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Abstract. The application of time series analysis techniques for the analysis of non-linear aerolastic responses of an
airfoil with trailing edge control surface is present in this work. Two elements typical section dynamics and a lumped
vortex method for unsteady potential aerodynamics are considered to provide simulated aeroelastic data for the non-
linear analysis. Concentrated freeplay nonlinearity is adopted to describe the restoring structural moment at control
surface hinge, thereby allowing the introduction of a variety of complex behavior. Tests for stationarity and the Surrogate
data test are followed by state space reconstruction. The Singular Value Decomposition method (SVD) and the method
of Delays (MOD) are used to the state space reconstruction in order to show the diferences and potetiallity of each one.
Reconstructed state spaces are, then, used in qualitative analysis of attractors evolution due to parametric variation
concerned aeroelastic behavior. Lyapunov exponent calculation is proceeded, in order to search for chaos, that can be
explored with Poincaré maps and bifurcation diagrams. This work results can also show how potentially useful are the
application of time series analysis tools to the analysis of complex aeroelastic systems. Overall results reveal complex
system dynamics. Poincaré mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum
positive Lyapunov exponents.

Keywords: nonlinear time series analysis, freeplay, state space reconstruction, chaos, control surface, typical section,
aeroelastic

1. INTRODUCTION

Non-linear behavior is inherent to aeroelastic systems and can be associated with aerodynamic and structural effects.
An aeroelastic system can face both effects simultaneously or one of these at a time. Compressibility effects (Edwards,
1993) and highly separated flows (Leishman and Beddoes, 1989) are important effects that can result in nonlinear aero-
dynamical behavior, they can occur for instance, in transonic flight and high angles of attack manoeuvres, in all cases
leading to complex models beyond linearity suppositions. In terms of structural properties, the effects of aging, loose
attachments, material features, large motions or deformations are examples of non-linearities to be considered. Structural
nonlinearities can be subdivided into distributed and concentrated ones. Distributed nonlinearities represents, for exam-
ple, characteristic of materials and large motions (Patil and Hodges, 2004; Brown, 2003) as concentrated ones act locally,
representing loose of attachments, worn hinges of control surfaces, aging and presence of external stores (Lee et al., 1999;
O’Neil and Strganac, 1998; Bae et al., 2004; Conner et al., 1997; Tang and Dowell, 2006).

Non-linear systems typically present features like: multiple equilibrium points, bifurcations, limit-cycle oscillations
and chaos (Sheta et al., 2002). The presence of such effects results in modifications in the aeroelastic behavior, leading to
more laborious the prediction of instabilities. The flutter phenomenon with the presence of non-linearities, e.g., happens
in a different way to that foreseen in linear models. Severe non-linear behavior can be encountered in aeroelastic systems
with hinged control surfaces. A variety of undesired problems to the control surface hinge and links provides complex
dynamic characteristics, which have a major influence on aeroelastic response. Typical aeroelastic models consider those
control surface nonlinearities as concentrated effects, such as polynomial, free-play and hysteresis, or by a combination
of these (Lee et al., 1999).

Techniques from signal processing and time series analysis can be used to analyze aeroelastic system (Shreiber and
Shmitz, 2000; Kantz and Shreiber, 2004), thereby providing an powerful framework to explore complex non-linear fluid-
structure interaction problems. Methodologies to reconstruct the state space from the embedded dynamics of a time series
represent an appropriate approach to analysis aeroelastic systems. Bifurcations and chaotic behavior can be determined
from reconstructed spaces. Moreover, systems invariants may also be calculated to check complex behavior, or to certify
on the nonlinearity of the time series, as done by Simoni (2007); Marques et al. (2009); Marques and Vasconcellos (2009).
In this cases, stationarity and surrogate data tests are performed, followed by state space reconstruction, Poincaré maps
and Lyapunov exponents assessment, to explore bifurcations and chaotic behavior.

This work presents the application of time series analysis techniques for the analysis of non-linear aerolastic responses
of an airfoil with trailing edge control surface. Two elements typical section dynamics and a lumped vortex method
for unsteady potential aerodynamics are considered to provide simulated aeroelastic data for the non-linear analysis.
Concentrated freeplay nonlinearity is adopted to describe the restoring structural moment at control surface hinge, thereby
allowing the introduction of a variety of complex behavior. The method of Delays (MOD) is used to the state space
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reconstruction. Reconstructed state spaces are then used in qualitative analysis of attractors evolution due to parametric
variation concerned aeroelastic behavior. Lyapunov exponent calculation is proceeded, in order to search for chaos, that
can be explored with Poincaré maps and bifurcation diagrams.

The Singular Value Decomposition method (SVD) is used to reconstruct the state space from a noise-contaminated
time series to show its potentiality in experimental data. Some results obtained with time series analyses are compared
with the results obtained directly from the mathematical model to show how potentially useful are the application of time
series analysis tools to the analysis of complex aeroelastic systems, mainly when a mathematical model is not possible
and we have only experimental data.

2. NONLINEAR AEROELASTIC MODEL

A two-dimensional airfoil having three degrees of freedom, as depicted in Fig.1, is investigated.

Figure 1. Structural representation of the aeroelastic model

The bending and torsion variables are denoted as w and α, respectively, and the control surface motion denoted by β.
The bending deflexion w and the torsion α are measured at the elastic axis and the β angle of control surface is measured
at the hinge line. In addition ab represents the distance from the elastic axis to midchord, c represents the distance between
the elastic axis to the hinge line of control surface, b is the semichord of the entire airfoil section.

The mass center of the entire airfoil is located at a distance xα from the elastic axis and the mass center of the control
surface is located at a distance xβ from the hinge line, kw represents the bending stiffness, kα the stiffness of the torsion
spring, kβ the stiffness of the control surface hinge and U the freestream velocity.

By using Lagrange’s equation, the equations of motion of the typical section in Fig.1 are obtained. For details the
reader can refer to technical literature Fung (1993). Here, the dimensionless form of the equation is expressed as,
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where, m is the mass of the entire system, Iα is the airfoil mass moment of inertia about the elastic axis, Iβ is the control
surface mass moment of inertia about the elastic axis; L and Mα are the aerodynamic lift and moment measured about
the elastic axis and H is the aerodynamic moment on the flap about the flap hinge; Sα and Sβ are the static mass moment,
ωw, ωα and ωβ are the uncoupled natural frequencies.

A concentrated freeplay nonlinearity is assumed in the flap spring, to avoid problems with numerical instabilities, the
freeplay discontinuity is represented by the tanh equation:
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M(β) =
1
2

[1− tanh(ε(β − βl))](β − βl) +
1
2

[1 + tanh(ε(β − βu))](β − βu) + f(β) (2)

Where βl and βu are the lower and upper boundaries of the freeplay region respectively, f(β) represents a preload
upon the system and ε is a variable which determines the accuracy of the approximation, as ε tends to infinity, the
approach tends to the real discontinuity. The Figure 2 shows the flap displacement β versus torque obtained with Eq. (2),
βl = βu = 0, 5◦ and ε = 4000.

Figure 2. Flap displacement β versus torque obtained with Eq. (2), ε = 4000, βl = 0.5◦ , βu = 0.5◦ e f(β) = 0

The solution of this aeroelastic system is strictly dependent of the aerodynamical model used to determine the unsteady
aerodynamic loads L, Mα and Mβ , in the right side of Eq. (1). The incompressible potential flow is assumed and the
unsteady air loading over the airfoil is solved with the lumped vortex method (Katz and Plotkin, 2001). The thin-airfoil
camberline is divided into N panels of the same length. A discrete vortex element is placed at the quarter chord of each
panel, this point is called point vortex and the boundary conditions are observed at the tree-quarter chord point, called
collocation point. At every time step, a new position of point vortices and collocation points of the control surface must
be evaluated.

A lumped vortex model for a typical section is shown in Fig. 3. As the airfoil’s circulation changes continuously, a
continuous vortex sheet will be shed at the trailing edge, respecting Kelvin’s condition. This continuous vortex sheet is
approximated by a discrete-vortex wake model, whose vortex elements are represented by ΓW . Two boundary conditions
are defined: the zero normal velocity across body’s solid boundaries and the flow disturbance, due to body motion through
the fluid, should diminish far away from the body. Moreover, Kelvin and Kutta conditions have to be respected.

Figure 3. Discrete vortex model for the unsteady air loading calculation on the airfoil (Katz and Plotkin, 2001)

The induced velocities Ut and Wt at an arbitrary point (x, z) due to a vortex element Γj located at (xj , zj) is given
by:

{
Ut
Wt

}
=

Γj
2πr2j

[
0 1
1 0

]{
x− xj
z − zj

}
(3)

where r2j = (x− xj)2 + (z − zj)2 is the distance between the vortex element and the arbitrary point.
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Considering the airfoil camberline divided into N panels, there will be N vortex elements at the N vortex points
(xj , zj). The zero normal flow boundary condition will be fulfilled on the camberline at the collocation points i of each
panel. The normal vector ni at each of these collocation points are defined as:

ni =
(−dη/dx, 1)√
(dη/dx)2 + 1

= (sinαi, cosαi) (4)

were αi is the angle between panel i and local x axis,positive nose-up and η(x) the surface shape.
An influence coefficient Aij can be defined as the velocity component induced by the airfoil’s or wake’s jth unit

strength Γj , normal to the surface at the collocation point i. So, an algebraic equation can be obtained for each collocation
point i, relating the influence coefficients, the vortex elements, they strength and the velocities induced by then into this
collocation point. When the entire model is considered, the following set of equations is obtained.
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(5)

where each line corresponds to one collocation point. Now, the right-hand side (RHS) terms are known at each time step
and they are composed by the kinematics velocities due to the motion of the airfoil plus the velocity components induced
by wake vortices, except the latest one. As the airfoil control surface position changes with time, the influence coefficients
calculation has also to be done at each time step loop. The Kutta condition is not stated explicitly for the lumped vortex
method and the Kelvin condition is represented by:

Γ(t)− Γ(t−∆t) + ΓW = 0 (6)

At each time step the strength of each discrete vortex is determined from the solution of the linear system of Eq. (6).
The pressures and airloads are then computed by using the unsteady Bernoulli equation:
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The total lift and moment are obtained by integrating the pressure difference between the camberline upper and lower
surfaces along the chordline. At this point, all the terms necessary to the solution of Eq. (1) are known and it will be
solved with the Runge-Kutta method.

3. TOOLS TO ANALYZE NONLINEAR TIME SERIES

This section presents some techniques that can be employed for the characterization of complex non-linear dynamics.

3.1 Tests to Stationarity and Surrogate data Test

It is suggested, as first steps toward nonlinear time series analysis, tests for stationarity and the surrogate data test to
the time series. If a time series originates from a unknown process, it is important to investigate if the system parame-
ters remain constant or not during the experiment and whether the data does or not does some non-linear deterministic
dependencies (Parlitz, 1998).

Violations of the fact that the dynamical properties of the system underlying a signal must not change during the
observation period can be checked simply by measuring them for several segments of the data set (Kantz and Shreiber,
2004). To investigate if the signal contains some non-linear deterministic dependencies, a surrogate data test can be
useful. The basic idea with respect to the surrogate data technique is to make some hypothesis about the data and then
try to contradict this hypothesis. A widely used hypothesis is that colored noise data is generated by a linear stochastic
process. Therefore, the data are modified in such a way that the complete structure, except for the assumed properties,
will be destroyed. This may be done by Fourier transforming the data and by randomly shuffling the phases, the power
spectrum or equivalently, the autocorrelation function is not affected. A new time series, with the same power spectrum
is obtained by transforming back into the time domain.

If the original data are just colored noise, estimators of dimension, average mutual information, Lyapunov exponents,
prediction errors, etc... should give the same results for the original time series and the surrogates. If, however the analysis
yields significant differences, the original data is more than "just noise" (Parlitz, 1998).
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To improve the statistical robustness, several surrogates are generated. Furthermore, it is necessary to take into account
a possibly static non-linear transformation of the data that would distort the Gaussian distribution of the assumed colored
noise as done by Theiler et al. (1992).

3.2 State Space Reconstruction

State space reconstruction approaches use time histories, or time series (s(t)), to extract the dynamics of a system.
Reconstruction techniques are based on Taken’s embedded theorem (Takens, 1981), which establishes that a time series
s(t) has information on non-observable states. With s(t) it is possible to reconstruct the state space of the system com-
parable to the real case, preserving the invariants of the system, e. g., attractor dimension and Lyapunov exponents. This
statement has been proven numerically by Takens (1981).

There are different methods for reconstruct the state space, like the method of delays (MOD) and the singular value
decomposition method (SVD). The MOD is the most explored reconstruction method in the literature. In this technique
a time delay (τ) and an embedding dimension (d) are required to generate delayed coordinates from time series s(t)
(Marques et al., 2006). If the time series is represented by the sequence s[n], n = 1, 2, ...N , where N is the total number
of samples, and d is the embedding dimension, then the MOD reconstruction is given by

u[n] = {s[n], s[n+ τ ], . . . , s[n(d− 1)τ ]} (8)

The delay τ can be determined by the average mutual information method (Fraser and Swinney, 1986) and the embed-
ding dimension d by Cao (1997) method.

The reconstruction method based on singular value decomposition (SVD) has been proposed by Broomhead and King
(1986). The methodology eliminates the need for a time delay parameter by using the properties of the covariance matrix
of the data to generate uncorrelated coordinates. One of the advantages of SVD is the capacity of filtering the time series
as a result of the reconstruction process. Kugiumtzis and Christophersen (1997) and Vasconcellos (2007) have compared
MOD and SVD and they concluded that SVD is more reliable for noisy data (Casdagli et al., 1991; Vasconcellos, 2007).
Therefore, in principle, the SVD approach is more suitable for experimentally acquired time series.

The SVD approach for state space reconstruction needs the covariance matrix constructed from data contained in the
time series s(t). In this case, each state of the system can be considered a statistical variable and the diagonalization
of covariance matrix separates the states by their variance, allowing the assessment of the system dynamics from those
states that have higher variance. As small variance states are dominated by noise, reconstruction is basically attained with
filtering.

3.3 Poincaré sections and Lyapunov exponents

A powerful tool for the verification of complex dynamics, in particular, to identify chaotic patterns is Poincaré map-
ping. The key point is that this simplified geometry contains the essential information about the periodicity, quasi-
periodicity, chaocity and bifurcations of the system dynamics (Hilborn, 2000). Bifurcation in this case, is the term used
to describe any sudden change in the dynamics of the system due to the respective parametric change. Therefore, for
any change on the attractor geometry with a parameter variation, bifurcations can be visualized by plotting one Poincaré
section for each parameter value. The Poincaré section computation has been based on Merkwirth et al. (1998) and Kantz
and Shreiber (2004), which proposes the section extracted directly from an embedded time series. The result is a set of
(n-1)-dimensional vector points, used to perform an orthogonal projection.

Lyapunov exponents determination furnishes important indications with respect to chaotic patterns of dynamic sys-
tems. Lyapunov exponents describe the mean exponential increase, or decrease, of small perturbations on an attractor and
are invariant with respect to diffeomorphic changes of the coordinate system (Parlitz, 1998). When the largest Lyapunov
exponent is positive, the system is said to be chaotic. Direct methods to quantify the largest Lyapunov exponent estimate
the divergent motion from the reconstructed space state, without fitting a model to the data.

The method proposed by Sato et al. (1987) considers the average exponential growth of the distance of neighboring
orbits on a logarithmic scale via prediction error on the number of time steps k, that is,

p(k) =
1
Nts

N∑
n=1

log2(
‖yn+k − ynn+k‖
‖yn − ynn‖

) , (9)

where N is the number of data points, ts is the sampling period, ynn is the nearest neighbor of yn.
The dependence of the prediction error p(k) on the number of time steps k may be divided into three phases. The

transient, corresponding to the first phase, where the neighboring orbit converges to the direction corresponding to the
largest Lyapunov exponent. The second phase, where the distance growths exponentially with e(λ1tsk) until it exceeds
the range of validity of the linear approximation of the flow around the reference orbit yn+k. Then, the last phase begins,
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where the distance increases slower than exponentially until it decreases again due to foldings in the state space (Parlitz,
1998). If the second phase is sufficient long, a linear segment with slope λ appears in p(k) vs. k plot. This slope value
(λ) is associate with the Lyapunov exponent value. This also provides a direct verification of the exponential growth of
distances to distinguish deterministic chaos from stochastic processes, where a non-exponential separation of trajectories
occurs (Eckmann and Ruelle, 1985).

3.4 Results and Discussion

The mathematical model provides the time series w(t), α(t), β(t) and the respected velocities and accelerations. The
parameters used in this analyses are listed in Tab 1.

Table 1. Parameters used during simulations

Parameter value Parameter value
ωw(rad/s) 35 xα 0.2
ωα(rad/s) 42 xβ 0.0125
ωβ(rad/s) 200 rα 0.5
a -0.4 rβ 0.079
c 0.6 µ 40
b(m) 0.15 ρ(kg/m3) 1.225

The freeplay nonlinearity given by Eq. (2) is set with ε = 4000. The test cases for freestream speed and freeplay gap
are listed in Tab 2. The Figure 4 show the output β(t)from the mathematical model.

Table 2. Test cases

fixed speed @ 18m/s

freeplay gap (βlu), in degrees
±0.10
±0.25
±0.50
±0.75
±1.00

Figure 4. Time serie β(t) from mathematical model, U = 18m/s), βlu = ±0.5◦

Each aeroelastic time series have been checked for stationarity with runtest and reverse arrangements test (Bendat and
Piersol, 1986), prior to any analysis. All time series considered in this work have passed at the significance level of 0.05.
In order to justify the use of non-linear analysis techniques, a surrogate data test was performed. Using the algorithm II of
Theiler et al. (1992), 99 surrogates were generated and the correlation sum was computed for each by using the algorithm
proposed by Grassberger and Procaccia (1983).

The Figure 5 presents the correlation sum of these 99 surrogates in the mean line with the error bars, the correlation
sum computed for the SVD-filtered acquired data is present in the continuous line. Clearly, the data is out of corre-
lation sum distribution generated for purely linear stochastic surrogate signal. This evidence reinforces that the signal
may be representative of a deterministic nonlinear process. These results provide enough information to qualify further
investigation using non-linear analysis tools

The state spaces are then reconstructed by MOD, from the time series β(t) for each condition. The delay τ is deter-
mined by the Average Mutual Information method Fraser and Swinney (1986) and the embedding dimension d by Cao’s
method (Cao, 1997), embedding dimension 3 is found in all test cases. The Figure 6 presents the real state space, obtained
directly from the model, the MOD-reconstructed state space from β(t) and the SVD-reconstructed state space for the
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(a) U = 18m/s, βlu = ±0.1◦ (b) U = 18m/s, βlu = ±0.25◦ (c) U = 18m/s, βlu = ±0.5◦

(d) U = 18m/s, βlu = ±0.75◦ (e) U = 18m/s, βlu = ±1.0◦

Figure 5. Correlation Sum for β(t) (blue) and the 99 surrogates (red), with U = 18m/s and βlu variating from ±0.1◦ to
±1.0◦

condition U = 18m/s), βlu = ±0.5◦. For the SVD reconstruction, Gaussian noise is addicted to the time series, with a
sign-to-noise ratio (SNR = 30)

(a) Real state space (b) MOD reconstructed state space from β(t) (c) SVD reconstructed state space from β(t),
SNR = 30

Figure 6. Real and reconstructed state spaces, U = 18m/s, βlu = ±0.5◦

As can be observed, the reconstructed state spaces are similar to the real one. The Figure 7 presents a projection of
the real state space, here one can see that the control surface alternate between the extremes of freeplay, for this case
βlu = ±0.5◦, in a complex pattern, possibly chaotic.

Figure 7. Bidimensional projection of the real state space

For the cases in Tab. 2, the reconstructed state spaces for each freeplay are plotted in Fig 8(a), the result is an evolu-
tion of trajectories in reconstructed state space due to freeplay variation. An amplitude increase in motion is observed,
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moreover, changes in the shape of attractor can be observed, it suggest possible bifurcations.
In order to supply an easier visualization of the aforementioned transitions, or bifurcations. In Figure 8(b) one

may observe considerable changes in the Poincaré sections as the freeplay increases, mainly between βlu = ±0.5◦

and βlu = ±0.75◦. Projected Poincaré sections, as illustrated in Figure 9(a), show an alternative way to visualize the
bifurcations with respect to freeplay evolution.

The final step in the investigation of the complex non-linear behavior of the aeroelastic signals is the determination of
the largest Lyapunov exponent. The Lyapunov exponents are computed for the Tab. 2 listed cases by the prediction error
technique Sato et al. (1987) for the reconstructed state spaces and for real ones, to comparisons. The Figure 9(b) presents
the procedure for one case and Tab. 3 summarize the results

(a) State Space evolution (b) Poincaré section evolution

Figure 8. State Space and Poincaré section evolution due to freeplay increase

(a) Poincaré section projection evolution (b) Lyapunov exponent computation

Figure 9. Projected Poincaré section evolution due to freeplay increase and Lyapunov exponent computation: U = 18m/s
and βlu = ±0.5◦

Table 3. Lyapunov exponents computed for test cases by Sato et al. (1987) method

Fixed freestream speed @ 18m/s
freeplay (βlu),in degrees Lyapunov exponent (reconstructed) Lyapunov exponent (real)

±0, 10 0.065 0.068
±0, 25 0.053 0.046
±0, 50 0.063 0.063
±0, 75 0.063 0.059
±1, 00 0.053 0.050
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In all test cases, the Lyapunov exponent are positive, confirming the suspects that the motion is chaotic, moreover, the
values computed for the real state spaces and the reconstructed are very close. The results show how potential are the time
series analysis techniques presented in this work.

4. Concluding Remarks

Techniques from non-linear time series analysis theory were used in this work to investigate non-linear aeroelastic
time series, from a mathematical model of a typical section with a concentrated freeplay nonlinearity at the control
surface. The time series was tested for stationarity and for non-linearity by using the surrogate data method, in order to
verify whether or not the data were representative of a non-linear process. The results has confirmed non-linear behavior,
thereby justifying the application of non-linear techniques. The state spaces was reconstructed for a variety of test cases
and the trajectories have revealed complex behavior, indicating bifurcations and chaos. The evolution with the freeplay
increase suggests the occurrence of bifurcations, because changes in the shape of the attractor and Poincaré section have
been observed. Finally, Lyapunov exponents were assessed and the results were positive Lyapunov exponents to each
time series in the analysis, reinforcing the suspect of chaotic behavior, the values computed for the real state spaces and
the reconstructed are very close.
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