components one of which is zero. \nThe zero
velocity component in fiel1 and field2 has to be different.

• ?VelocityInterpolation?VelocityInterpolation?VelocityInterpolation

VelocityInterpolation[{{x1, y1, z1, u1, v1, w1}, ...}] constructs a list of 3 interpolating functions of x, y, z for the
velocity components u, v, and w by using the interpolation function options.

3. Spherical Flow

Spherical flow is a flow regime that occurs when the predominant flow pattern in a reservoir is toward a point.
In the petroleum industry, a spherical flow occurs for partial penetration and limited-entry completions. This flow

regime is recognized as a -1/2 slope in the pressure derivative on the log-log diagnostic plot. Its presence enables de-
termination of the spherical permeability. When spherical flow is followed by radial flow, both horizontal and vertical
permeability can be quantified in a reservoir.

Figure 1. Cartesian {x(N),{x(N),{x(N), y(W),y(W),y(W), z(Z)z(Z)z(Z)} and spherical {r,{r,{r, θ,θ,θ, φ}φ}φ} coordinate systems. The ranges of the spherical
coordinates are: 0≤r<∞0≤r<∞0≤r<∞, 0≤ θ ≤ π0≤ θ ≤ π0≤ θ ≤ π, and -π ≤ φ ≤ π-π ≤ φ ≤ π-π ≤ φ ≤ π.

This are the relations between the Cartesian and the spherical coordinates:

x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ)x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ)x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ) (1)
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The spherical flow is described by Muskat (1982) by the model:

Φ′′(r) +
2
r

Φ′(r) = 0, Φ (r0) = Φ0, Φ (r1) = Φ1Φ′′(r) +
2
r
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2
r

Φ′(r) = 0, Φ (r0) = Φ0, Φ (r1) = Φ1 (2)

where r0r0r0 is a small radius close to zero, r1 is a radius of the region under consideration, ΦΦΦ is the potential function.

The solution of the problem (2) is given by
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The velocity is obtained by differentiation as
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The total flow through the system is given by
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Hence, velocity (4) can be rewritten as

V (r) = − Q

4πr2
V (r) = − Q

4πr2
V (r) = − Q

4πr2
(6)

The components u(x)u(x)u(x), v(y)v(y)v(y), and w(z)w(z)w(z) of the velocity (6) in Cartesian coordinate system are

u(x) = V (r) sin(θ) cos(φ)u(x) = V (r) sin(θ) cos(φ)u(x) = V (r) sin(θ) cos(φ), vvv(yyy))) === V (r) sin(θ) sin(φ)V (r) sin(θ) sin(φ)V (r) sin(θ) sin(φ), www(zzz))) === V (r) cos(θ)V (r) cos(θ)V (r) cos(θ) (7)

The spherical flow velocity (7), {{{ ui, vi, wiui, vi, wiui, vi, wi }}}, at point with Cartesian coordinates {{{ xi, yi, zixi, yi, zixi, yi, zi }}} has to satisfy the
conditions:
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The function SphericalFlowVelocitySphericalFlowVelocitySphericalFlowVelocity gives the following radial velocities for Q=1Q=1Q=1 at points defined by xminxminxmin =0.2=0.2=0.2 to
xmaxxmaxxmax =0.6=0.6=0.6 step ∆x=0.2∆x=0.2∆x=0.2, yminyminymin =0.2=0.2=0.2 to ymaxymaxymax =0.6=0.6=0.6 step ∆y=0.2∆y=0.2∆y=0.2, and zminzminzmin =0.2=0.2=0.2 to zmaxzmaxzmax =0.6=0.6=0.6 step ∆z=0.2∆z=0.2∆z=0.2.

Thus a working table (Table 1) can easily defined from

TableForm[xyzuvw = Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .6, .2}, 2]]TableForm[xyzuvw = Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .6, .2}, 2]]TableForm[xyzuvw = Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .6, .2}, 2]]

This verify that the conditions (8), ui/xi = vi/yi = wi/ziui/xi = vi/yi = wi/ziui/xi = vi/yi = wi/zi, is fulfilled. It gives a list of sublists

ui/xi − vi/yiui/xi − vi/yiui/xi − vi/yi,,,ui/xi − wi/ziui/xi − wi/ziui/xi − wi/zi, (9)

that becomes zero after applying the function ChopChopChop.
The documentation of ChopChopChop is given by ?Chop?Chop?Chop

Chop[expr] replaces approximate real numbers in expr that are close to zero by the exact integer 0.
Use

Union[Map[Chop[{#[[4]]/#[[1]]−#[[5]]/#[[2]],#[[4]]/#[[1]]−#[[6]]/#[[3]]}]&, xyzuvw]]Union[Map[Chop[{#[[4]]/#[[1]]−#[[5]]/#[[2]],#[[4]]/#[[1]]−#[[6]]/#[[3]]}]&, xyzuvw]]Union[Map[Chop[{#[[4]]/#[[1]]−#[[5]]/#[[2]],#[[4]]/#[[1]]−#[[6]]/#[[3]]}]&, xyzuvw]]

{{0, 0}}
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Table 1. The coordinates xxx, yyy, zzz and the corresponding velocities uuu, vvv, www for spherical flow.

0.2 0.2 0.2 -0.382867 -0.382867 -0.382867
0.2 0.2 0.4 -0.135364 -0.135364 -0.270728
0.2 0.2 0.6 -0.0545307 -0.0545307 -0.163592
0.2 0.4 0.2 -0.135364 -0.270728 -0.135364
0.2 0.4 0.4 -0.0736828 -0.147366 -0.147366
0.2 0.4 0.6 -0.0379785 -0.075957 -0.113936
0.2 0.6 0.2 -0.0545307 -0.163592 -0.0545307
0.2 0.6 0.4 -0.0379785 -0.113936 -0.075957
0.2 0.6 0.6 -0.0240215 -0.0720644 -0.0720644
0.4 0.2 0.2 -0.270728 -0.135364 -0.135364
0.4 0.2 0.4 -0.147366 -0.0736828 -0.147366
0.4 0.2 0.6 -0.075957 -0.0379785 -0.113936
0.4 0.4 0.2 -0.147366 -0.147366 -0.0736828
0.4 0.4 0.4 -0.0957168 -0.0957168 -0.0957168
0.4 0.4 0.6 -0.0567658 -0.0567658 -0.0851487
0.4 0.6 0.2 -0.075957 -0.113936 -0.0379785
0.4 0.6 0.4 -0.0567658 -0.0851487 -0.0567658
0.4 0.6 0.6 -0.038559 -0.0578385 -0.0578385
0.6 0.2 0.2 -0.163592 -0.0545307 -0.0545307
0.6 0.2 0.4 -0.113936 -0.0379785 -0.075957
0.6 0.2 0.6 -0.0720644 -0.0240215 -0.0720644
0.6 0.4 0.2 -0.113936 -0.075957 -0.0379785
0.6 0.4 0.4 -0.0851487 -0.0567658 -0.0567658
0.6 0.4 0.6 -0.0578385 -0.038559 -0.0578385
0.6 0.6 0.2 -0.0720644 -0.0720644 -0.0240215
0.6 0.6 0.4 -0.0578385 -0.0578385 -0.038559
0.6 0.6 0.6 -0.0425408 -0.0425408 -0.0425408
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4. Velocity Interpolation

The simulated experimental results of PIV measurements – assigned to the symbol xyzuvwxyzuvwxyzuvw – are conveniently in-
terpolated to yield the velocity vector in any desired points of the investigated region. Since the number of measured
points is normally small, the default InterpolationOrderInterpolationOrderInterpolationOrder gives a warning message. To avoid this message the option
InterpolationOrderInterpolationOrderInterpolationOrder could be specified as {2,2,2}{2,2,2}{2,2,2} or 222.

This assigns to the symbols UUU, VVV, and WWW interpolating functions for the velocity components.

{U, V,W} = VelocityInterpolation[xyzuvw, InterpolationOrder→ 2]{U, V,W} = VelocityInterpolation[xyzuvw, InterpolationOrder→ 2]{U, V,W} = VelocityInterpolation[xyzuvw, InterpolationOrder→ 2]

The output is

{InterpolatingFunction[{{0.2, 0.6}, {0.2, 0.6}, {0.2, 0.6}}, <>],
InterpolatingFunction[{{0.2, 0.6}, {0.2, 0.6}, {0.2, 0.6}}, <>],
InterpolatingFunction[{{0.2, 0.6}, {0.2, 0.6}, {0.2, 0.6}}, <>]}

The results are used to define Velocity[{x_, y_, z_}]:={U [x, y, z], V [x, y, z],W [x, y, z]}Velocity[{x_, y_, z_}]:={U [x, y, z], V [x, y, z],W [x, y, z]}Velocity[{x_, y_, z_}]:={U [x, y, z], V [x, y, z],W [x, y, z]}

Next input line verify that the interpolated velocities coincide with the ones attached to the symbol xyzuvwxyzuvwxyzuvw and shown
in Table 1.

Flatten[Table[Join[{x, y, z},Velocity[{x, y, z}]], {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .6, .2}], 2] ==Flatten[Table[Join[{x, y, z},Velocity[{x, y, z}]], {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .6, .2}], 2] ==Flatten[Table[Join[{x, y, z},Velocity[{x, y, z}]], {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .6, .2}], 2] == xyzuvwxyzuvwxyzuvw
True

The obtained VelocityVelocityVelocity function computes the velocity components in any desired point of the investigated region. The
vector and contour fields can be plotted through simple commands such as

VectorPlot3D[Velocity[{x, y, z}], {x, .2, .6}, {y, .2, .6}, {z, .2, .6},AxesLabel→ {"x", "y", "z"}]VectorPlot3D[Velocity[{x, y, z}], {x, .2, .6}, {y, .2, .6}, {z, .2, .6},AxesLabel→ {"x", "y", "z"}]VectorPlot3D[Velocity[{x, y, z}], {x, .2, .6}, {y, .2, .6}, {z, .2, .6},AxesLabel→ {"x", "y", "z"}]

Figure 2. Spherical Velocity Field in the region by xminxminxmin =.2=.2=.2 to xmaxxmaxxmax =.6=.6=.6, yminyminymin =.2=.2=.2 to ymaxymaxymax =.6=.6=.6, and zminzminzmin =.2=.2=.2 to
zmaxzmaxzmax =.6=.6=.6. 2a: vector field. 2b: contour surfaces.

4.1 3D from 2D velocity fields

Suppose that we are able to measure in x-yx-yx-y plane at z=.2z=.2z=.2, .4.4.4, and .6.6.6 the velocities uuu and vvv. The unknown velocity
www in zzz direction is replaced by zero.

The 2D simulated measurements at z=0.2z=0.2z=0.2 (Table 2) can be obtained from
TableForm[z02 =z02 =z02 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .2}], 2]]]TableForm[z02 =z02 =z02 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .2}], 2]]]TableForm[z02 =z02 =z02 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .2, .2}], 2]]]
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Table 2. 2D simulated measurements at z=.2z=.2z=.2

0.2 0.2 0.2 -0.382867 -0.382867 0
0.2 0.4 0.2 -0.135364 -0.270728 0
0.2 0.6 0.2 -0.0545307 -0.163592 0
0.4 0.2 0.2 -0.270728 -0.135364 0
0.4 0.4 0.2 -0.147366 -0.147366 0
0.4 0.6 0.2 -0.075957 -0.113936 0
0.6 0.2 0.2 -0.163592 -0.0545307 0
0.6 0.4 0.2 -0.113936 -0.075957 0
0.6 0.6 0.2 -0.0720644 -0.0720644 0

Table 3. 2D simulated measurements at z=.4z=.4z=.4

0.2 0.2 0.4 -0.135364 -0.135364 0
0.2 0.4 0.4 -0.0736828 -0.147366 0
0.2 0.6 0.4 -0.0379785 -0.113936 0
0.4 0.2 0.4 -0.147366 -0.0736828 0
0.4 0.4 0.4 -0.0957168 -0.0957168 0
0.4 0.6 0.4 -0.0567658 -0.0851487 0
0.6 0.2 0.4 -0.113936 -0.0379785 0
0.6 0.4 0.4 -0.0851487 -0.0567658 0
0.6 0.6 0.4 -0.0578385 -0.0578385 0

The 2D simulated measurements at z=0.4z=0.4z=0.4 (Table 3) can be obtained from
TableForm[z04 =z04 =z04 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .4, .4}], 2]]]TableForm[z04 =z04 =z04 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .4, .4}], 2]]]TableForm[z04 =z04 =z04 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .4, .4}], 2]]]

The 2D simulated measurements at z=0.6z=0.6z=0.6 (Table 4) can be obtained from
TableForm[z06 =z06 =z06 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .6, .6}], 2]]]TableForm[z06 =z06 =z06 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .6, .6}], 2]]]TableForm[z06 =z06 =z06 = Map[ReplacePart[#, 6→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .6, .2}, {z, .6, .6}], 2]]]

Table 4. 2D simulated measurements at z=.6z=.6z=.6

0.2 0.2 0.6 -0.0545307 -0.0545307 0
0.2 0.4 0.6 -0.0379785 -0.075957 0
0.2 0.6 0.6 -0.0240215 -0.0720644 0
0.4 0.2 0.6 -0.075957 -0.0379785 0
0.4 0.4 0.6 -0.0567658 -0.0567658 0
0.4 0.6 0.6 -0.038559 -0.0578385 0
0.6 0.2 0.6 -0.0720644 -0.0240215 0
0.6 0.4 0.6 -0.0578385 -0.038559 0
0.6 0.6 0.6 -0.0425408 -0.0425408 0

The above "measurements" assigned to the symbols z02z02z02, z04z04z04, and z06z06z06 are joined and sorted in the list xyzuv0xyzuv0xyzuv0 which
gives the coordinates xxx, yyy, zzz, and the velocity components uuu, vvv, 000. Since the last component www is not measured it is
replaced by zero.

The complete 2D simulated measurements (Table 5, Fig. (4)) at all three planes are obtained with
TableForm[xyzuv0 = Sort[Join[z02, z04, z06]]]TableForm[xyzuv0 = Sort[Join[z02, z04, z06]]]TableForm[xyzuv0 = Sort[Join[z02, z04, z06]]]

Note that the above list xyzuv0xyzuv0xyzuv0 is equivalent to the 3D3D3D list xyzuvwxyzuvwxyzuvw in which the velocity components www are replaced
by zeros.

xyzuv0==Map[ReplacePart[#, 6→ 0]&, xyzuvw]xyzuv0==Map[ReplacePart[#, 6→ 0]&, xyzuvw]xyzuv0==Map[ReplacePart[#, 6→ 0]&, xyzuvw]
True
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Table 5. 2D simulated measurements at z=0.2, 0.4 and 0.6z=0.2, 0.4 and 0.6z=0.2, 0.4 and 0.6

0.2 0.2 0.2 -0.382867 -0.382867 0
0.2 0.2 0.4 -0.135364 -0.135364 0
0.2 0.2 0.6 -0.0545307 -0.0545307 0
0.2 0.4 0.2 -0.135364 -0.270728 0
0.2 0.4 0.4 -0.0736828 -0.147366 0
0.2 0.4 0.6 -0.0379785 -0.075957 0
0.2 0.6 0.2 -0.0545307 -0.163592 0
0.2 0.6 0.4 -0.0379785 -0.113936 0
0.2 0.6 0.6 -0.0240215 -0.0720644 0
0.4 0.2 0.2 -0.270728 -0.135364 0
0.4 0.2 0.4 -0.147366 -0.0736828 0
0.4 0.2 0.6 -0.075957 -0.0379785 0
0.4 0.4 0.2 -0.147366 -0.147366 0
0.4 0.4 0.4 -0.0957168 -0.0957168 0
0.4 0.4 0.6 -0.0567658 -0.0567658 0
0.4 0.6 0.2 -0.075957 -0.113936 0
0.4 0.6 0.4 -0.0567658 -0.0851487 0
0.4 0.6 0.6 -0.038559 -0.0578385 0
0.6 0.2 0.2 -0.163592 -0.0545307 0
0.6 0.2 0.4 -0.113936 -0.0379785 0
0.6 0.2 0.6 -0.0720644 -0.0240215 0
0.6 0.4 0.2 -0.113936 -0.075957 0
0.6 0.4 0.4 -0.0851487 -0.0567658 0
0.6 0.4 0.6 -0.0578385 -0.038559 0
0.6 0.6 0.2 -0.0720644 -0.0720644 0
0.6 0.6 0.4 -0.0578385 -0.0578385 0
0.6 0.6 0.6 -0.0425408 -0.0425408 0

Figure 3. Reduced velocity fields in the various z-planes. 3a: vector field. 3b: contour lines.
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Suppose now that we are able to measure in x-zx-zx-z plane at y=0.2y=0.2y=0.2, 0.40.40.4, and 0.60.60.6 and obtain the following 2D simulated
measurements. The unknown velocity in yyy direction is replaced by zero.

The 2D simulated measurements at y=0.2y=0.2y=0.2 (Table 6) can be obtained from
TableForm[y02y02y02 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .2}, {z, .2, .6, .2}], 2]]]TableForm[y02y02y02 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .2}, {z, .2, .6, .2}], 2]]]TableForm[y02y02y02 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .2, .2}, {z, .2, .6, .2}], 2]]]

Table 6. 2D simulated measurements at y=.02y=.02y=.02

0.2 0.2 0.2 -0.382867 0 -0.382867
0.2 0.2 0.4 -0.135364 0 -0.270728
0.2 0.2 0.6 -0.0545307 0 -0.163592
0.4 0.2 0.2 -0.270728 0 -0.135364
0.4 0.2 0.4 -0.147366 0 -0.147366
0.4 0.2 0.6 -0.075957 0 -0.113936
0.6 0.2 0.2 -0.163592 0 -0.0545307
0.6 0.2 0.4 -0.113936 0 -0.075957
0.6 0.2 0.6 -0.0720644 0 -0.0720644

The 2D simulated measurements at y=0.4y=0.4y=0.4 (Table 7) can be obtained from
TableForm[y04y04y04 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .4, .4}, {z, .2, .6, .2}], 2]]]TableForm[y04y04y04 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .4, .4}, {z, .2, .6, .2}], 2]]]TableForm[y04y04y04 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .4, .4}, {z, .2, .6, .2}], 2]]]

Table 7. 2D simulated measurements at y=0.4y=0.4y=0.4

0.2 0.4 0.2 -0.135364 0 -0.135364
0.2 0.4 0.4 -0.0736828 0 -0.147366
0.2 0.4 0.6 -0.0379785 0 -0.113936
0.4 0.4 0.2 -0.147366 0 -0.0736828
0.4 0.4 0.4 -0.0957168 0 -0.0957168
0.4 0.4 0.6 -0.0567658 0 -0.0851487
0.6 0.4 0.2 -0.113936 0 -0.0379785
0.6 0.4 0.4 -0.0851487 0 -0.0567658
0.6 0.4 0.6 -0.0578385 0 -0.0578385

This are the 2D simulated measurements at y=.6y=.6y=.6 (Table 8):
TableForm[y06y06y06 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .6, .6}, {z, .2, .6, .2}], 2]]]TableForm[y06y06y06 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .6, .6}, {z, .2, .6, .2}], 2]]]TableForm[y06y06y06 = Map[ReplacePart[#, 5→ 0]&,Flatten[SphericalFlowVelocity[1, {x, .2, .6, .2}, {y, .6, .6}, {z, .2, .6, .2}], 2]]]

Table 8. 2D simulated measurements at y=0.6y=0.6y=0.6

0.2 0.6 0.2 -0.0545307 0 -0.0545307
0.2 0.6 0.4 -0.0379785 0 -0.075957
0.2 0.6 0.6 -0.0240215 0 -0.0720644
0.4 0.6 0.2 -0.075957 0 -0.0379785
0.4 0.6 0.4 -0.0567658 0 -0.0567658
0.4 0.6 0.6 -0.038559 0 -0.0578385
0.6 0.6 0.2 -0.0720644 0 -0.0240215
0.6 0.6 0.4 -0.0578385 0 -0.038559
0.6 0.6 0.6 -0.0425408 0 -0.0425408

The above “measurements” assigned to the symbols y02y02y02, y04y04y04, and y06y06y06 are joined and sorted in the list xyzu0wxyzu0wxyzu0w
which gives the coordinates xxx, yyy, zzz, and the velocity components uuu, 000, www. Since the second component vvv is not
measured it is replaced by zero.
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The simulated velocity measurements at y-planes are shown in (Table 9) and Fig.(4).

TableForm[xyzu0w = Sort[Join[y02, y04, y06]]]TableForm[xyzu0w = Sort[Join[y02, y04, y06]]]TableForm[xyzu0w = Sort[Join[y02, y04, y06]]]

Table 9. 2D simulated measurements at y=0.2, 0.4 and 0.6y=0.2, 0.4 and 0.6y=0.2, 0.4 and 0.6

0.2 0.2 0.2 -0.382867 0 -0.382867
0.2 0.2 0.4 -0.135364 0 -0.270728
0.2 0.2 0.6 -0.0545307 0 -0.163592
0.2 0.4 0.2 -0.135364 0 -0.135364
0.2 0.4 0.4 -0.0736828 0 -0.147366
0.2 0.4 0.6 -0.0379785 0 -0.113936
0.2 0.6 0.2 -0.0545307 0 -0.0545307
0.2 0.6 0.4 -0.0379785 0 -0.075957
0.2 0.6 0.6 -0.0240215 0 -0.0720644
0.4 0.2 0.2 -0.270728 0 -0.135364
0.4 0.2 0.4 -0.147366 0 -0.147366
0.4 0.2 0.6 -0.075957 0 -0.113936
0.4 0.4 0.2 -0.147366 0 -0.0736828
0.4 0.4 0.4 -0.0957168 0 -0.0957168
0.4 0.4 0.6 -0.0567658 0 -0.0851487
0.4 0.6 0.2 -0.075957 0 -0.0379785
0.4 0.6 0.4 -0.0567658 0 -0.0567658
0.4 0.6 0.6 -0.038559 0 -0.0578385
0.6 0.2 0.2 -0.163592 0 -0.0545307
0.6 0.2 0.4 -0.113936 0 -0.075957
0.6 0.2 0.6 -0.0720644 0 -0.0720644
0.6 0.4 0.2 -0.113936 0 -0.0379785
0.6 0.4 0.4 -0.0851487 0 -0.0567658
0.6 0.4 0.6 -0.0578385 0 -0.0578385
0.6 0.6 0.2 -0.0720644 0 -0.0240215
0.6 0.6 0.4 -0.0578385 0 -0.038559
0.6 0.6 0.6 -0.0425408 0 -0.0425408

Note that the obtained data list xyzu0wxyzu0wxyzu0w is equivalent to the 3D list xyzuvwxyzuvwxyzuvw in which the velocity components vvv are
replaced by zeros.

In fact,

xyzu0w==Map[ReplacePart[#, 5→ 0]&, xyzuvw]xyzu0w==Map[ReplacePart[#, 5→ 0]&, xyzuvw]xyzu0w==Map[ReplacePart[#, 5→ 0]&, xyzuvw]
True

Finally, the function To3DTo3DTo3D use the 2D lists xyzuv0xyzuv0xyzuv0 and xyzu0wxyzu0wxyzu0w to give the 3D spherical field assigned to the symbol
xyzuvwxyzuvwxyzuvw, that is,

To3D[xyzuv0, xyzu0w] == xyzuvwTo3D[xyzuv0, xyzu0w] == xyzuvwTo3D[xyzuv0, xyzu0w] == xyzuvw
True

Suppose that we are able to measure in y-zy-zy-z plane at x=0.2x=0.2x=0.2, 0.40.40.4, and 0.60.60.6 the velocities vvv and www. The unknown
velocity uuu in xxx direction is replaced by zero. The command below is used to implement this

xyz0vw = Map[ReplacePart[#, 4→ 0]&, xyzuvw];xyz0vw = Map[ReplacePart[#, 4→ 0]&, xyzuvw];xyz0vw = Map[ReplacePart[#, 4→ 0]&, xyzuvw];

Suppose that one of the measurements xyzuv0xyzuv0xyzuv0 or xyzu0wxyzu0wxyzu0w is replaced by xyz0vwxyz0vwxyz0vw. Than the function To3DTo3DTo3D again
gives correctly 3D spherical fields:

To3D[xyz0vw, xyzu0w] == xyzuvwTo3D[xyz0vw, xyzu0w] == xyzuvwTo3D[xyz0vw, xyzu0w] == xyzuvw
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Figure 4. Reduced velocity fields in the various y-planes. 3a: vector field. 3b: contour lines.

True

To3D[xyz0vw, xyzuv0] == xyzuvwTo3D[xyz0vw, xyzuv0] == xyzuvwTo3D[xyz0vw, xyzuv0] == xyzuvw
True

5. Conclusion

The sucsessfull finding of velocity components for three-dimensional spherical flow encourage the authors to apply the
presently developed Mathematica package to determine three-dimensional velocity fields from experimentally obtained
two-dimensional PIV measurements in orthogonal planes located at different positions. Current work in this direction is
currently under way and will be reported soon.
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