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Abstract. In this article we study the nonlinear frequency response of a FENE-dumbbel fluid undergoing an oscillatory
shear. We start with a description of the dimensionless governing equations and differential constitutive models of the
elastic liquid examined. The non-dimensional measure of the elastic stresses defines the Deborah number, which is the
ratio of the relaxation time of the material to the time for the liquid to flow through the region of interest. We describe the
implementation of the simulation technique based on a fourth order Runge Kutta scheme. Oscillatory flows of the FENE-
dumbbell version of the Oldroyd-B constitutive equation at low Reynolds numbers are explored at different Deborah
numbers. The nonlinear frequency response of the elastic fluid under an oscillatory shear at arbitrary frequency forcing
and Deborah numbers are explored from a dynamical system point of view, in terms of phase diagrams and power spectra
of the macromolecule conformation tensor and elastic stresses.
Keywords: frequency response, nonlinear fluid, unsteady shear, Oldroyd fluid.

1. INTRODUCTION

The rheological response of non-Newtonian fluid under complex flows is of interest of many industrial processes.
The accurate characterization of dilute polymer solutions under steady and unsteady shear flows are important in many
applications such drag reduction in turbulent flows by polymer additives. In a previous work (Absi et al., 2005) we explore
the nonlinear response of an elastic liquid under steady extensional and steady simple shear flows. Complementarily, In
this article we will present a dynamical response under strong oscillatory shear flows in time and frequency domains.
Such responses will be given in terms of rheological quantities as shear and normal stresses and viscoelastic modules.

The elastic liquid examined in this work is obtained with the addition of few ppm of a polymer in the solvent char-
acterizing a dilute polymeric solution. In dilute solutions the rheological properties of the system are a reflection of
the mechanical properties of the individual polymer chains and the number of chains in the bulk solution. However,
even in such dilute systems, the mechanical properties of the individual chains and, hence, the bulk solution are strongly
dependent on the type of flow.

The rheological behavior of the common Oldroyd constitutive equation is well-known (Bird et al, 1987). To understand
the physics in this constitutive equation for elastic liquids, it is helpful to look at a micro-structural model which leads
to an Oldroyd-like-constitutive equation. Rather than studying the rheological performance and mathematical structure
of the coupled flow equations, we retreat to some physical model of the microstructure which generates the constitutive
equation. In this article it is considered a bead-and-spring model of polymer solutions.

We describe a microstructure analysis based on a macromolecule closely to the simplest version of the bead-and-spring
model (i.e. dumbbell model) introduced by Kuhn and Kuhn (1945) and discussed in details by Hinch (1977) and Rallison
and Hinch (1988) with a finite spring correction, i.e. a FENE (i.e. finitely extensible non-linear elastic ) model. The
original empirical FENE spring force was first proposed for dumbbells by Warner (1972). Scaling arguments based on a
balance between viscous drag and restoring Brownian forces lead to a time dependence partial differential equation for
the macromolecule conformation tensor. In particular this tensor gives an explicit information about the internal structure
of the fluid.

The model identifies three relevant physical parameters: the Deborah number, defined as the ratio between the relax-
ation time of the polymer and a characteristic time of the flow, the volume fraction of the polymer, and the parameter of
extensibility of the polymer which is the ratio of the full stretched length and the average length in the thermodynamic
equilibrium state of the macromolecule. We apply a non-linear spring model which gives a finite limit of macromolecule
extension and a drag correction in the way suggested by Rallison and Hinch (1988).

In the context of elastic liquid under oscillatory shear flow, the excitation frequency ω is relevant in the approach of
oscillatory energy stored mechanism. Hence the influence of this parameter on the rheological response of the fluid will be
explored in a wide range in terms of viscoelastic functions. Such quantities represents the energy stored as a consequence
of the viscous and elastic polymer characteristics under an oscillatory shear flow.
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2. MICROSTRUCTURAL MODEL

2.1 Scaling analysis

Dilute polymer solutions (no overlapping of the macromolecules) behavior can be idealized as being a polymer chain
composed of two beads representing drag forces, linked to a Hookean spring representing elastic forces. This configuration
bead-and-spring is called a dumbbell (Bird et al, 1987; Tanner, 2000). In this model a macromolecule is composed of
N rigid segments (each corresponding to an individual monomers) of length δ, with each individual monomer randomly
oriented with respect to the adjoining segments. The equilibrium configuration distribution of the macromolecule is then
given by a random walk of N steps each of length δ. In this model the mean end-to-end distance of the polymer, a is
proportional to N1/2δ as required by the central limit theorem, which is smaller than the length of the polymer chain by
a factor of N1/2.

In a flow, the distribution of polymer configurations will be affected by the local velocity gradient. In an shear flow the
difference in the fluid velocity acting on the two halves of the polymer will cause the molecule to extend. The extension
is opposed by Brownian motion which tend to restore the equilibrium distribution.

Let us examine the equilibrium condition between Brownian and viscous forces and consider, for instance, the simplest
linear Hookean spring for modeling the restoring Brownian force. The vector r between the centers of the two beads
represents the end-to-end distance of the polymer molecule. We express the elastic force as being FB = Gr, where G
denotes the spring constant given by G = 3KT/a2 (e.g. Flory, 1969). Here a denotes the equilibrium length of the
macromolecule (i.e. a typical value of |r| = r for the elastic regime where a linear spring model makes sense.), K is the
Boltzmann constant and T the absolute temperature.

The hydrodynamic interactions between the molecule and the solvent is represented by the viscous drag on the beads.
So, in a dumbell model the viscous force is defined as the force exerted over an isolated spherical particle of ratio a
by the solvent with viscosity µ. At low Reynolds number, the expression is given by the Stokes law, namely, FV =
6πµadr/dt. At the thermodynamic equilibrium state, the balance between the viscous and the restoring forces acting on
the macromolecule leads to

dr

dt
=

G

Cv
r, (1)

where Cv = 6πµa. Integrating the equation (1) for the initial condition r(0) = ro, one obtains:

r(t) = r0 exp
(

t

τ

)
, (2)

where τ = Cv/G = 2πµa3/KT denotes the relaxation time of an extended macromolecule to the randomly-coiled state.
Since N is equal to the molecular weight of the polymer (M ) divided by the molecular weight of a single monomer (Mi),
N = M/Mi it results that the macromolecule relaxation time is proportional to M3/2.

2.2 Fundamental parameters

In defining the Reynolds number, Re for a polymer solution, we need to define carefully what is meant by the viscosity
µ, since both shear and extensional viscosity vary with shear-rate. Conventionally µ is taken to be the shear viscosity in
the limit of small shear rates. Most polymeric fluids are highly viscous and so we consider the limit where Re is small.
For the flow of a fluid density ρ and viscosity µ past a body of length scale a with velocity scale uc, Re is defined to be
Re = ρuca/µ.

In the context of elastic liquids a fundamental parameter is the Deborah number, that is defined as the ratio of the
relaxation time and a characteristic time of the flow, i.e. De = τ/tf , where τ denotes the relaxation time of the polymer.
The relaxation time measures the ability of the macromolecules to recoil to their equilibrium condition after stretching.
The flow time scale tf is defined as the ratio of a velocity uc and a length a, characteristics of the flow. For De << 1
means weak flow and the fluid behaves closely to a Newtonian fluid. In this limit, Brownian motion prevents the polymer
from becoming highly extended, and the macromolecule distribution remains close to the randomly coiled distribution.
We denote this limit as being the elastic regime, with r ∼ a. For large values of Deborah (i.e. De ∼ 1), however, the
flow is strong enough to overcome the Brownian relaxation and so the polymer may become greatly extended, so that
the mean end-to-end distance becomes large compared to its values in the randomly-coiled distribution, i.e. r � a. This
second regime will correspond to the anisotropic limit of the macromolecule. For strong flows De ∼ 1 the macromolecule
stretching produces anisotropy in the flow and non-linear effects as normal-stress-difference.

A second important dimensionless parameter is the extensibility of the polymer, L defined as being the ratio of the full
stretched length (` = Nδ ) to the average length corresponding to the end-to-end distance in the randomly coiled state of
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the macromolecule, a, i.e. L = Nδ/a. In the present work, while Deborah can be interpreted as a measure of the polymer
elasticity on the flow, L will denote a measure of the flow anisotropy created by the macromolecule orientation.

The final dimensionless group is a measure of the effective volume fraction of the macromolecule evaluated at the
randomly coiled state, namely φ = 4πa3n/3, where n is the number of molecules, Nm per unit of volume , i.e. n =
Nm/V . For the solution to be dilute, φ must be much less than unit, therefore the polymer contribution to the fluid stress
will be negligible unless the polymer become highly extended.

3. GOVERNING EQUATIONS

The balance equations are the conservation of mass and of momentum

∇ · u = 0, ∇ ·Σ = 0 (3)

where inertia is neglected.

3.1 Constitutive Equation

In general, the stress tensor for an elastic liquid is given by the following constitutive equation

Σ = −pI + σ (4)

with the deviatoric stress σ given by the following expression

σ = 2µs(φ, γ̇)D + σB , (5)

where p is the mechanical pressure, I is the unit tensor, µs(φ, γ̇) is the shear viscosity as a function of the volume fraction
φ and the shear rate γ̇, σB is the elastic stress contribution due to the presence of macromolecules and D is the rate of the
strain tensor, D = (∇u +∇uT )/2.

The macroscopic behavior of a dilute solution of macromolecules is obtained by averaging a property for a singe
molecule over an large ensemble of identical molecules. We then derive an equation for σB which correlates the average
microscopic behavior of macromolecules with the macroscopic response of the fluid.

3.2 Non-linear Stress

Since we are treating with dilute polymer solutions, the shear viscosity may be considered as being a linear function
of the volume fraction only, i.e. µs(φ, γ̇) ≈ µ(1− cφ). For a dilute aqueous solution of polyacrylamide-PAMA, the best
fitting constant is found to be c = 0.0128 (Andreotti et al., 2003).

Now, the non-Newtonian average contribution stress due to the macromolecules is given by a volume average over a
volume V sufficiently large to contain a meaningful number of macromolecules, that is

σB = lim
V→∞

1
V

∫ V

0

σBdx = n〈σB〉, (6)

where 〈〉 represents an ensemble average.
According to the scaling analysis presented in §1, the elastic restoring force can be written as

FB = Gr, (7)

and the associated stress tensor for one macromolecule is given by the dyadic σB = Grr. Taking the average over Nm

macromolecules within a sufficiently large volume V, one obtains

〈σB〉 = G

(
1

Nm

Nm∑
s=1

rr

)
. (8)

Since n = Nm/V , σB = n〈σB〉 = nG〈rr〉.
We define the conformation tensor or the moment of inertia tensor of the deformable macromolecule as being



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

B(t) = 〈rr〉 =
1

Nm

Nm∑
s=1

rr. (9)

Note that B is by definition symmetric and positive definite tensor.
Rewriting the Eq. (5) in terms of the conformation tensor it leads to:

σ = 2µs(φ)D + nGB(t). (10)

3.3 Time evolution of B

The closure problem of the constitutive equation, Eq. (10) requires a time evolution equation for the conformation
tensor B(t). Turning back to the scaling analysis given in §(2.1), the balance between elastic and viscous forces gives

6πµa
dr
dt

+ Gr = 0. (11)

Now, multiplying both sides of the Eq. (11) by r, subtracting the rigid body translation and adopting a frame of reference
rotating and deforming with the macromolecule, after averaging one obtains:

3πµa
δB
δt

+ GB−KT I = 0. (12)

Here δ/δt is the upper convective time derivative or the Oldroyd derivative that is material frame indifference. It is simply
the rate of change of B seen by an observer translating and deforming with the macromolecule

δB
δt

=
DB

Dt
−∇u ·B −B · ∇uT , (13)

Now, writing Eq. (12) in terms of the Oldroyd derivative given by Eq. (13) and after rearranging the equation, we find

DB

Dt
= ∇u ·B + B · ∇uT − 2

τ

[
B− (a2/3)I

]
, (14)

where D/Dt denotes the translational material derivative. Here, the first term on the right-hand side in equation (14)
represents the stretching of the macromolecule by the flow, and the second term represents the relaxation of the polymer
due to Brownian motion.

It should be important to note that by few algebraic manipulation, taking the Oldroyd derivative of the stress Eq. (10)
and using the microstructure equation (12) it is straightforward to show that the pair of constitutive equation given by Eqs.
(10) and (14), reduces to the most common Oldroyd-B fluid (Bird et al., 1987), namely:

σ̂ + λ
δσ̂

δt
= 2µ(φ)

(
D + λ

δD

δt

)
, (15)

with σ̂ = σ − nKTI and the material constant λ = τ/2.
In this work we will keep the form of a pair of constitutive equations in order to explore the explicit dependence of the

microstructure given by the behavior of the second moment tensor B.

3.4 Non-linear bead-and-spring model.

A dumbbell model with a drag correction and a non-linear spring force which gives a finite limit to the spring extension
is considered. A Hookean spring may produces unlimited elongation of the dumbbell. Such a behavior is not only
unrealistic but can also lead to numerical difficulties as unlimited values of the stress tensor. These difficulties can at
least be partially eliminated by limiting the extensibility of the macromolecule (Rallison and Hinch, 1988). Changing
the linear spring law to one with a finite extension, i.e. Gf(r), yields to a dumbbell-FENE model, where f(r) is the
nonlinear spring law. Actually the correct spring law for a random-chain model was proposed by Flory (1969) as being
f(r) = (`/3r)F−1(r/`), where F (z) = coth(z) − 1/z is the Langevin function. Because this law is difficult to work
mathematically, we use instead a simpler law with the same qualitative behavior such as first proposed by Warner (1972)
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f(r) =
l2

l2 − r2
with r2 = tr(B). (16)

Note that as r tends to the rigid fibre limit `, the polymer reaches its limits of maximum extensibility, whereas in the case
of small distortions of the macromolecules r ∼ a (i.e. randomly-coiled state), f(r) ∼ 1 (i.e. linear spring law would
be appropriated). In addition, the FENE dumbbell model described above needs also to take account of the variation in
the hydrodynamic drag for r ∼ `. In this respect this model is strictly valid only for small values of r. As the polymer
expands, the size of the object on which the frictional force of the fluid acts increase. The viscous drag increases with the
largest linear dimension and so the size of the beads should increase roughly with r = tr(B)1/2 (Hinch, 1977).

After incorporating into the model the corrections discussed above, the constitutive equations for the stress tensor and
the conformation tensor are written respectively as being

σ = 2µs(φ)D + nGf(r)B(t), (17)

dB

dt
= ∇u ·B + B · ∇uT − 2af(r)

τ [tr(B)]1/2

[
B− (a2/3)I

]
. (18)

Eqs. (17) and (18) can be made dimensionless with appropriate scales. Using uc and a as the reference speed and the
reference length respectively, the flow is characterized by the Deborah number De = 2πµa2uc/KT ; for an oscillatory
shear motion with shear rate γ̇ = γ̇0cos(ωt), with amplitude γ̇0 = ωγ0, the characteristic velocity uc = aγ̇. As mentioned
before the other parameter of interest are the particle volume fraction φ and the extensibility of the polymer L = `/a. The
dimensionless constitutive equations expressed in terms of the stress σ̃ and the conformation tensor B̃ of the polymer are
respectively

σ̃ = µ̃(φ)D̃ +
9φf(R)

2De
B̃, (19)

dB̃
dt̃

= De(∇̃ũ · B̃ + B̃ · (∇̃ũ)T )− 2f(R)

[tr(B̃)]1/2

(
B̃− I

3

)
, (20)

where σ̃ = aσ/µuc, µ̃ = µs/µ, µ is the solvent viscosity, B̃ = rr/a2, R = r/a and the spring function in terms of
the dimensionless quantities R and L is given by f(R) = L2/(L2 − R2). By examining the right-hand side term in the
equation (20), it becomes clear that for large Deborah, the contribution of the first term responsible for the stretching of
the polymer is dominant compared to the contribution for the polymer relaxation. One can see that this is possible only if
one considers high relaxation time macromolecule compared to the time scale of the flow. The above pair of constitutive
equations should be a reasonable approximation for describing oscillatory shear flows of very dilute polymer solutions.

4. ANALYTICAL RESULTS

In the linear limit where low deformations of the macromolecules are considered (γ << 1), the rheological response
of the polymer fall in the linear viscoelastic theory. In such limit the assumption of linear spring model is valid for
the analysis of shear and normal stresses. This imply that the correction function become f(R) = 1 and R = 1 as a
consequence of macromolecules random coiled configuration.

In a oscillatory shear flow with strain-rate γ̇ = γ0cos(ωt) the velocity field is given by, u = (γ̇0cos(ωt)x2,0,0) or
in dimensionless terms ũ = (x̃2cos(ω̃t̃), 0, 0), where ω̃ = ωτ .

4.1 Linear Viscoelastic Regime

In the case of elastic limit, when f(R) = 1, De � 1 and R ∼ 1, the components of the governing equation (20) of B
evolution reduces simply to

dB̃12

dt̃
= DeB̃22cos(ω̃t̃)− 2

(
B̃12

)
. (21)
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dB̃11

dt̃
= De(B̃12 + B̃21)cos(ω̃t̃)− 2

(
B̃11

)
+

2
3
. (22)

dB̃22

dt̃
= −2

(
B̃22 −

1
3

)
. (23)

Integrating Eq. (23) gives B̃22 = 1/3. Taken this value into Eq. (21) considering the macromolecules isotropic
random configuration as initial condition, i.e., B(0) = I/3, we integrate the equation (21) and obtain the component
B̃12, as:

B̃12 =
1
3

De

(ω̃2 + 4)
[
2cos(ω̃t̃) + ω̃ sen(ω̃t̃)

]
(24)

Now substituting the component B̃12 in the Eq. (19), an expression for the shear stress in terms of a sum of cosine and
sine functions is given by:

σ̃12 =
[
µ̃(φ) +

3φ

(ω̃2 + 4)

]
cos(ω̃t̃) +

3φω̃

2(ω̃2 + 4)
sen(ω̃t̃) (25)

In the context of linear viscoelastic theory (De << 1), the product coefficient of cosine and sine functions in Eq. (25)
are denoted as the viscous and elastic modules, respectively, as:

η
′
= µ̃(φ) +

3φ

(ω̃2 + 4)
η

′′
=

3φω̃

2(ω̃2 + 4)
. (26)

The η
′

function is associated to the viscous energy dissipation and represent the module "in phase" with the excitation.
The η

′′
is associated with the stored energy during the macromolecules deformation and denote s the module "out phase"

with respect to excitation.
complementarity with the analytic result above, we present the integration of Eq. (22) for the normal component B̃11,

resulting in

B̃11 =
1
3

+
[

4De2

12(ω̃2 + 4)
+

4De2 − 2De2ω̃2

12(ω̃2 + 4)(ω̃2 + 1)
cos(2ω̃t̃) +

6De2ω̃

12(ω̃2 + 4)(ω̃2 + 1)
sen(2ω̃t̃)

]
(27)

The normal stresses can be calculated from the knowledge of B̃11 and B̃22. Substituting such quantities into the
components of Eq. (19), we have:

σ̃11 =
3φ

2De
+

3φDe

2(ω̃2 + 4)
+

3φDe(2− ω̃2)
4(ω̃2 + 4)(ω̃2 + 1)

cos(2ω̃t̃) +
9φDeω̃

4(ω̃2 + 4)(ω̃2 + 1)
sen(2ω̃t̃) (28)

and

σ̃22 =
3φ

2De
(29)

From Eqs. (28) and (29) it can be seen that for an asymptotic limit where De → 0, all of numerator terms with De
tend to zero and the normal stresses σ̃11 → σ̃22. Therefore the first normal difference stresses defined as N1 = σ̃11 − σ̃22

is negligible for a linear viscoelastic regime.
In addition, from Eqs. (28) and (29) we can define N1 for a linear regime where De → 0, as:

N1 =
3φDe

2(ω̃2 + 4)
+

3φDe(2− ω̃2)
4(ω̃2 + 4)(ω̃2 + 1)

cos(2ω̃t̃) +
9φDeω̃

4(ω̃2 + 4)(ω̃2 + 1)
sen(2ω̃t̃) (30)

Finally note that for an oscillatory shear excitation with frequency ω̃, the first normal stress difference N1 show a
rheological response with frequency 2ω̃.
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5. NUMERICAL RESULTS

We start this section with a brief description of the integration numerical method used to obtain the components of
the conformation tensor B̃ij . Then we show nonlinear results of the elastic fluid under an oscillatory shear at arbitrary
frequency forcing and Deborah numbers.

5.1 Four Order Runge-Kutta Procedure

In this section we describe the method used to obtain numerical results for the macromolecule configurations and
elastic stresses under strong oscillatory shear flows. Numerical integrations are performed on the ordinary differential
equations of the conformation tensor components given by:

dB̃ij

dt̃
= De

(
∂ũi

∂x̃k
B̃kj + B̃ik

∂ũj

∂x̃k

)
− 2f(R)

R

(
B̃ij −

δij

3

)
, (31)

A critical point in order to achieve the convergence of the method is the choice of the time step ∆t. For a oscillatory
shear flow, the convergence of the method show a strong dependence with the excitation frequency ω̃. For this reason we
define the time step from scaling analysis of the flow in terms of ω̃, given by:

∆t = min

{
10−3,

10−1

ω̃

}
(32)

The four order Runge-Kutta procedure is based on the temporal derivatives evaluation in four point inside of integration
time interval tn to tn+1. We obtain the solution of the vector xn+1 in time t = tn+1 from the knowledge of xn in t = tn
and the weighted mean of the functions k1, k2, k3 e k4, where x = (B̃11, B̃12, B̃13, ..., B̃33).

The functions k1, k2, k3 e k4 are expressed in terms of time step ∆t and function f(tn, xn) in different points in the
interval of integration. Since the function f(tn, xn) = f(t̃, B̃ij) = dB̃ij/dt̃ is dependent of the flow velocity profile, we
denote the components of the ordinary differential equation (31) considering the velocity profile for a oscillatory shear,
given by ũ = (x̃2, 0, 0)cos(ω̃t̃), as:

dB̃11

dt
= 2DeB̃12cos(ωt)− 2f(R)

R

(
B̃11 −

1
3

)
(33)

dB̃22

dt
= −2f(R)

R

(
B̃22 −

1
3

)
(34)

dB̃12

dt
= DeB̃22cos(ωt)− 2f(R)

R
B̃12. (35)

Note that B̃21 = B̃12, B̃13 = B̃31 = B̃23 = B̃32 = B̃33 = 0. The Eqs. (33) to (35) represents a "coupled" system
of ordinary differential equations that will be solve with the numerical scheme presented above. Such solutions will be in
terms of the conformation tensor components B̃ij .

For nonlinear frequency domain results, the quantities of interest are evaluated in terms of its Fourier coefficients.
Therefore the Fast Fourier Transform (FFT) subroutine is incorporated into the numerical code to obtain the power spec-
trum of the quantities B̃ij , σ̃ij and N1. The FFT subroutine was implemented from IMSL90 numerical library. Such
subroutine gives the Fourier coefficients of a signal for a fluid excitation frequency ω̃. From these coefficients we also
examine the viscoelastic modules η

′
and η

′′
as functions of excitation frequency ω̃.

5.2 Nonlinear Results

The numerical results in time and frequency domain using the procedure described above will be show next. Such
results are given in terms of components of the conformation tensor B, shear stress σ̃12 and the first normal stress
difference N1. The nonlinear response of these quantities are explored for strong oscillatory shear flows (De > 1). In
the numerical simulations the physical parameters are fixed as φ = 300ppm and L = 80. In time domain results the
dimensionless excitation frequency is fixed as ω̃ = 1
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Figures (1) and (2) show the normal and shear components of B, respectively, as a function of dimensionless time.
Such quantities represent the temporal evolution of macromolecules configuration under an oscillatory shear flow with
a velocity profile as ũ = (x̃2cos(ω̃t̃), 0, 0). In the linear viscoelastic regime where De << 1 the macromolecules
remain its random configuration in which solvent viscous forces can not be able to deform such configuration. Hence the
oscillation amplitude of B̃11 is smaller than B̃12. When the flow intensity increase (De > 1), the amplitude of B̃11 grow
as a consequence of the macromolecule stretching by the flow. This anisotropic configuration of the macromolecules give
rise to a normal stress difference as we will show later.

Figure 1. Conformation tensor component B̃11 as a function time with De = 0.1, 1, 10, 150, 500, L = 80 , φ = 300 ppm
and ω̃ = 1.

For De > 10 the oscillation amplitude of B̃11 is one order magnitude bigger than B̃12. This result denote a predom-
inant nonlinear elastic response. Fig. (1) also shows the component B̃12 as a time function with De > 100. In this case
the oscillation amplitude reach to a constant limit despite of Deborah number increases. Such amplitude limit is a conse-
quence of the fully stretch of the macromolecules by the flow. Similarly as B̃11 response, the amplitude of oscillation of
B̃12 increase with De as showing in Fig (2). The normal components B̃22 and B̃33 are constants with B̃22 = B̃33 = 1/3.

Figure 2. Conformation tensor component B̃12 as a function time with De = 0.1, 1, 10, 150, L = 80 , φ = 300 ppm and
ω̃ = 1.

In shear flows one of the most relevant aspect of interest is the polymer response in terms of shear stress σ̃12. In
Fig. (3) we plot the dimensionless shear stress as a time functions for several De. Firstly we examine a weak flow with
De = 0.1. A linear response of the polymer is observed as a reflect of equilibrium between the elastic and viscous forces.
For low values of De, the oscillation amplitude is small and the oscillation frequency response is the same of excitation.
In addition, the linear response of σ̃12 in steady shear flow is obtained with ω̃ = 0. Note that the maximum oscillation
amplitude value correspond to the constant value of σ̃12 in steady case. It is important to note that this linear result can be
obtained analytically from Eq. (25).

Nonlinear results of the polymer at De = 10 and De = 150 are also showed in Fig. (3). In strong flows where
De >> 1, the elastic forces are dominant and the macromolecules are stretching in same direction of the flow. Such
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Figure 3. Dimensionless shear stress σ̃12 as a function of time with De = 0.1, 10, 150, L = 80 , φ = 300 ppm and ω̃ = 1.

macromolecule deformation is bigger as the Deborah number increase. For De = 10 the oscillation amplitude of shear
stress is bigger than the linear case. For De = 150 this amplitude reach to a maximum in which the macromolecule
is considered fully extended. The wave form of the curve for De = 150 have a complex form as a consequence of the
several oscillation modes that the macromolecule responses. In addition we compare the shear stress considering a steady
simple shear flow doing ω̃ = 0. The value of maximum amplitude is the same in both cases.

Figure 4. First normal stress difference N1 as a function of time for two limits with De = 0.1 and De = 150. L = 80 ,
φ = 300 ppm and ω̃ = 1.

A comparison of the first normal stress difference N1 as a time function for two Deborah number is plotted in Fig. (4)
In left side of this figure we show the viscoelastic linear case in which the macromolecules are not significantly deformed
by the flow and the normal stresses σ̃11 and σ̃22 have the same magnitude (insert). Therefore the oscillation amplitude
of N1 is close to zero in oscillatory and steady shear cases (where ω̃ = 0), as the figure show. Such result are according
with the asymptotic linear Eqs. (28) and (29). When Deborah number increases, the oscillation amplitude grow and the
response of the macromolecules departure from a isotropic equilibrium regime to nonlinear regime in which the anisotropy
of the normal stresses leads to the appearance of the first normal stress difference N1. This behavior can be explained
from a physical point of view considering that the viscous forces acting on the polymer are strong enough for a fully
stretch of the macromolecules in "11" direction. With the fully stretched macromolecules oriented in same direction of
σ̃11, this term become predominant when compared with σ̃22. For this reason the appearance of N1 can be considered an
important measure of the polymer nonlinear response.

In Fig. (5) phase diagrams are shown in terms of σ̃12 and N1 considering four values of Deborah number. These
diagrams are plotted in order to verify a nonlinearity response of the polymer. This is achieved plotting σ̃12 versus its
derivative dσ̃12/dt̃ and N1 versus dN1/dt̃, as Fig (5) show. For De = 0.1 a linear case is considered in which the phase
diagram show a circular curve denoting a linear response of the polymer. In this case the "phase difference" between σ̃12

and its derivative is near to π/2. As expected, in linear regime the diagram for shear stress σ̃12 show a bigger magnitude
when compared to the diagram for N1. Increasing de intensity of the flow, i.e., increasing De, a distortion of a linear
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Figure 5. Phase diagrams of the quantities: σ̃12 versus its derivative dσ̃12/dt̃ and N1 versus dN1/dt̃. Each diagrams for
a different Deborah number, with De = 0.1, 10, 100, 150. L = 80 , φ = 300 ppm and ω̃ = 1

circular curve is verify as a consequence of the nonlinearities incorporated by the polymer. In a nonlinear case where
De = 10, it can be seen a level distortion of the curve and the increase of the amplitude for both quantities σ̃12 and N1

and its derivatives, respectively. More complex responses can be observed for De = 100 and De = 150. For De = 100
the curve is clearly distorted and the amplitude of σ̃12 and its derivative has a one order magnitude bigger than the case
for De = 10. The quantity N1 and its derivative has a similar behavior of shear stresses for De = 100, however, the
amplitude of N1 versus dN1/dt̃ is significantly larger indicating a strong nonlinear response of the polymer due to the
anisotropy of the normal stresses. In a nonlinear limit where De = 150 the amplitude of σ̃12 and dσ̃12/dt̃ increase
100 times compared with the case of De = 100. In contrast of previous cases, the term N1 show positives values for
De = 150, denoting that N1 oscillate always between positive values.

Figure 6. Power spectrum of Fourier coefficients a(ω̃) and b(ω̃)for B̃12, with ω̃ = 2π, De = 0.1, 1, 10, φ = 300 ppm,
= 80

In previous results the rheological response of the quantities of interest in time domain were presented. In addition,
results in frequency domain in terms of conformation tensor component B̃12, shear stress σ̃12 and first normal stress
difference N1 will be examined next for a given excitation frequency ω̃. Such results are obtained with the application of
the FFT (Fast Fourier Transform) to the time response of the polymer under an strong oscillatory shear flow.

In Fig. (6) we show the oscillation modes that the macromolecules responses in terms of B̃12 given an excitation with
ω̃ = 2π. The Fourier coefficients an(ω̃) and bn(ω̃) are showed for 3 values of De. Such coefficients are related to the
cosine and sine functions,respectively, denoting a response in phase and "out phase" with respect to the excitation. For
a weak flow case where De = 0.1 the drag viscous forces are not capable to significantly deform the macromolecules.
In this case the macromolecules stay in the random equilibrium and the response reflect the linear behavior in which
the fundamental harmonic mode appear in the same excitation frequency, i.e., ω̃/2π = 1. Increasing the intensity of
the oscillatory shear flow, such viscous forces are able to deform the random macromolecules configuration. In this
nonlinear regime the fluid incorporate others oscillation modes characterizing a nonlinear behavior of the polymer. For
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De = 1 the elastic forces become predominant and the macromolecules will deform and the nonlinear viscoelastic regime
is incorporated by the rheological behavior of the fluid. As Fig.(6) shows, another oscillation mode appear in ω̃ = 6π.
For De = 10 the stretching of the macromolecules is more significant and the elastic energy storage, as a consequence
of macromolecules deformation resistance, is distributed in others oscillation modes (10π e 14π). These discrete power
spectrum reveals an increase of the complexity of the macromolecules response having the possibility of modes with
negative values for bn(ω̃) as the "insert" in the Fig (6) show.

Figure 7. Power spectrum of Fourier coefficients a(ω̃) and b(ω̃) for σ̃12, with ω̃ = 2π, De = 150, φ = 300 ppm, L = 80

In Fig.(7) and (8) we show power spectrums of shear stresses σ̃12 and normal stress difference N1 for De = 150,
respectively. Such intensity of the flow is strong enough to the macromolecules reach a fully extended configuration.
In this case more complex responses are exposed in terms of many oscillation modes that the polymer responses as a
consequence of energy stored in the process of deformation and contraction that the macromolecules are submitted by the
oscillatory flow . In Fig. (7) Fourier coefficients an(ω̃) and bn(ω̃) associated to the temporal responses of shear stress are
presented. The distribution of the modes show in this figure tend to a continuous power spectrum as a consequences of
the strong nonlinearity of the polymer response. Note that the firsts "harmonic" modes are dominant and contain larger
part of the oscillation energy. In the "insert" of the Fig. (7)the nonlinear response of the polymer show negative values of
an(ω̃) and bn(ω̃), however most of this modes have values of low magnitude.

Figure 8. Power spectrum of Fourier coefficients a(ω̃) and b(ω̃) for N1, with ω̃ = 2π, De = 150, φ = 300 ppm, = 80

In addition to the nonlinear analysis of the rheological responses of an elastic fluid, Fig. (8) show a power spectrum
for first normal stress difference N1 in terms of Fourier coefficients an(ω̃) and bn(ω̃) for De = 150. The first normal
stresses difference is an anisotropy measure of the elastic stresses and its appearance is a direct consequence of polymer
nonlinear behavior. As expected, the energy associated to N1 is distributed in many oscillation modes and tend to a
continuous spectrum. However, this energy is distributed approximately equally between most of the vibration modes
and its amplitude reach close to 103 larger than the modes associated to σ̃12. Note that negative values of some vibration
modes have significant magnitude ("Insert"). This result indicate that for De > 100, in which the macromolecules are
completely deformed, the anisotropy of the normal stresses are the mainly factor in the rheological responses of an elastic
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liquid.
Finally, in Fig (9) we present the viscoelastic functions η

′
and η

′′
as a function of excitation frequency for several

deformation amplitude γ̃0. The values of frequency range between ω̃/2π = 8.0 × 10−3 and ω̃/2π = 102. These
viscometric functions represent the first harmonic Fourier coefficients of the shear stress in frequency domain, where η

′

represent the term in phase with the shear rate ˜̇γ and η
′′

the term "out of phase."
The function η

′
has dissipate characteristics and is denoted as viscous module. As the Fig. (9) show, this function

present a shear thinning behavior in which a reduction of its magnitudes is verified with the increase of the frequency ω̃.
In the linear viscoelastic regime the elastic liquid has a Newtonian behavior in the limits of low and high frequency values,
exhibit only viscous characteristics. Considering high values of shear strain and moderate frequencies range, a nonlinear
viscoelastic regime is observed in which viscous and elastic effects are present in same magnitudes. Hence in viscoelastic
nonlinear regime the viscous module η

′
is a function of frequency ω̃ and shear strain ˜̇γ.

The Fourier coefficient "out of phase" with respect of shear rate is the viscoelastic function η
′′

and it is defined as the
elastic module. In the same way of η

′
, the elastic module is plotted in a wide range of frequencies for several shear strain

γ̃0 from a linear viscoelastic limit (Eq. 26) to a great amplitude of deformation γ̃0 = 10. In a linear regime the Fig. (9)
show a symmetric curve. Such symmetry is gradually lost as the γ̃0 grow and nonlinear effects are incorporated by the
fluid. It is seen that in case of strong deformation amplitude γ̃0 = 10 the magnitude amplitude of η

′′
is 6 times bigger

than the linear viscoelastic regime. Note that in the limit cases of low and high frequencies the elastic effect does not
contribute to the stored energy and the fluid remain only viscous characteristic. In addition, the "insert" of the figure show
the departure from the linear regime in which the module η

′′
has a frequency dependency only. When the elastic fluid is

submitted to large deformation amplitudes the elastic module η
′′

show a dependency of shear strain γ̃0 as a consequence
of a nonlinear viscoelastic regime.

Figure 9. Viscous and elastic modules η
′

and η
′′

, respectively, versus ω/2π. With φ = 300 ppm, = 80

6. CONCLUSION

This paper has presented a rheological analysis of elastic liquids under strong oscillatory shear flow for dilute polymer
solutions. We have examined a pair of constitutive equations through scaling arguments based on a balance between
viscous drag and restoring Brownian forces.

From an asymptotic linear analysis in which De → 0 the macromolecule was not significantly deform and remains
its random coiled configuration. In such regime the viscous and elastics modules was obtained according with the linear
viscoelastic theory. As expected, in this linear case the first normal stress difference was negligible.

The four order Runge-Kutta procedure was briefly examined in order to obtain numerical results of the rheological
response of macromolecules under an strong oscillatory shear flow in terms of temporal evolution of it configuration given
by the conformation tensor B. The nonlinear regime was characterized in terms of shear and normal stresses for high
Deborah numbers.

The numerical results was explored in time and frequency domain. For low values of De the equilibrium of viscous
and elastic forces acting on the macromolecules reflect a linear behavior of the polymer. In such regime the fluid showed a
Newtonian response in which no significant oscillation amplitudes are presents and the phase diagrams showed a circular
curve denoting no considerable perturbation by the macromolecules on the flow.

As the values of De increase the nonlinear effects by the presence of the deformed macromolecules could be observed.
The nonlinear rheological response of the macromolecules was examined in terms of time evolution of the quantities of
interest B̃ij , σ̃ij and N1. In a nonlinear regime such quantities presented a complex behavior such as the appearance of
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normal difference stresses N1, the significant growth of the oscillation amplitude and distorted phase diagrams of elastic
stresses. As the power spectrum results showed, such nonlinear behavior can be explained in part by the presence of many
others vibration modes contributing to the nonlinear response of the polymer.

In frequency domain, the viscoelastic functions η
′

and η
′′

was examined. The implemented model was validate
in the limit of linear viscoelasticity where low deformation amplitude γ0 was considered. It was shown as the strain
amplitude increase nonlinear effects are incorporated by the polymer and the viscous and elastics modules showed a
strong dependence with this parameter. Such functions was explored considering the viscous and elastics characteristic
that the fluid response into a wide range of frequency and deformation amplitudes.
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