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Abstract. A special interest has recently been devoted to the aerodynamics of airfoils at low and very low Reynolds 
numbers. This interest is driven by a variety of applications ranging from domestic windmills to unmanned aerial 
vehicles (UAV) and micro-air-vehicles (MAV), which were made possible by the recent advances in micro-electro-
mechanical systems (MEMS). The flows past airfoils at low Reynolds numbers are dominated by viscous effects and 
flow separation phenomena, which complicate the understanding of airfoil aerodynamics in these conditions.  The aim 
of this paper is to present the special features of the aerodynamic characteristics of airfoils at very low Reynolds 
numbers. These are obtained with an efficient numerical analysis based on a pseudo-time integration method using 
artificial compressibility to accurately solve the Navier-Stokes equations; this method represents an extension of the 
method developed by Mateescu & Venditti (2001) for the analysis of the unsteady confined flows with oscillating 
boundaries and with multiple separation regions. The flow problem is solved in this method in a rectangular 
computational domain obtained by a coordinate transformation from the physical flow domain around the airfoil at 
incidence. This method, which does not require a lengthy grid generation procedure, uses a central differencing 
approach on a stretched staggered grid in the computational domain. A special decoupling procedure using the 
continuity equation reduces the problem to the solution of scalar tridiagonal systems of equations, which enhances 
substantially the computational efficiency of the method. This method has been used to obtain the pressure distribution, 
lift and drag coefficients for several NACA airfoils at various incidences and low Reynolds numbers between 400 and 
6000. The obtained airfoil solutions are successfully validated by comparison with the numerical results obtained by 
Kunz & Kroo (2000) for Reynolds numbers between 1000 and 6000 (no results were available for Reynolds numbers 
smaller than 1000). This paper presents a detailed study of the influence of the Reynolds number, angle of attack and 
airfoil relative thickness and camber on the pressure distribution, lift and drag coefficients. The variation of the lift and 
drag coefficients with the angle of attack is presented for several airfoils in various flow conditions. In order to better 
understand the complex flow separation phenomena in the viscous flows past airfoils at very low Reynolds numbers, 
the onset of separation and reattachment positions, as well as the flow separation length, have also been calculated, 
analyzing the effect of various parameters (Reynolds number, angle of attack, relative thickness and camber, and the 
maximum camber position along the chord) affecting the flow separation. The streamline contours for the flow with 
separations past several airfoils at various Reynolds numbers and angles of attack have also been generated and 
compared.  
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1. INTRODUCTION  
 

A special interest has recently been devoted to the aerodynamics of airfoils at low and very low Reynolds numbers. 
This interest is driven by a variety of applications ranging from domestic windmills to special military aircraft and 
unmanned aerial vehicles (UAV), which were made possible by the recent advances in the micro-electro-mechanical 
systems (MEMS). Very small aircrafts called micro-air-vehicles (MAV) can operate in various environments including 
tunnels, desert and jungle. These applications have shown that many questions are unanswered regarding the airfoil 
aerodynamics at low and very low Reynolds numbers. The flows past airfoils at low Reynolds numbers are dominated 
by viscous effects and flow separation phenomena, which complicate the understanding of airfoil aerodynamics in these 
conditions.  

The aim of this paper is to present the special features of the aerodynamic characteristics of airfoils in 
incompressible flows at very low Reynolds numbers, which are obtained with an efficient numerical analysis based on a 
pseudo-time integration method using artificial compressibility to solve accurately the Navier-Stokes equations. This 
method represents an extension of the method developed by Mateescu & Venditti (2001) for the analysis of the 
unsteady confined flows with oscillating boundaries and with multiple separation regions. The flow problem is solved 
in this method in a rectangular computational domain obtained by a coordinate transformation from the physical flow 
domain around the airfoil at incidence.  

This method does not require a lengthy grid generation procedure and uses a central differencing approach on a 
stretched staggered grid (which avoids the odd-and-even points decoupling) in the computational domain. The method 
employs a special decoupling procedure using the continuity equation in order to reduce the problem to the solution of 
scalar tridiagonal systems of equations, which enhances substantially the computational efficiency of the method.  
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2. METHOD OF SOLUTION  
 

Consider a cambered airfoil of chord  placed at an incidence c α  in a uniform stream of velocity , as shown in 
Figure 1. The viscous fluid flow past the airfoil is referred to a Cartesian reference system of coordinates 

∞U
xc , , 

where 
yc

x  and  are nondimensional coordinates, with the x-axis along the airfoil chord and its origin at the airfoil 
leading edge. Let  and  denote the fluid velocity components along the x- and y-axes, where  and  are 
the nondimensional velocity components. The airfoil upper and lower surfaces are defined by the equations  

y
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where the subscripts 1 and 2 refer to the upper and lower surfaces, and where ( )xh  and  define, respectively, the 
camberline and airfoil thickness variation along the airfoil chord. The special case of symmetric airfoils is characterized 
by  and .  
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Figure 1. Geometry of a cambered airfoil in a uniform flow at incidence 
 

The Navier-Stokes and continuity equations for the incompressible flow past the airfoil can be expressed in 
nondimensional conservation form as  
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where  represents the vector of the dimensionless velocity components and , which includes the 
convective derivative, pressure and viscous terms, can be expressed in 2-D Cartesian coordinates in the form  
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where  is the dimensionless pressure, nondimensionalized with respect to , and p 2
∞Uρ ν∞= UcRe  is the Reynolds 

number based on the chord length ( ρ  and ν  are the fluid density and kinematic viscosity). In the present 
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computational analysis we focus our attention on flows at low Reynolds numbers, in which the viscous effects play a 
very important role. For steady flows, 0=∂∂ tV  in (2).  

The problem is solved in a rectangular computational domain with 5 sub-domains which is obtained by the 
geometrical transformation  
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in which  and  are the nondimensional physical coordinates of the upper and lower boundaries of the 

computational domain (as shown in Fig. 1), and 
1H 2H

αsin3 =H . The upstream inflow and downstream outflow boundaries 
of the computational domain are defined by the nondimensional coordinates 0LX −=  and .  αcos1 += LX

In the computational domain obtained by this coordinate transformation, the steady Navier-Stokes and continuity 
equations become  

( ) 0VG =p,  ,   ,          (7)  0=VD
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This steady incompressible flow problem is then solved with an iterative pseudo-time relaxation procedure using 
artificially-added compressibility, by augmenting the continuity and Navier-Stokes equations with pseudo-time 
derivative terms involving pressure and velocity (Chorin 1984) in the form  

0DV =+
∂
∂

t
pδ  ,  ( ) 0VGV

=+
∂
∂ p

t
,  ,        (12)  

where δ  represents the coefficient of artificially-added compressibility. Various authors proposed different methods to 
determine the value of this artificial compressibility, but optimal values of δ  are better obtained by numerical 
experimentation. In this work, an initial optimum value for δ  is determined based on the theory of characteristics 
(Mateescu et al. 1994a, b, 2001) and then is modified by numerical experimentation.  
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The pseudo-continuity and Navier-Stokes equations (12) are solved in pseudo-time until a steady state is reached 
and the physical divergence-free condition (corresponding to the steady-state continuity equation) is satisfied. An 
implicit Euler scheme is used in this respect to discretize these equations in pseudo-time between the pseudo-time levels 
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where . These equations are expressed in terms of the pseudo-time variations , 
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A factored Alternate Direction Implicit (ADI) scheme is then used to separate equation (14) into two successive 
sweeps in x  and , defined by the equations  y

[ ] SfDI tt Y Δ=ΔΔ+ *  ,        [ ] *ffDI Δ=ΔΔ+ Xt  ,       (17)  

where  is a convenient intermediate variable vector.  [ T**,*,* pvu ΔΔΔ=Δf ]
These equations are further spatially discretized by central differencing on a stretched staggered grid, based on 

hyperbolic sine stretching functions in the  and  directions (Mateescu et al. 1994a, b, 2001).  X Y
A special decoupling procedure, based on the utilization of the continuity equation, is then used for each sweep to 

reduce the resulting systems of discretized equations to two sets of decoupled scalar tridiagonal equations (for details on 
the decoupling procedure see Mateescu et al. (1994a, b, 2001).  

 
3. METHOD VALIDATION FOR SYMMETRIC AIRFOILS  
 

The method has been applied for validation to the flow at low Reynolds numbers past symmetric NACA airfoils at 
zero angle of attack. The computations have been performed using a stretched staggered grid with 257 × 181 grid points 
for each variable. The mesh spacing in the X-direction was minimum at the leading edge of the airfoil,  ΔXmin = 0.0007, 
and maximum at the inflow and outflow boundaries,  ΔXmax = 1.06 , while in the Y-direction the minimum mesh spacing 
was at the walls (airfoil surfaces) ΔYmin = 0.0021, and maximum at the upper or lower far-field boundaries, ΔYmax = 2.0. 
Computations were performed on a computational domain defined by  L0 = 10,  L1 = 10,  H1 = H2 =15 with the value of 
the artificial compressibility taken as δ = 0.5 and the pseudo-time step Δt = 0.0005; convergence was considered 
reached when all of the r. m. s. residuals were less than 10 − 5, which corresponds to r. m. s. values of the delta quantities 
less than 10− 9. During the numerical procedure, the far field boundary conditions ( αcos=u , αsin=v

0=Δu
) on the upper 

and lower boundaries of the fixed rectangular domain are kept constant, which correspond to , 0=Δv  and 
, . A similar treatment is applied for the inflow boundary of the computational domain, while at the 

outflow the second order 
0* =Δu 0* =Δv

X -derivatives of the velocity components are imposed to be zero. The no-slip boundary 
condition,  and , is imposed on the airfoil surfaces.  0=u 0=v

The influence of the Reynolds number on the pressure coefficient distribution on symmetric airfoils at zero angle of 
attack is shown in Figure 2. One can notice a marked increase in the negative pressure coefficient on the airfoil with the 
decrease in the Reynolds number, which is due to a thicker boundary layer; this effect is more pronounced towards the 
trailing edge due to the boundary layer increase along the airfoil. At the same time, the variation of the pressure 
coefficient near the leading edge is smoother due to stronger viscous effects at smaller Reynolds numbers. The inviscid 
flow solutions ( Mateescu & Abdo 2003, 2005), for ∞→Re , are also shown in Figure 2 for comparison, to indicate 
the dramatic change in the pressure distribution at low Reynolds numbers, which is even more pronounced for the 
thinner airfoil NACA 0002.  
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Figure 2.  Influence of the Reynolds number on the pressure coefficient distribution on  

NACA 0002 and NACA 0008 airfoils at zero incidence  
 

-0.2

-0.1

0

0.1

0.2
0 0.2 0.4 0.6 0.8 1

 Cp 

 x 

 NACA 0002, Re=1000

   Present computational solution
  (Navier-Stokes) 
 

  Kunz & Kroo  

 -0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

 Cp

 x

  Present computat
  (Navier-Stokes) 

ional solution 

o2 & =α100 0Re 0002,NACA =

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
 
 
 
 
 
 
 

0 0.2 0.4 0.6 0.8 1

 Cp 

 x 

   Present computational solution
  (Navier-Stokes) 

o4 & 1000Re 0002,NACA == α

 
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

 

0 0.2 0.4 0.6 0.8 1

 Cp

 

o6 & =α1000Re 0002,NACA =

  Present computat
  (Navier-Stokes) 

 
 
 
 
 
 
 ional solution 
 
 x 
 -0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
0 0.2 0.4 0.6 0.8 1

 Cp 

 x 

   Present computational solution
  (Navier-Stokes) 
 

  Kunz & Kroo  

 NACA 0008, Re=2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

 Cp

 x

Present computational solution 
  (Navier-Stokes) 

o2 & 2000Re 0008,NACA == α
 
 
 
 
 
 
 
 
 
 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

 Cp 

 x 

  Present computational solution
  (Navier-Stokes) 

o4 & 2000Re 0008,NACA == α -1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

 Cp

 x

  Present computational solution 
  (Navier-Stokes) 

o6 & 2000Re 0008,NACA == α 
 
 
 
 
 
 
 
 
 

Figure 3.  Pressure coefficient distributions on NACA 0002 and NACA 0008 airfoils at Reynolds numbers  
Re =1000 and 2000 and at angles of attack 0=α , ,  and   o2 o4 o6
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The present method has been validated by comparison with the results obtained by Kunz & Kroo (2000) using the 
INS2D code from NASA Ames (based on an upwind finite differencing scheme developed by Rogers & Kwak 1990), 
for two symmetric airfoils at zero angle of attack, NACA 0002 and NACA 0008, at three low Reynolds numbers: 1000, 
2000 and 6000 (there are no previous results available for the pressure distribution on airfoils at incidence). The present 
solutions for the pressure coefficient distribution on these airfoils were found in excellent agreement with Kunz & Kroo 
results (2000), as shown in Figure 3 for Reynolds numbers 1000 and 2000.  
 
4. SOLUTIONS FOR CAMBERED AIRFOILS AT INCIDENCE  
 

Pressure coefficient distribution on various airfoils at incidence. Typical pressure coefficient distributions are 
presented in Figure 4 for two cambered airfoils, NACA 4402 and NACA 4404, of relative thickness 0.02 and 0.04, 
respectively, at several angles of attack and low Reynolds numbers. The effect of the relative thickness on the pressure 
coefficient distribution can be seen by comparing the results for the two airfoils in Figure 4.  
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Figure 4.  Pressure coefficient distribution on NACA 4402 and NACA 4404 airfoils at Reynolds number Re =1000  

and at angles of attack 0=α , ,  and 6   o2 o4 o
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Lift and drag coefficients. The variation of the lift and drag coefficients for the NACA 0002 and NACA 4402 
airfoils are shown in Figure 5 for validation in comparison with previous results obtained by Kunz & Kroo (2000); one 
can notice a very good agreement between these results.  
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Figure 5.  Lift and drag coefficients for NACA 0002 and NACA 4402 airfoils at two Reynolds numbers  
 

Influence of low Reynolds numbers. The influence of the Reynolds number on the lift and drag coefficients is 
shown in Figure 6 for two cambered NACA airfoils, NACA 4404 and NACA 4702. One can notice that the drag 
coefficient is increasing with the Reynolds number, and the lift versus drag ratio is decreasing with the Reynolds 
number, especially at the large lift coefficients.  
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Figure 6.  Influence of the Reynolds number on the lift and drag coefficients for NACA 4404 and NACA 4702 airfoils  
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Influence of the relative camber. The influence of the relative camber on the lift and drag coefficients is shown in 
Figure 7 for three NACA airfoils and Re=800. One can notice that both the lift and drag coefficients increase with the 
relative camber.  
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Figure 7.  Influence of the airfoil camber on the lift and drag coefficients at Reynolds number 800  
 

Influence of the relative thickness. The lift coefficient is increasing with the decrease in the relative thickness; this 
can be noticed from the pressure results illustrated in Figure 3 for two airfoil thicknesses (the lift results are not shown 
here due to space limitation).  
 
5.  STUDY OF THE FLOW SEPARATION ON AIRFOILS AT LOW REYNOLDS NUMBERS  
 

At very low Reynolds numbers, the viscous effects in the flow become very important. As a result, the boundary 
layer developed on the airfoil contour become much thicker and flow separations may frequently occur at relatively 
smaller angles of attack at low Reynolds numbers. For this reason, a detailed study of the flow separations has been 
performed in this paper for airfoils at low Reynolds numbers. The positions and  of the flow separation onset 
(defined by zero velocity gradient) and reattachment points on the upper surface of the airfoil, as well as the length of 
separation region, l , have been calculated and compared for four symmetric and nine cambered airfoils at 
various incidences and low Reynolds numbers. The main results obtained are presented in Tables 1 and 2. The 
streamline patterns of the flows past the same airfoils, which provide a better physical insight of the flow separations, 
have also been generated for these airfoils. Typical streamline contours for various airfoils, angles of attack and low 
Reynolds numbers are illustrated in Figure 8 for NACA 0004 airfoil at Reynolds number Re=2000 and three angles of 
attack.  

sx rx

srs xx −=

 
Influence of the angle of attack. The influence of the angle of attack on the flow separation length srs xxl −=  is 

shown in Figure 8 for the symmetric airfoil NACA 0004 and in Table 2 for the cambered airfoil NACA 4404. One can 
notice that the flow separation length increases substantially with the increase in incidence, as the flow separation 
position is shifted closer to the leading edge. As shown in Figure 8 and Table 2, there is no flow separation at the lower 
Reynolds numbers when the angle of attack is smaller than 4o.  
 

Influence of the Reynolds number. The Reynolds number has an important influence on the flow separation on the 
airfoils at incidence, as shown in Table 2. One can notice that the separation length is decreasing with the reduction in 
the Reynolds number, which can be attributed to the airfoil “decambering” due to relatively thicker boundary layers (on 
both sides of the airfoil) in the case of lower Reynolds numbers. 
 

Influence of the relative thickness. The influence of the relative thickness on the flow separation is shown in Table 
1 for four symmetric airfoils. One can notice a substantial increase of the flow separation length with the decrease in the 
relative thickness.  
 

Influence of the relative camber and of the maximum camber position (results not shown due to space 
limitation). The flow separation length is increasing with the relative camber, as expected, and is substantially reduced 
by moving the maximum camber position towards the trailing edge (from 30% to 50% and further to 70%).  
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Figure 8.  Streamline contours for NACA 0004 airfoil at Reynolds number Re=2000 and at ,  and , 
respectively (an enlarged view of the trailing edge area is also shown for each incidence)  

o4=α o6 o7

 
 

Table 1. Flow separation comparison for four symmetric NACA airfoils at Reynolds number Re=2000 and . o6=α
 

 

Airfoil type Separation position,  sx Reattachment position,  rx Separation length,  sl
NACA 0002 0.009448 0.983755 0.974307 
NACA 0004 0.345298 0.985038 0.639739 
NACA 0006 0.493517 0.987267 0.493749 
NACA 0008 0.501505 0.986959 0.485453 
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Table 2. Comparison of the trailing edge flow separation for NACA 4404 airfoil  
at four Reynolds numbers and various angles of attack. 

 

Reynolds number, Re Re=400 Re=600 Re=800 Re=1000 

o4=α  
sx  

No separation No separation No separation 
0.901651 

rx  0.978418 

sl  0.076766 

o6=α  
sx  

No separation 
0.860459 0.777701 0.717352 

rx  0.970041 0.976729 0.979368 

sl  0.109581 0.199027 0.262016 

o7=α  
sx  0.894895 0.765829 0.682713 0.625532 

rx  0.953618 0.971379 0.975893 0.977933 

sl  0.058723 0.205550 0.293180 0.352401 

o8=α  
sx  0.800136 0.670082 0.592716 0.550572 

rx  0.960186 0.969762 0.972774 0.975735 

sl  0.160050 0.299680 0.380058 0.425163 
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