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Abstract. The Vortex Method has become a powerful numerical mesh-free technique to simulate unsteady 
incompressible flows characterized by separation and vortex shedding, such as external flows around bluff and 
streamlined bodies. In this paper, a fully lagrangian vortex method is used to simulate the incompressible two-
dimensional oscillating flow around a NACA 0012 airfoil. Piecewise-continuous linear-vortex flat panels are used to 
represent the body surface and a cloud of Lamb vortices is used to model the vorticity field in the boundary layer and 
wake. The induced velocities are calculated using the Biot-Savart law and the vortices are convected using the Adams-
Bashforth second-order time-marching scheme. The vorticity transport by diffusion is simulated using the Random-
Walk method. Numerical simulations are carried out for several values of Keulegan-Carpenter number, KC, and 
nondimensional excitation frequency, fe. Our results, obtained for a Reynolds number equal to 1.7×105, show that the 
amplitude of oscillation increases as the value of KC and fe increase. This behavior is linear for the lower values and 
non-linear for the higher values of KC and fe. We also observe that the vortex shedding frequency is equal to the 
excitation frequency in all cases studied. For the higher values of KC used in the simulations, the boundary layer 
undergoes a large temporal variation, going from attached to massively separated conditions when the local angle of 
attack reaches high values. This behavior is similar to dynamic stall. 
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1. INTRODUCTION 
 

Oscillatory flows around bluff and streamlined bodies have many engineering applications. If the body is rigid and 
kept fixed and the freestream flow is uniform, or present periodic components due to upstream turbulence or some 
periodic perturbation, the flow becomes oscillatory due to the periodic vortex shedding mechanism that results from 
boundary layer separation. Such flows occur very often in cross-flow heat exchangers and stalled airfoils of wings and 
turbomachine blades. On the other hand, if the freestream flow is uniform but the body has some prescribed periodic 
motion, or it is flexible enough to respond to the vortex shedding mechanism with an oscillatory motion, the flow as a 
whole again experiences an oscillatory interaction between the fluid and the body, causing the development of periodic 
forces. This latter situation is typical of risers of offshore platforms, power lines exposed to the wind and flapping 
airfoils of helicopter or wind turbine blades. All these problems involve a variety of forces that arise from fluid-
structure interactions, such as the inertial and elastic forces acting on the solid, and the inertial, viscous, pressure and 
gravitational forces acting on the fluid. In the case of flexible streamlined bodies, the flow is even more complex 
because the fluid-structure interaction presents characteristics that combine lift generation mechanisms with oscillatory 
separation, periodic force development and the possible occurrence of lock-in. The phenomenon of “lock-in” is 
classically defined as the regime where the frequency of oscillation, as well as the vortex formation frequency, are close 
to the natural frequency of the structure throughout the regime of large-amplitude vibration (Williamson and 
Govardhan, 2004). In addition, the oscillatory motion of a streamlined body may bring about another unsteady 
phenomenon that is associated with stall delay, called “dynamic stall”. This phenomenon occurs when the airfoil 
undergoes a pitching motion through the static stall angle and the normal force increases beyond its maximum value for 
unstalled conditions, dropping off at an angle of attack considerably higher than the static stall angle (Akbari and Price, 
2003). Dynamic stall is related to the leading-edge vortex that is formed when the airfoil increases its angle of attack 
towards a high value, creating suction and producing unsteady aerodynamics forces. The dynamic stall phenomenon 
was first observed in helicopters, although it also occurs on axial-flow compressors and modern fighters in fast-pitching 
maneuvers. Blade sections of horizontal-axis wind turbine rotors are also routinely subject to these oscillatory loads. 

We here consider a situation where a typical two-dimensional streamlined body, such as an airfoil of a horizontal-
axis wind turbine, is immersed in an incoming freestream flow that has periodic components. Particularly, the rotor 
blades of horizontal-axis wind turbines are designed to operate in ideal conditions; however, in most cases, the turbine 
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is subject to the action of an incoming wind with high turbulent intensity, which means that the flow presents a 
remarkable oscillatory component. This oscillatory characteristic is typical of the atmospheric boundary layer flow that 
generates the wind. In this case, the blades remain subject to a lateral motion in the crossflow plane that contains the 
airfoil section. Because real three-dimensional wind turbine blades are very long and flexible, they deform and acquire 
lateral motions due to the action of this oscillatory wind. We simplify our analysis by assuming that the airfoil is rigid 
and fixed and that the periodic excitation comes from an oscillatory incoming freestream flow, as shown in Fig. 1. We 
set the geometrical angle of attack angle to a specified value but the flow that develops causes a periodic change of the 
effective angle of attack, producing a cyclic variation of the effective pitch angle. The periodic behavior of the incident 
flow induces additional mechanical loads on the blades and a considerable variation of the output power of the turbine.  

In this paper, we simulate numerically the flow described above using the Vortex Method (VM). The VM has been 
extensively used over the last decades for the simulation of incompressible viscous flows and it has become an 
interesting alternative to the more conventional numerical techniques, such as finite element, finite volume and finite 
difference methods. In particular the VM is extremely adequate for the simulation of external flows around bluff and 
streamlined bodies, such as circular cylinders (Slaouti and Stansby, 1992; Koumoutsakos and Leonard, 1995; Mustto et 
al., 2000), ellipses (Akbari and Price, 2000), airfoils (Akbari and Price, 2003; Silva et al., 2005), bridge decks (Larsen 
and Walther, 1997), flapping wings of birds and insects (Eldredge, 2007) and others. Excellent reviews about the vortex 
method and applications can be found in Leonard (1980), Sarpkaya (1989) and Barba et al. (2005). We analyze the flow 
around a NACA 0012 airfoil that is immersed in a high Reynolds-number oscillatory freestream flow, with Re = 
1.7×105. The results show interesting features of the flow as the oscillatory numerical parameters are varied. 
 
2. MATHEMATICAL FORMULATION 
 
2.1. Governing equations and boundary conditions 

 
The Vortex Method (VM) is a numerical model for the simulation of incompressible flows that solves the vorticity 

transport equation in terms of the vorticity field, instead of solving directly the Navier-Stokes equations in terms of the 
velocity field. The VM is based on the discretization of the vorticity field into a cloud of vortices (or vortex blobs) and 
the motion of each individual vortex is tracked within a lagrangian description, producing a method that is purely mesh-
free (Chorin, 1973; Lewis, 1991; Cottet and Koumoutsakos, 2000; Kamemoto, 2004). The superposition of these blob 
motions allows for the determination of the velocity field from the Biot-Savart law. 

Within the VM framework, the Navier-Stokes and the continuity equations are replaced by the vorticity transport 
equation, which can be written in nondimensional form, for two-dimensional flows, as  
 

ωωω 2u ∇=∇⋅+
∂
∂

Ret
1 , (1) 

 
where u is the velocity vector field and ω is the only non-zero component of the vorticity vector field, which is normal 
to the plane of the flow in two-dimensional flows. Equation (1) is nondimensionalized by the characteristic velocity, 
length and time scales given by U∞, the freestream velocity, c, the airfoil chord length, and c/U∞, respectively. The 
Reynolds number is defined as ν/cURe ∞≡ , where ν is the fluid kinematic viscosity. This equation expresses the 
transport of vorticity by convection and diffusion and has the property that the pressure term does not appear explicitly, 
allowing the velocity field to be calculated without the knowledge of the pressure field.  

The flow is accelerated impulsively from rest up to the freestream flow u∞ and the solution of Eq. (1) requires that 
the no-penetration and the no-slip boundary conditions be imposed on the airfoil solid surface, in addition to the 
condition that the flow tends to u∞ at infinity. Mathematically, we have 

 
u = 0,  on the airfoil surface;  (2a) 
u = u∞ , at infinity.  (2b) 

 
 

Figure 1. Flow configuration over the NACA 0012 airfoil. 
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2.2. The freesteam flow 
 

We assume that the airfoil is fixed and set at a geometrical angle of attack α and that the freestream u∞ possesses a 
lateral oscillatory component. Hence, the x- and y-components of u∞ can be expressed in nondimensional form as 

 
cosu α∞ =  and sin cos (2 )e ev KC f f tα π∞ = + , (3a,b) 

 
where KC is the Keulegan-Carpenter number and fe is the (nondimensional) excitation frequency, defined as  
 

2 AKC
c
π ∞≡  and 

*
e

e
f cf
U∞

≡ . (4a,b) 

 
In Eqs. (4), A∞ denotes the amplitude of the periodic freestream flow, fe

* is its dimensional excitation frequency, and t is 
the nondimensional time. A quantity directly related to fe that is commonly used in the analysis of oscillatory flow 
problems is the reduced frequency, defined as 2 ek fπ≡ . Equations (3) reduce to 1.0u∞ =  and cos (2 )e ev KC f f tπ∞ = , 
respectively, for the particular case where the angle of attack is zero. The excitation frequency is an input parameter of 
the simulations and it is physically different from the vortex shedding frequency fv, which is expressed in 
nondimensional form by the Strouhal number, that is, /vSt f c U∞≡ . 

 
3. THE DISCRETE VORTEX METHOD 
 
3.1. The vorticity equation and the velocity field 
 

Equation (1) can be solved by the VM using the operator splitting algorithm proposed by Chorin (1973). The idea is 
to decompose Eq. (1) into two equations, one purely convective and one purely diffusive, such that they are solved 
sequentially within the same time step. Thus, Eq. (1) is replaced in the numerical algorithm by  

 

 0=∇⋅+
∂
∂ ωω u

t
  and  ωω 21

∇=
∂
∂

Ret
. (5a,b) 

 
The solution of Eqs. (5) is obtained by the superposition of vortices (or vortex blobs) that move in a lagrangian 

manner to satisfy Eq. (5a) and that, simultaneously, suffer a diffusion process to satisfy Eq. (5b). The velocity field of 
each vortex must be expressed as a function of the vorticity field. In incompressible flows, the velocity field induced by 
the vorticity field concentrated in a finite region is determined by the Biot-Savart law (Batchelor, 1967). For the two-
dimensional case of a point vortex, the velocity induced in the θ-direction, with clockwise circulation considered 
positive, is given by ( ) 2u r rθ π= −Γ , where the circulation Γ is the vortex strength and r is the radial distance from 
the vortex to the point of interest. If a vortex is localized at a point P(x0,y0), the Cartesian components of the velocity 
field in the x and y-directions, respectively, are  

 
( )

( ) ( )
0

2 2
0 0

2
y y

u
x x y yπ

−Γ
=

− + −
  and  

( )
( ) ( )

0

2 2
0 0

2
x x

v
x x y yπ

−Γ
= −

− + −
. (6a,b) 

 
Equations (6) present a singularity as point P(x0,y0) is approached. We remove this singularity at the center of the 

vortex using a Lamb vortex, as discussed in section 3.4. 
 
3.2. The panel method 

 
For the potential flow, the velocity field can be written as the gradient of a scalar velocity potential, u = ∇φ. The 

velocity potential φ is a solution of Laplace´s equation, obtained from the substitution of the equation above into the 
continuity equation for incompressible flow. Thus, we can write 
 
 02 =∇ φ ,  in the fluid region. (7) 
 

Equation (7) is subject to the no-penetration boundary condition, ∇φ ⋅ n = 0, on the airfoil surface, and the boundary 
condition at infinity, ∇φ = u∞. This boundary value problem is solved using the panel method, originally devised by 
Martensen (1971), and it is described in detail by Katz and Plotkin (2001). The panel method has the advantage that it 
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may be easily applied to complex geometries. The airfoil geometry is divided into straight segments, called panels, each 
with length Δli. The point in the middle of the panel is the control point, where the boundary condition must be satisfied, 
and the endpoints are the panel nodes. Among the possible choices for the solution of Laplace’s equation, we choose the 
vortex singularity with linear distribution of vorticity along the panel length. The linear vortex strength is calculated so 
that the no-penetration boundary condition is satisfied at the control points. This formulation yields a linear system of N 
algebraic equations, one for each control point, and N + 1 unknowns, the panel vorticity strength at the panel nodes. 
This system needs an extra equation to be solved uniquely, which is the Kutta condition, for steady potential flows, or 
the conservation of circulation condition, for unsteady flows such as the ones studied here. The linear vortex 
distribution is employed in this work based Pereira and Bodstein (2004). The airfoil is discretized so that the leading 
and trailing edge regions have a fine concentration of panels, as recommended by Lewis (1991) and Katz and Plotkin 
(2001). In these regions, the flow experiences high velocity and pressure gradients. 

 
3.3. Vortex shedding 
 

The vorticity generation process in the solid-fluid interface is modeled using the solution obtained for the vorticity 
distribution on the panels. Once the vorticity distribution is found, discrete vortex blobs are generated near the solid 
surface, with strength equal to the mean vorticity on the panel [(γi + γi+1)/2]Δli and positioned at a small distance ε 
perpendicular to each panel control point, as shown in Fig. 2. These vortices are free to be convected and diffused by 
the flow, simulating the vorticity shedding process into the wake. The value of ε is based on the Lamb vortex core 
(Mustto et al., 2000), and we use the value 0 0.005ε σ= = in our simulations. 
 

 
 

Figure 2. Vorticity shedding from the body surface. 
 
3.4. Vorticity convection and diffusion 

 
The calculation of the convective velocity field requires the calculation of the induced velocities of each vortex, 

which are modeled using Lamb vortices to avoid the singular behavior presented by point vortices, as one can see from 
Eqs. (6). The velocities induced by a vortex j at a point (xi,yi) of the fluid domain can be written as  

 

 
( )

0

20 0

if

1 exp 5.02572( ) if
j ij ij

ij
j ij ij ij

U r
u

U r r

σ

σ σ

Γ ≥⎧⎪= ⎨ ⎡ ⎤Γ − − <⎪ ⎣ ⎦⎩
, (8a) 
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2
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2

i j
i j

i j

y y
U

rπ
−

= ,  22
1

ji

ji
ji

r

xx
V

−
−=

π
,  ( ) ( )2 2

ij i j i jr x x y y= − + − . (9a,b,c) 

 
In Eqs. (8a,b), Γj is the vortex strength and σ0 is the vortex core radius. The total induced velocity must be 

calculated adding three different contributions: the first from the vortex cloud; the second from the panels, which 
represent the body influence on the flow; and the last one from the freestream velocity field u∞. 

The vorticity diffusion process is simulated using the Random Walk Method (Lewis, 1991). Equation (5b) has an 
analytical solution for the vorticity field of a point vortex that is initially irrotational and whose vorticity spreads out 
purely by the action of viscosity. This solution is given by 
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where 2 2 1/ 2( )r x y= + . Since the vorticity field is expressed as the superposition of a large number of vortices, Eq. (10) 
can be interpreted as the probability to find a vortex at a given spatial region at a given time (Lewis, 1991). Under this 
assumption, the diffusive displacements of each vortex in the x and y directions can be expressed as  
 

)cos( θΔΔ=Δ rxD  and )sen( θΔΔ=Δ ryD , (11a,b) 
 

where the radial and circumferential displacements are obtained from 1/ 2[(4 / ) ln(1/ )]r t Re PΔ = Δ  and Qπθ 2=Δ . The 
quantities P e Q are random numbers between 0 and 1 drawn from a uniform probability density distribution. 

To calculate the convective displacement of the vortices in the x and y directions, we use we use the first-order Euler 
scheme for the first step of the nascent vortices, given, respectively, by ( )Cx u t tΔ = Δ  and ( )Cy v t tΔ = Δ , and a second-
order Adams-Bashforth time-marching scheme for the reaming steps of all vortices, given by  
 

[ ] tttutuxC ΔΔ−+=Δ )(5.0)(5.1  and [ ] tttvtvyC ΔΔ−+=Δ )(5.0)(5.1 . (12a,b) 
 

 As soon as the diffusive and convective displacements are determined, the new vortex cloud position is evaluated 
according to 

 
 CD xxtxttx Δ+Δ+=Δ+ )()(  and CD yytytty Δ+Δ+=Δ+ )()( . (13a,b) 
 

In this study, vortices that penetrate into the body are reflected back into the flow, retaining a larger wake resolution 
and providing better quality of the results.  
 
3.5. Aerodynamic loads 
 

The loads on the body surface are determined from  
 

 
s
p

t
us

∂
∂

−=
∂
∂

2
1 , (14) 

 
where s denotes the direction that is tangential to body surface. A circulation balance around a panel shows that the 
tangential velocity at a control point is given by us = − γ. With this result, Eq. (14) can be written in discretized form as 

 

 
2 k k

k
l

p
t

γ Δ
Δ =

Δ
. (15) 

 
Equation (15) furnishes the increase in pressure at the control point of the kth panel due to the variation of circulation 

in time. Integrating this equation along the body surface, having pref as an arbitrary reference pressure, yields 
 

 
1

i

i ref k
k

p p p
=

= + Δ∑ . (16) 

 
Without loss of generality we choose the reference pressure pref = 0. Equation (16) allows each pi to be calculated at 

the corresponding ith control point, and the maximum value of pi on the body, p0, becomes the stagnation pressure. 
Adding the quantity (1 – p0) to the values of pi, we obtain the pressure coefficient on the airfoil surface, Cp. Integrating 
Cp over the body surface and projecting the loads along the parallel and perpendicular flow directions produce the drag 
and lift coefficients, respectively, which are given by 

 

 ∑
=

+Δ=
N

i
iipil lCC

1

)sen( βα   and  ∑
=

+Δ=
N

i
iipid lCC

1

)cos( βα , (17a,b)  

 
where Δli is the length and βi is the inclination of the ith panel with respect to the x-axis. 
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3.6. Numerical considerations 
 

For the solution of the linear system of algebraic equations, an extra equation must be added in order to render the 
system determined and the solution unique. As pointed out previously, we include an equation for the conservation of 
circulation that expresses Kelvin’s theorem. This equation may be written as 

 

 ∑ ∑
= =

+ =Γ+Δ
+N

j

M

k
kj

jj

1 1

1 0
2
γγ

, (18) 

 
where N is the number of panels and M is the number of discrete vortices in the vortex cloud, each one with vortex 
strength Γk. Since the fluid flow begins from rest, there are no vortices in the wake at the first time step. Hence, Eq. (18) 
reduces to 
 

 ∑
=

+ =Δ
+N

j
j

jj

1

1 0
2
γγ

. (19) 

 
In the following time step, the linear vortex distributions along the body panels are transformed into Lamb vortices, 

each with strength Γk = [(γi + γi+1)/2]Δli and whose sum over all the N vortices is equal to zero due to Eq. (19). 
Therefore, the second term in Eq. (18) is zero, and again it reduces to Eq. (19). Thus, Eq. (19) is the one that is used to 
complete the linear system of algebraic equations. The solution is found using a LU decomposition algorithm.  

Another special consideration that must be made concerns the velocities induced at the control points from vortices 
too close to the body, and vice-versa, velocities from body panels induced at vortices that are too close to the control 
points. In both cases, these induced velocities may be unrealistically high, requiring special treatment. Following Lewis 
(1991), we adopt the following procedure based on the distance from the vortex to the nearest control point rjk. For a 
panel of length Δlk, if rjk < 0.4 Δlk, that is, if the vortex is extremely close to the control panel, we use the velocity 
induced by its image inside the body, located the same distance apart from the panel in the normal direction, to compute 
the velocity induced at the vortex. If the vortex is a little farther from the control point, in the range 0.4 Δlk ≤ rjk < 2.0 
Δlk, the panel is divided into 5 subpanels, and the induced velocities at the vortex are computed as the sum of the 
contributions of all subpanels, whereas the velocity at the control point is the average of the velocity induced by the 
vortex at the control points of each subpanel. If the vortex is even farther, that is, rjk > 2.0 Δlk, the velocity field is 
calculated using the equations described in the sections above. This simple model has added important improvements to 
the accuracy of the complete algorithm employed in this work. 
 
4. RESULTS AND DISCUSSION 
 

In this section we present a sequence of numerical simulations for a NACA 0012 airfoil for a zero-degree angle of 
attack, α = 0, and several values of the Keulegan-Carpenter number, KC, and the (nondimensional) excitation 
frequency, fe. In all cases, the number of panels remains constant and equal to 300 and the time-step is Δt = 0.05. We 
display all the results at t = 17.5 and we zoom into the wake around the airfoil region. The Reynolds number used in the 
simulations is 1.7×105.  

Figure 3 shows the results obtained from the simulations. Figure 3(a) is a reference case run without the oscillatory 
flow component, i. e., KC = fe = 0, and, therefore, the freestream flow is uniform. We can observe that the wake 
possesses a relatively narrow lateral extension, a characteristic that is typical of the wake of a streamlined body, and an 
oscillatory behavior of high frequency. The (small) oscillation period observed in the temporal variation of the lift-
coefficient curve is of order T = 0.5, or St = 2. The drag-coefficient frequency of oscillation fluctuates at twice the 
frequency of the lift coefficient, as expected, because the drag force reaches two peaks of maximum (or minimum) for 
every maximum peak of the lift force. For large time, say t = 10, the (small) amplitude if oscillation remains within the 
±0.1 envelope for CL and less than ±0.005 for CD. This periodic high-frequency low-amplitude fluctuation is associated 
with the alternate vortex shedding from the airfoil surface. A vortex is shed from the top of the airfoil surface, creating 
suction and causing the body to experience non-zero lift. After half a cycle is elapsed, an alternate vortex is created at 
the lower surface. Averaging over a cycle, the body experiences non-zero drag and zero lift, but since the temporal 
variation is periodic, the non-zero amplitude of oscillation produces cyclic loads on the airfoil.  

Figures 3(b) – 3(e) show, qualitatively and quantitatively, the effect of the variation of KC and fe, taken both as input 
data in the computations, on the vortex shedding mechanism, and, therefore, on the airfoil forces and wake 
development. The nondimensional excitation period, Te, corresponds to the inverse of the excitation frequency, Te = 1/fe. 
The first result that can be clearly noted in all curves of the lift coefficient is that the vortex shedding frequency, 
measured by the Strouhal number, St, and calculated as the inverse of the vortex shedding period, St = 1/Tv, is exactly  
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Figure 3. Position of the wake vortices at t = 17.5 for NACA 0012 airfoil and time histories of CL and CD, for 
 Re = 1.7×105 and α = 0o: (a) KC = 0, fe = 0; (b) KC = 1.00, fe = 0.20; (c) KC = 3.00, fe = 0.20; 

 (d) KC = 3.00, fe = 0.15; (e) KC = 7.50, fe = 0.15. 
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equal to the excitation frequency. This fact can be deduced directly from the oscillation period Tv observed in the graph 
for the temporal variation of the lift coefficient. For the cases where fe = 0.20, which corresponds to Te = 5.0, the 
oscillation period obtained from the curve of CL against t is also Tv = 5.0, and for the case with Te = 6.67, the vortex 
shedding obtained is also Tv = 6.67. This observation indicates that if the body is flexible and oscillates with frequency 

ef St=  and these two frequencies match the body natural frequency, there occurs the phenomenon known as “lock-in”, 
which may cause severe damage to the body. 

On the other hand, the Keulegan-Carpenter number, which nondimensionalizes the oscillatory flow amplitude, have 
a direct influence on the wake and the oscillation amplitudes of the force coefficients. The figures that illustrate the 
wake pattern in the final instant of simulation have shown a larger lateral extension when compared with the reference 
case (without oscillation), and this lateral extension increases when KC increases, keeping the excitation frequency 
constant. This phenomenon is observed in all cases simulated. The fact that the oscillation amplitude of the force 
coefficients increases when KC increases is very significant. Specifically, in comparison with the reference case, the 
results of Figs. (3b) and (3c), where KC takes the values KC = 1 and 3 and fe = 0.20, respectively, the oscillation 
amplitudes of CL and CD, are approximately 0.75 and 0.02, respectively, for the case of Fig. 3(b), and 2.25 and 0.06 for 
the case of Fig. 3(c). These results indicate that, in the range of values studied, an increase of KC induces a linear 
increase on both forces coefficients. Similar results are observed for the simulation with fe = 0.15, illustrated in Figs. 
3(d) and 3(e). If we keep the value of KC constant and equal to 3 and decrease the value of fe, the wake have a smaller 
number of oscillations and the Strouhal number diminish. In both cases, St is again equal to fe. This behavior can be 
observed when we compare Figs. 3(c) and 3(d). We also notice that the relation between the oscillation frequencies of 
the two curves present, for all oscillatory flow cases, the same behavior as the non-oscillatory case. More specifically, 
the results for the oscillatory flow cases show that the drag coefficient curve oscillates with a frequency twice as large 
as the oscillation frequency of the lift coefficient. In other words, the oscillatory component of the freestream flow does 
not modify, in the range of parameters studied, the relation between the oscillation frequencies of both force 
coefficients. 

The set of simulations discussed in this paper allows us to infer that, maybe with the exception for the case of lowest 
non-zero value of KC – Fig. 3(b), all the other cases seem to indicate the occurrence of dynamic stall. This phenomenon 
is characterized by the occurrence of separation on the leading edge of the airfoil, forming a leading-edge vortex that 
increases the suction on the surface of the airfoil and causes an increase of the normal force beyond the static stall angle 
of attack. Due to the periodic variation of the incoming flow, the transverse oscillatory velocity component induces a 
momentary increase of the effective angle of attack to a value beyond the static stall angle, causing separation and the 
formation of the leading-edge vortex. Ultimately, stall occurs. As soon as the transverse velocity component inverts its 
sign, the stall disappears and another leading-edge vortex starts to develop on the other side of the airfoil. This process 
repeats itself over the oscillation cycle and may cause massive mechanical loads to appear on the airfoil surface. As we 
can see in Figs. 3(c)-(e), a leading-edge vortex is clearly displayed on the lower side of the airfoil, which increases as 
KC increases. Figure 3(e) show the largest leading-edge vortex, since it corresponds to the highest KC value, which 
means that the local angle of attack is the largest for all cases studied. This behavior is qualitatively similar to the 
dynamic stall phenomenon that happens in the flow around a pitching airfoil, as discussed in Akbari and Price (2003). 
 

 
 

(a) 
 

 

(b) 
Figure 4. Variation of the oscillation amplitude A with: (a) KC, for fe constant; (b) fe, for KC constant. 

 
Figures 4(a) and 4(b) show the behavior of the oscillation amplitude, A, obtained from the lift-coefficient curves, 

plotted against KC and fe, respectively. In Fig. 4(a), where the excitation frequency is held constant, we notice that the 
oscillation amplitude increases linearly with KC for the lowest values of fe. As fe increases, the amplitude shows a non-
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linear behavior and increases more quickly. As the KC values are held constant and fe increases, we observe the same 
pattern as in the previous case, where A is approximately linear when KC = 1.0, but increases non-linearly with fe for 
higher values of KC. The results presented in Fig. (4) indicate that high KC and fe values have a non-linear effect on the 
loading amplitude response. 
 
5. CONCLUSIONS 
 

This paper describes vortex-method simulations of an oscillating freestream flow around a NACA 0012 airfoil for 
Re = 1.7×105 and α = 0. The results indicate that, in the range of values chosen for the Keulegan-Carpenter number, 
KC, and the excitation frequency, fe, the oscillatory component of the freestream flow does not modify the observation 
for non-oscillating flows that the drag coefficient oscillates with twice the frequency of the lift coefficient. It was also 
shown that KC and fe have a direct influence over the wake development and the oscillation amplitudes of the force 
coefficients. As we can infer from the temporal variation of the lift and drag coefficients, the amplitude of oscillation 
increases as the value of KC and fe increase. This behavior is linear for the lower values of KC and fe and non-linear for 
the higher values. We also observe that the vortex shedding frequency is equal to the excitation frequency in all cases 
studied. For the higher values of KC used in the simulations, the boundary layer undergoes a large temporal variation, 
going from attached to massively separated conditions when the local angle of attack reaches high values. This behavior 
is similar to dynamic stall.  

The results obtained with our simulations show that the numerical modeling employed is capable of providing 
simulations that represent accurately the oscillatory phenomena that occurs in this class of flows. Specifically, wind 
turbines in regular operation are subject to the conditions here investigated, either because of turbulent freestream flows 
or because of shadow effects, and this kind of fluid dynamic tool can be used in the analysis of the wind turbine 
performance.  
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