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Abstract. Dried fruit and vegetables have gained commercial importance and their growth on a commercial scale has 
become an important sector of the agricultural industry. Plots of drying curves are used in the determination of the 
drying process behavior  inside the samples and of the optimal drying conditions, taking into account the quality of the 
dried product and also the economical aspects. This research was developed with the objective of studying and 
modeling the phenomenon of the mass transfer in the agricultural products drying process, using the diffusional model 
(Fick’s Second Law of Diffusion) adapted to infinite flat plate geometry. The model of the unsteady state diffusion 
neglects the effects of temperature and total pressure gradients, describes the moisture content transport during the 
food drying process that takes place in the falling rate period and gives the transient distribution of the moisture 
content of the product in any position. The diffusive model was solved by Generalized Integral Transform Technique 
(GITT), which is an hybrid numerical–analytical solution methodology and powerful tool to solve partial differential 
equations. The predict results were compared with experimental data for the drying of mushroom slices of the species 
Agaricus blazei dried at different operating conditions. Graphics and tables permit the phenomenological analysis. 
The analysis showed no significant differences between the data obtained by GITT and those obtained experimentally. 
Thus, the model is capable for predicting the moisture distributions in the drying process. 
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1. INTRODUCTION 

 
Foodstuffs quality and the cost of their manufacture are the most important factors to be considered when choosing a 

food preservation method. Water, being one of the main food components, has a decisive direct influence on the quality 
and durability of foodstuffs through its effect on many physico-chemical and biological changes (El-Aouar et al., 2003). 
Agricultural products drying is a widely spread method offering physico-chemical stabilization by taking away part of 
the moisture content, producing different products with new qualitative properties, distinct nutritional and economical 
values (Babalis and Belessiotis, 2004). Dried fruit and vegetables have gained commercial importance and their growth 
on a commercial scale has become an important sector of the agricultural industry (Karim and Hawlader, 2005). 
Therefore, in the course of the last few years a number of researches have been accomplished regarding the drying 
process of food products (Silva et al., 2009; Alencar Junior et al., 2008; Giri and Prasad, 2007; Jambrak et al., 2007; 
Ruiz-López et al., 2007; Bialabrzewski, 2006; Wald et al., 2006; Cao et al., 2003; Krokida et al., 2003). 

Analytical and numerical solutions of partial differential equations systems that describe these drying processes are 
used for designing new or improving existing drying systems or even for the control of the drying process. All 
parameters (transfer coefficients, drying constants, etc.) used by the simulation models are directly related to the drying 
conditions, i.e. temperature and velocity of the drying medium inside the mechanical dryer (Babalis and Belessiotis, 
2004). 

The Generalized Integral Transform Technique (GITT) is a well-known hybrid numerical–analytical approach that 
can efficiently handle diffusion and convection–diffusion partial differential formulations. It is based on expansions of 
the original potentials in terms of eigenfunctions and the solution is obtained through integral transformation in all but 
one of the independent variables, thus reducing the partial differential formulations to an ordinary differential system 
for the expansion coefficients, which can be then solved using numerical techniques or in some special cases, analytical 
procedures (Almeida et al., 2008). 
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The GITT has quite recently appeared in the literature as an alternative to conventional discrete numerical methods, 
for various partial differential formulations (Venezuela et al., 2009, Naveira et al., 2007, Barros et al., 2006, Macêdo et 
al., 1999). Its hybrid numerical - analytical structure permits the automatic control of the global error in the simulation, 
which avoids the need for several computer program runs to inspect for the convergence on the final results, and 
therefore yields codes that automatically work towards user prescribed accuracy targets. A number of applications, 
using the GITT, have been considered within the last few years dealing with drying in capillary porous media (Dantas et 
al., 2007; Dantas et al., 2003; Dantas et al., 2002). However, the application of this technique in problems of food 
drying is still scarce. Therefore, the present work addresses the solution via GITT of a transient one-dimensional 
diffusion formulation describing the drying process. 

 
2. PHYSICAL PROBLEM AND MATHEMATICAL MODELLING 
 
2.1. Model assumptions 
 

The physical problem involves a mass transfer inside food products subjected to air drying processes, initially at 
uniform moisture content. Fick’s second law of the unsteady state diffusion, resulting by neglecting the effects of 
temperature and total pressure gradients, can describe the transport of moisture during the food drying process that takes 
place in the falling rate period (Crank, 1975). 

The following assumptions were adopted in order to simplify the model: 
 

 The product is represented by the geometrical form of a plate of thickness 2L; 
 Moisture transfer is predominantly unidirectional; 
 The initial moisture content is uniformly distributed throughout the product; 
 Shrinkage is considered negligible; 
 The diffusion coefficient is considered constant and homogeneous during drying. 
 
2.2. Mathematical modeling 
 

Based on the above assumptions, the equation describing moisture transfer in foods during heat treatment is given as 
follows: 
 

휕푋(푧, 푡)
휕푡 = 퐷

휕푋 (푧, 푡)
휕푡     푎푡 0 < 푧 < 퐿                                                                                                                               (1푎) 

 
The initial and boundary conditions are listed below to complete the numerical formulation of the problem: 

 
 Boundary conditions 
 
Symmetry of moisture: 
 
휕푋(0, 푡)
휕푡

= 0     푎푡 푧 = 0 푎푛푑 푡 > 0                                                                                                                                         (1푏) 
 
Equilibrium moisture at surface: 
 
푋(퐿, 푡) = 푋     푎푡 푧 = 퐿 푎푛푑 푡 > 0                                                                                                                                           (1푐) 
 
 Initial condition 

 
Uniform initial moisture: 
 
푋(푧, 0) = 푋     푎푡 0 < 푧 < 퐿 푎푛푑 푡 = 0                                                                                                                                  (1푑) 
 

where X0 is the initial moisture content, Xe is the equilibrium moisture content and X is the moisture content (kg/kg), 
Def is the diffusion coefficient (m²/s), and z and t are the independent variables, i.e., position (m) and time (s), 
respectively. 

The Eqs. (1) are given in dimensionless form by: 
 
휕휃(푧∗ , 휏)

휕휏 =
휕 휃(푧∗, 휏)
휕푧∗

   0 < 푧 ∗< 1,       휏 > 0                                                                                                                    (2푎) 
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with boundary and initial conditions 

 
휕휃(0, 휏)
휕푧∗ = 0    푧 ∗= 0, 휏 > 0                                                                                                                                              (2푏) 

 
휃(1, 휏) = 0     푧 ∗= 1, 휏 > 0                                                                                                                                                (2푐) 
 
휃(푧∗, 휏) = 1    0 < 푧 ∗< 1,   휏 = 0                                                                                                                                            (2푑) 
 

where the dimensionless groups are: 
 

휏 =
퐷 푡
퐿 ;      푧∗ =

푧
퐿 ;       휃(푧∗, 휏) =

푋(푧, 푡) − 푋
푋 − 푋  

 
The objective, now, is to determine the dimensionless moisture content field, in the food drying process. The 

mathematical model is solved here applying the Generalized Integral Transform Technique (GITT) as following 
described. 

 
2. METHOD OF SOLUTION FOR THE MATHEMATICAL MODEL 
 

The Generalized Integral Transform Technique (GITT) is a powerful hybrid numerical-analytical approach, which 
has been successfully applied to obtain benchmark solutions for different classes of linear and non-linear 
diffusion/convection problems (Dantas et al., 2002). Such a technique, as employed to time dependent problems, 
includes the following basics steps: 
 

(i) Selection of an associated auxiliary eigenvalue problem, that retains the highest capacity of information of the 
original problem; 
(ii) Develop the appropriate transform/inverse formulae pair; 
(iii) Integral transform the original problem by substituting the inverse formula into non-transformable terms or by 
using the integral balance approach; 
(iv) Solve the resulting coupled system of ordinary differential equations in the time variable; 
(v) Apply the inverse formula to the transformed field in order to obtain the solution for the original problem. 
 
System (2) is solved using the Generalized Integral Transform Technique (GITT) (Özisik, 1980). The first step is to 

choose the so-called auxiliary problem. If we consider the differential Eq. (2) with its boundary conditions, this can be 
expressed as (Özisik, 1980) 

 
푑 휓 (푧∗)
푑푧∗

+ 휇 휓 (푧∗) = 0                                                                                                                                                         (3푎) 

 
푑휓 (푧∗)
푑푧∗ ∗

= 0                                                                                                                                                                        (3푏)   

 
휓 (1) = 0                                                                                                                                                                                      (3푐)   

 
Equations (3) represent a classical Sturm–Liouville problem. Its solution is obtained in the form of eigenfunctions 

and eigenvalues, respectively. 
 
휓 (푧∗) = cos(휇 푧∗) 

 

휇 = 푖 −
1
2      푖 = 1, 2, 3⋯ 

 
The next step is to define the Transformed/Inverse pair 
 

휃 (휏) = 휓 (푧∗)휃(푧∗, 휏)푑푧∗                    푇푟푎푛푠푓표푟푚푒푑                                                                                                     (4푎) 
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휃(푧∗ , 휏) = 휓 (푧∗)휃 (휏)                          퐼푛푣푒푟푠푒                                                                                                                 (4푏) 

 
where 휃 (휏) is the transformed dependent variable and the norm Ni is given by: 
 

푁 = 휓 (푧∗)푑푧∗                                                                                                                                                                      (4푐) 

 
The normalized eigenfunctions are defined by: 
 

휓 (푧∗) =
휓 (푧∗)
푁 /                                                                                                                                                                            (4푑) 

 
Moreover, the eigenfunctions have the following orthogonality property: 
 

휓 (푧∗)휓 (푧∗)푑푧∗ =  
0, 푖 ≠ 푗
1, 푖 = 푗                                                                                                                                                 (4푒) 

 
At this point, the integral transformation can be applied. Eq. (2) is integrated using the operator 
 

휓 (푧∗)푑푧∗                                                                                                                                                 

 
On the basis of the orthogonality property (4e), the Integral Transform (4a) and the Inverse Formula (4b), from Eq. 

(2) we get 
 

푑휃 (휏)
푑휏

= −휇 휃 (휏)                                                                                                                                                                       (5푎) 
 

The integral transform of the entry condition (Eq. 4a) produces the following transformed initial condition: 
 

휃 (0) = 휓 (푧∗)푑푧∗                                                                                                                                                                    (5푏) 

 
The system of ordinary differential equations presented in Eqs. (5) for the transformed potentials was solved in the 

Matlab R2008a. For computational purposes this system is truncated to a sufficiently large finite order, N, for the 
required convergence control. 

 
3. RESULTS 
 
3.1. Validation 

 
In this section, a comparison is performed between the results obtained through the hybrid numerical-analytical 

solution and the experimental results given by Kurozawa (2005), whose aim was the validation of the model. The 
mushrooms (Agaricus blazei), with a half-thickness of approximately 2.510-3 m, were dried on a fixed bed dryer under 
different conditions of temperature (45 and 75°C) and air velocity (1.20 and 2.30 m/s).  

The curves presented in Fig. 1, for three considered tests, show that the existent moisture content at the beginning of 
the drying process is exponentially reduced until reaching the equilibrium moisture content. Such behavior 
demonstrates the inexistence of the period of constant drying, thus, the process of drying of the product just happened in 
the decreasing period of drying, being controlled for the internal diffusion of the liquid to the surface where the 
evaporation happens. 

The residuals or the difference between the values given by the measurement and the model were used to estimate 
the quality of the model (Beck and Arnold, 1977). The residuals can be expressed as r = Xexp – Xcomp. 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

The consistency of the optimization method presented in this paper can be also confirmed through the residues 
dispersion, as presented in Fig. 1. The magnitude of the oscillations had a minimum value of -0.26082 kg/kg, -0.41042 
kg/kg, -0.13618 kg/kg, and a maximum of 0.56375 kg/kg, 0.80888 kg/kg, and 0.39113 kg/kg respectively for the tests 1, 
2 and 3. Analyzing these residues, it may be seen that low values, centered around zero and with a relatively random 
distribution were found, indicating that the measurement was reliable and the hybrid solution represented the physical 
phenomenon. 
 

 

(a) 

 

(b) 

 

(c) 

 
Figure 1. Comparison of measured and theoretical moisture content and related residuals. (a) Test 1, (b) Test 2 and c) 

Test 3. 
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3.2. Convergence analysis 
 

We focus the following analysis on the effects of the temperature and air velocity. The convergence ongoing in the 
eigenfunction expansion is illustrated in Tabs. 1-3 below, for the moisture content profile, for test 1, 2 and 3 at two 
different values of time, t=0.03 and 0.25 h, and at three distinct dimensionless longitudinal positions, z* = 0.1, z* = 0.5 
and z* = 0.9.  

The convergence progress can be observed in the following tables through the increase in the system truncation 
order, denoted by the letter N. A maximum of 20 terms in the moisture content series were considered for this 
demonstration with excellent convergence characteristics. Even for the lower values of the time variable, four 
converged digits are achieved for truncation orders. As expected, during the drying process, was observed that at 
positions close to the center of the body, a greater number of terms to achieve a converged solution to the four digits 
were required. In the worst case, related to test 1 and t = 0.03 h, the moisture content reached a precision of four digits 
from N = 15 terms in the series. 

 
Table 1. Convergence behavior of the test 1 (45°C and 1.20 m/s) 

 
t = 0.03 h t = 0.250h 

N Moisture Content (kg/kg) N Moisture Content (kg/kg) 
z* = 0.1 z* = 0.5 z* = 0.9 z* = 0.1 z* = 0.5 z* = 0.9 

1 12.1007 8.6721 1.9432 1 10.7244 7.6868 1.7252 
2 8.9739 11.1535 3.5364 2 9.6728 8.5213 2.2610 
3 10.0791 10.0484 4.6415 3 9.7264 8.4678 2.3146 
4 9.7549 9.5436 5.2776 4 9.7255 8.4664 2.3163 
5 9.8028 9.7599 5.5797 5 9.7255 8.4665 2.3163 
6 9.8214 9.8439 5.6971 6 9.7255 8.4665 2.3163 
7 9.8027 9.8149 5.7337 7 9.7255 8.4665 2.3163 
8 9.8116 9.8060 5.7426 8 9.7255 8.4665 2.3163 
9 9.8086 9.8084 5.7441 9 9.7255 8.4665 2.3163 

10 9.8094 9.8089 5.7443 10 9.7255 8.4665 2.3163 
15 9.8093 9.8088 5.7442 15 9.7255 8.4665 2.3163 
16 9.8093 9.8088 5.7442 16 9.7255 8.4665 2.3163 
20 9.8093 9.8088 5.7442 20 9.7255 8.4665 2.3163 

 
Table 2. Convergence behavior of the test 2 (75°C and 1.20 m/s) 

 
t = 0.03 h t = 0.250h 

N Moisture Content (kg/kg) N Moisture Content (kg/kg) 
z* = 0.1 z* = 0.5 z* = 0.9 z* = 0.1 z* = 0.5 z* = 0.9 

1 11.7951 8.4457 1.8722 1 7.9422 5.6873 1.2619 
2 9.6166 10.1746 2.9822 2 7.8803 5.7364 1.2934 
3 10.008 9.7829 3.3738 3 7.8803 5.7364 1.2935 
4 9.9665 9.7180 3.4556 4 7.8803 5.7364 1.2935 
5 9.9681 9.7252 3.4657 5 7.8803 5.7364 1.2935 
6 9.9683 9.7257 3.4664 6 7.8803 5.7364 1.2935 
7 9.9682 9.7257 3.4664 7 7.8803 5.7364 1.2935 
8 9.9682 9.7257 3.4664 8 7.8803 5.7364 1.2935 
9 9.9682 9.7257 3.4664 9 7.8803 5.7364 1.2935 

10 9.9682 9.7257 3.4664 10 7.8803 5.7364 1.2935 
15 9.9682 9.7257 3.4664 15 7.8803 5.7364 1.2935 
16 9.9682 9.7257 3.4664 16 7.8803 5.7364 1.2935 
20 9.9682 9.7257 3.4664 20 7.8803 5.7364 1.2935 
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Table 3. Convergence behavior of the test 3 (45°C and 2.30 m/s) 
 

t = 0.03 h t = 0.250h 

N Moisture Content (kg/kg) N Moisture Content (kg/kg) 
z* = 0.1 z* = 0.5 z* = 0.9 z* = 0.1 z* = 0.5 z* = 0.9 

1 10.2916 7.3755 1.6523 1 8.3397 5.9781 1.3431 
2 7.9105 9.2651 2.8655 2 7.9829 6.2612 1.5249 
3 8.5851 8.5905 3.5401 3 7.9863 6.2578 1.5284 
4 8.4431 8.3693 3.8188 4 7.9863 6.2578 1.5284 
5 8.4566 8.4302 3.9039 5 7.9863 6.2578 1.5284 
6 8.4596 8.4438 3.9229 6 7.9863 6.2578 1.5284 
7 8.4581 8.4414 3.9260 7 7.9863 6.2578 1.5284 
8 8.4584 8.4410 3.9263 8 7.9863 6.2578 1.5284 
9 8.4583 8.4411 3.9264 9 7.9863 6.2578 1.5284 

10 8.4584 8.4411 3.9264 10 7.9863 6.2578 1.5284 
15 8.4583 8.4411 3.9264 15 7.9863 6.2578 1.5284 
16 8.4583 8.4411 3.9264 16 7.9863 6.2578 1.5284 
20 8.4583 8.4411 3.9264 20 7.9863 6.2578 1.5284 

 
To visualize the behavior of drying process, the 3D curves of moisture content distribution for each studied test are 

obtained from converged values and represented by Figs. (2-4), below showed. The curves indicate that the variation of 
moisture content is more significant in cases performed with highest values of temperature and air-drying velocity, 
however, they show the similar behavior. It is also possible to realize that drying process achieved with higher 
temperatures and air speeds provide minor equilibrium moisture content and the equilibrium condition is reached in a 
shorter period of time. Physically, this denotes that the mass transfer increases with increasing temperature and air-
drying velocity. 
 

 
 

Figure 2: Visualization in 3D the moisture content variation inside the body, X, for test 1, using Matlab, for N = 20 
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Figure 3: Visualization in 3D the moisture content variation inside the body, X, for test 2, using Matlab, for N = 20 
 

 
 

Figure 3: Visualization in 3D the moisture content variation inside the body, X, for test 2, using Matlab, for N = 20 
 
Figures (2-4) illustrate that the equilibrium moisture content is reached faster at the product surface, as expected.  

This can be explained by the fact that, in the beginning of the process, a significant part of the moisture content is free 
on the surface of the body and thus is easily removed. For others times of drying, the differences of moisture content 
between different positions increase, due to internal resistance to the transport of moisture. During this period, water 
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interacts with polar groups of the constituents’ molecules. Therefore, the higher are the temperature and velocity of the 
drying air, the water is removed with greater ease. 

 
4. CONCLUSIONS 

 
In this work, the Generalized Integral Transform Technique (GITT) was successfully employed in a mass 

transfer problem. The results illustrating moisture content distribution were presented graphically for different operating 
conditions, varying temperature and drying air speed. Results obtained in this study show good agreement with 
literature ones, this modeling allows the moisture content profile determination within food products submitted to a 
drying process. The 3D curves represent the moisture content transient behavior which varies with position, indicating 
that equilibrium condition at surface is reached faster than at the center of the product. Analyzing the convergence of 
the series, during resolution procedure, only 15 terms were required to get a converged response, for the worst situation 
(low temperature and drying air velocity). A posterior research, already in progress, includes the modeling development 
taking into account simultaneous heat and mass transfer and also variable properties. 
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