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Abstract. Manipulators with parallel architecture have inherent advantages in some applications with respect to serial 
manipulators, like high stiffness, accurate positioning and can move at high velocities. Therefore, they address great 
interest in some industrial applications and medical fields. In this paper, a multi-objective optimization process is 
proposed in order to enhance the design of parallel structures. Characteristics of parallel structures like workspace, 
singularities and compliant displacements  are considered in order to propose design criteria obtaing a 
computationally efficient objective functions. The proposed procedure has been applied to a 5R Symmetric Parallel 
Manipulator.  
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1. INTRODUCTION  
 
 A parallel manipulator typically consists of a moving platform that is connected to a base by several serial chains 
and/or closed mechanisms, called limbs. Features of such system can present better stiffness and payload capacity with 
respect to the serial architectures, and high velocity and acceleration during the operation. Furthermore, errors in the 
joints are not cumulative, which contributes for its overall accuracy. Due to their characteristics they have been studied 
extensively both from theoretical and practical viewpoints. Prototypes have been conceived and built together with the 
development of theoretical investigations on kinematics and dynamics. The attention are focused to a number of 
possible industrial applications such as manipulation (Gonçalves and Carvalho, 2008a; Macho, et al., 2008), packing 
and assembly/disassembly machines (Figielski et al., 2007), motion simulation (Stewart, 1965), milling machines 
(Hess-Coelho et al., 2001), toys and sensors. However, they have some disadvantages such as small and complex 
workspace with internal singularities and the complexity of their forward kinematics (Gosselin and Angeles, 1990; 
Macho et al., 2008; Gonçalves and Carvalho, 2008b).  
 In many industrial applications the project and the performance of a robotic structure can be improved through a 
suitable optimization procedure. In fact optimization methodologies have long been applied to mechanism synthesis in 
order to obtain high performances and suitable mechanism dimensions which several performance criteria can be taken 
into account for design purposes. 
 Modern design of manipulators can to consider simultaneously several aspects on its procedures using optimization 
methods whose can be solved by using well-established mathematical techniques in commercial software packages 
(Ceccarelli et al., 2005). 
 Performance indices can be used to characterize a manipulator which is associated to an applied optimization 
criteria. Then, the development of manipulators to perform a wide range of tasks can be achieved by different 
optimization criteria depending on the resources and general nature of tasks to be performed. The designer problem 
consists in choosing the performance criteria and justifies the optimality of different designs since each performance 
criteria and optimization method, in general, gives different results. 

In this paper is presented a formulation for optimum design of parallel structures that considers the workspace, 
singularities and stiffness. The analysis of stiffness and singularity consider the methodology proposed by Gonçalves 
and Carvalho (2008a, 2009) to formulate objective functions. In order to show the procedure the methodology is applied 
to a 5R symmetric parallel manipulator to obtain its design parameters. As the workspace of the 5R symmetric parallel 
manipulator has a complex shape, it has been represented through an equivalent area.  
 
2. THE 5R SYMMETRIC PARALLEL MANIPULATOR  
 
 A five-bar manipulator is a typical parallel manipulator with the minimal degrees of freedom, which can be used for 
positioning a point on a region of a plane. A 5R parallel manipulator consists of five bars that are connected end to end 
by five revolute joints, two of which are connected to the base and actuated, as sketched in Fig. 1a. Such a manipulator 
with a symmetric structure has attracted many researchers, who have investigated its position analysis (Liu et al, 2006; 
Alici and Shirinzadeh, 2004), workspace (Macho, et al., 2008), assembly modes (Cervantes-Sánchez et al., 2001, 
singularity (Macho et al., 2008; Mbarek et al., 2007; Figielski et al, 2007; Gonçalves and Carvalho, 2009a), 
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performance atlases (Liu et al, 2006) and kinematic design (Cervantes-Sánchez et al., 2001; Alici and Shirinzadeh, 
2004).   
 

 
         (a)                                                (b) 

Figure 1. The 5R Parallel Manipulator (Liu et al., 2006). a) The typical 5R linkage; b) Kinematics parameters. 
 

 Its kinematics can be analyzed using the parameters shown in Fig. 1b, where each actuated link AiBi has an active 
joint Ai and a passive one Bi (I = 1,2), the non-actuated links BiP are coupled in a common passive joint P. To describe 
its kinematic behavior an inertial frame OXY has been assumed fixed to base A1A2 with X-axis as coincident with the 
line joining O to A2, Y-axis orthogonal to A1A2 and upward, and the origin O coinciding with the center point of link 
A1A2. The kinematic variables are the input angles θ1 and θ2 as sketched in the Fig. 1b. The 5R symmetric linkage the 
length of the actuated links are equals and the length of non-actuated links too, i. e.,  A1B1 = A2B2 = r1 and                 
B1P = B2P = r2. The length of the base link A1A2 = 2 r3.  
 The kinematic model relates the position of point P, given by its coordinates x and y, to the input angles θ1 and θ2, as 
follows. 
 
2.1. Inverse Kinematics 
 
 The input angles θ1 and θ2 can be obtained, from the inverse kinematics, when the position of point P is known 
using vector relations. 
 The kinematic analysis can be done from Fig. 1b, considering both equations: 
 
 2 2 2 2= + +

uuur uuuur uuuuur uuuur
OP OA A B B P                 (1) 

 1 1 1 1OP OA A B B P= + +
uuur uuuur uuuur uuuur

               (2) 
 
or in a scalar form 
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 If the coordinates of the point P are known, the inputs angles, θ1 and θ2, for reaching this position can be obtained 
from Eqs. (3) and (4) as 
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 Equation (5) give four solutions for inverse kinematics problem of the 5R manipulator. 
 
2.2. Direct Kinematics 
 
 The direct kinematics problem consists in obtaining the coordinates of point P it the inputs angles θ1 and θ2 are 
known from Eqs. (3) and (4) one can write 
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 The Equations (8) and (9) yield to 
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 The y coordinate can be obtained substituting  Eq. (10) into Eq. (9) giving 
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 Equations (10) and (14) provide two solutions for the forward kinematic problem of the 5R manipulator.  
 
3. A MULTI-OBJECTIVE OPTIMIZATION DESIGN FOR PARALLEL STRUCTURES 

 
Once the numerical technique is chosen or is advised for solving a proposed multi-objective optimization problem, 

the main efforts can be addressed to the formulation of common algorithms for numerical evaluation of optimality 
criteria and design procedure constraints. In the following, main aspects are overviewed by emphasizing the common 
numerical evaluations for parallel manipulators in terms of workspace, singularity and stiffness. 
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3.1 General concepts 
 

A multi-objective optimization solves numerically problems subject to constraints as: obtaining the set of design 
variables x which will  
 

minimize 1 2( ), ( ),..., ( )kf x f x f x⎡ ⎤⎣ ⎦                             (16) 
 

for k objective functions ℜ→ℜn
if :  subject to equality and inequality constraints. For the vector of decision 

variables, [ ]T
nxxxx ...,,, 21= , the task is to determine the set F of all vectors which satisfy the constraints and the 

particular set of optimal values [ ]Tnxxxx **
2

*
1

* ...,,,= . 
As soon as there are several objectives functions to be optimized simultaneously, usually there is no longer a single 

optimal solution but rather a whole set of solutions. When several objectives are optimized at the same time the search 
space becomes partially ordered. To obtain the optimal solution there will be a set of optimal trade-offs between the 
conflicting objectives. 

In this context, best solution means a solution not worst in any of the objectives and at least better in one objective 
than the other. An optimal solution is the solution that is not dominated by any other solution in the search space, which 
is called a Pareto-optimal and the entire set of such optimal trade-offs solutions is called a Pareto- optimal set. 

Even though there are several ways to approach a multi-objective optimization problem, most works is concentrated 
on the approximation of the Pareto set. 

Given a set of alternatives, the problem of choosing the best alternative depends on the way the data is classified. 
One of the most popular evaluation methods is to associate to each alternative a real value, and the best alternative is 
chosen as the one with the largest or the smallest value. 

In a higher dimension the notion of the smallest and the largest values is not available. In this case, the concept of 
partial order in a multidimensional space can be applied. 

The Pareto cone: Let n
+ℜ  be the positive octant of the n-dimensional Euclidean space. Then, for two vectors 

( )21 ,..., xxx = , ( )nyyy ,...,1=  in nℜ , one has yx ≤  if and only if ii yx ≤ , ni ...,,1= . The cone n
+ℜ  is called the 

Pareto cone because the original Pareto optimality is defined by the order generated by this cone. When n=1, the usual 
order of real numbers is exactly this order. The order is total in the sense that any two numbers x and y are comparable: 
either yx ≥  or xy ≥ . On the other hand, when n > 1 this order is not total. 

By using the concept of partial order it is possible to define the concept of optimal solution. However, in a real 
world situation, a decision making (trade-off) process is also useful to evaluate optimal solutions. Therefore, in this 
paper a procedure to determine the Pareto frontier is presented. An up-to-date discussion about this subject is presented 
by Pardalos and Du (2008). 
 
3.2. Optimum workspace for planar parallel manipulators 

 
In general the kinematic model of parallel structure is highly non linear and the end-effector position and orientation 

are coupled. Furthermore its workspace has a complex shape. Then, in order to draw its workspace discretization 
algorithms are usually applied because they are general and can be applied to any kind of kinematic architecture. The 
method consists in discretizing the three-dimensional space, solving the inverse kinematics at each point of the space, 
verifying the constraints that limit the workspace (Ceccarelli et al., 2005). 

The optimization process can to consider the workspace as an objective to be optimized. In this paper the workspace 
is computed through geometric approach, i. e., the formulation uses geometric entities like parallelepiped, cylinder, 
sphere, rectangle and so on, that can consider the workspace in positioning and the orientation simultaneously. In such 
cases a fixed area, for planar geometric entities, or volume for solids, is the goal to be achieved (Gonçalves et al., 2007). 

As the 5R linkage is a planar structure, in this work the methodology is applied to maximize the area of the 
workspace. For the analysis purposes the workspace area can be approximated by the smallest rectangle area Ap, 
containing the workspace. Thus, the problem consist in finding the size of design parameters such the workspace area 
Ap, which is a numerical approximation of the real volume, is as close as possible to a prescribed area A.  

Therefore, if x and y are the sides of a rectangle, the objective function of maximum area can be achieved through 
the expression, Fig. 2, 

 
          (17) yxf .1 =
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Figure 2. The rectangle geometry. 
 

3.3. Optimum stiffness and singularity for planar parallel manipulators 
 
 One of the important limitations of parallel mechanisms is that they may lead to singular configurations in which the 
stiffness of the mechanism is compromised. The physical meaning of a singularity in kinematics refers to those 
configurations in which the number of degree of freedom (dof) of the mechanism changes instaneously. The concept of 
singularity has been extensively studied and several classification methods have been defined. Gosselin and Angeles 
(1990) suggested a classification of singularities for parallel manipulators into three main groups. The first type of 
singularity occurs when the manipulator reaches internal or external boundaries of its workspace and the output links 
loses one or more dof. Second type of singularity is related to those configurations in which the output link is locally 
movable even if all the actuated joints are locked. Third type is related to linkage parameters and occurs when both first 
and second type of singularities is involved. Tsai (1990) classify the tree type of singularity by: inverse singularity; 
direct singularity and combined singularity respectively. Their method is based in finding the roots of the determinant 
of the manipulator’s Jacobian matrices. Another alternative approach to obtain singular configurations for parallel 
architectures is based in the analysis of stiffness matrix (Gonçalves and Carvalho, 2009). 

Another problem of parallel manipulator are the compliant displacements that are changes on geometry due to the 
applied forces (Rivin, 1999). These compliant displacements in a parallel robotic system produces negative effects on 
static and fatigue strength, wear resistance, efficiency (friction losses), accuracy, and dynamic stability (vibration). The 
growing importance of high accuracy and dynamic performance for parallel robotic systems has increased the use of 
high strength materials and lightweight designs improving significant reduction of cross-sections and weight. 
Nevertheless, these solutions also increase structural deformations and may result in intense resonance and self-excited 
vibrations at high speed. Therefore, the study of the stiffness becomes of primary importance to design multibody 
robotic systems in order to properly choose materials, component geometry, shape and size, and interaction of each 
component with others. Some examples of design procedures based on stiffness analysis can be found in (Yoon et al., 
2004; Deblaise et al., 2006) 

Thus, the overall stiffness of a manipulator depends on several factors including the size and material used for links, 
the mechanical transmission mechanisms, actuators and the controller (Tsai, 1999). In general, to realize a high stiffness 
mechanism, many parts should be large and heavy. However, to achieve high speed motion, these should be small and 
light. Moreover, one should point out that the stiffness is greatly affected by both the position and the values of the 
mechanical parameters of the structure parts (Yoon et al., 2004). 

There are three main methods have been used to derive the stiffness model of parallel manipulators (Deblaise et al., 
2006). These methods are based on the calculation of the Jacobian matrix (Company et al., 2005); the Finite Element 
Analysis (FEA) (Bouzgarrou et al., 2004) and the Matrix Structural Analysis (MSA) (Deblaise et al., 2006; 
Przemieniecki, 1985; Dong et al., 2005; Gonçalves and Carvalho, 2008a).  

The methods based on calculation of the Jacobian matrix are simple and they supply one initial estimation of the 
stiffness matrix. The uses of Finite Element Analysis models are reliable, but these models have to be remeshed over 
again, involving very tedious and time-consuming routines. However these models are well adapted to validate 
analytical models, or some experimental results. Methods based on matrix structural analysis are simple and easy for 
computational implementation.  
 In this paper, the stiffness matrix is obtained from the method Matrix Structural Analysis (MSA), also known as the 
displacement method or direct stiffness method (DSM). The methods of structural analysis is based on the idea of 
breaking up a complicated system into component parts, discrete structural elements, with simple elastic and dynamic 
properties that can be readily expressed in a matrix form. The discrete structure is composed by elements which are 
joined by connecting nodes. When the structure is loaded each node suffers translations and/or rotations, which depend 
on the configuration of the structure and the boundary conditions. For example, in a fixed linkage no displacement 
occurs. The nodal displacement can be found from a complete analysis of the structure. The matrices representing the 
beam and the joint are considered as building blocks which, when fitted together in accordance with a set of rules 
derived from the theory of elasticity, provide the static and dynamic properties of the whole structure       
(Przemieniecki, 1985).   
 The stiffness matrix kj of a j-th three-dimensional straight bar with uniform cross-sectional area is  



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

bjbj

bjbj
j kk

kk
k                                     (18) 

 

where kbj is given by: 
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 On Equation (19) Ej and Gj are, respectively, the modulus of elasticity and the shear modulus of element j; Iyj, Iyz 
are the moment of areas about the Y and Z axes, respectively. J is the Saint-Venant torsion constant and Aj is the           
cross-sectional area. 
 The stiffness of a joint is given by (Gonçalves and Carvalho, 2008a): 
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 Where kc = diag(ktx, kty, ktz, krx, kry, krz); ktx, kty, ktz are the translation stiffness and  krx, kry, krz the rotational 
stiffness along the axes.  
 Application of MSA needs to write the stiffness matrices of all elements in the same reference frame. This 
transformation, element by element, must be held before the assembly of the stiffness matrix of the structure. This 
transformation matrix, Tj, can be obtained from algebra linear. 
 Thus, the stiffness matrix of the elements in a common reference frame (elementary stiffness matrix), for 
segments, e

jk , and for joints, e
jok int , are: 

 

 T
jjj

e
j TkTk ][][][][ =                      (21) 

 T
jjoj

e
jo TkTk ][][][][ intint =                          (22) 

 

After obtaining the stiffness matrix of each beam and joint in a common reference frame, the stiffness matrix of 
whole structure can be obtained using the MSA. Based on how the structure elements are connected, from their nodes, it 
is possible to define a connectivity matrix. As each segment and joint stiffness are known, the global stiffness matrix is 
obtained by a superposition procedure. This global stiffness matrix is singular because the system is free. After 
application of the boundary conditions, for example, where the displacements are known, the new matrix is invertible 
and the compliant displacements can be done by: 

 

{U} = K–1 {W}          (23) 
 

Where U are the compliant displacements and W are the external applied wrenches. This procedure is described in 
detail in (Gonçalves, 2009).  

In a singular position the stiffness is compromised, and the inverse stiffness matrix of the whole structure, Eq. (23), 
in this configuration is badly scaled, identified by using a condition number. A large condition number indicate a nearly 
or singular position. 

The condition number, cond, of a square matrix is the product of the norm of the matrix and the norm of its inverse 
(Meyer, 2000), Eq. (24). 
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 There are different ways to evaluate the matrix norm (||  .  ||). In this paper the norm is calculated by: 
 

 ∑
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kMaxK 1   (Absolute maximum sum of columns of K)                           (25) 

 
 As a result, a general computational routine for mapping workspace of a parallel robotic structure is given, since the 
stiffness matrix is dependent of the configuration of the structure. Simultaneously with the mapping of workspace, the 
method MSA is applied to obtain the stiffness matrix of structure and the computation of the conditional number.  
 Figure 3 represents the discrete structural elements of the 5R linkage where each structural element is defined by 
two nodes. Then, from Figs. 1b and 3 one has: link A1B1 is represented by nodes 1-2, link B1P by nodes 3-4, link PB2 by 
nodes 5-6, link B2A2 by nodes 7-8, the link base A1A2 by nodes 1-8, the passive joint B1 by nodes 2-3, the passive joint P  
by nodes 4-5, the passive joint B2 by nodes 6-7. In nodes 1 and 8 are the active joints that, for the MSA methodology are 
considered as blocked in order to obtain the compliant displacements. 
 The segments are built with steel (E = 2 x 1011 N/m2 and G = 0.8 x 1011 N/m2); the cross-sectional area is circular 
with R = 0.005m diameter and r1 = 0.1m; r2 = 0.1m and r3 = 0.1m. The boundary conditions are given by actuators 
considered as blocked in nodes 1 and 8. In order to obtain compliant displacements an external force and torque are 
applied on node 5, which is considered center of the end-effector.  The others joints are passive and modeled with ktx = 
kty = ktz =2 x 1011 N/m; krx = kry = 2 x 1011 N/rad and krz = 0 N/rad like proposed by Gonçalves (2009).    
 Applying the methodology MSA for the 5R manipulator is possible to map the stiffness, Eq. (22) simultaneously 
with calculation of the singularities positions, given by the conditional number, Eq. (23). 
  

 
 

Figure 3. Nodes of the 5R mechanism to apply the MSA method. 
 

 The objective function for the analysis of the singularity can be given by 
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where [ ]0( )cond K  is the initial value.  

 The objective function that evaluates the stiffness, obtained by Eq. (23), considers the compliant displacements of 
point P, node 5, corresponding the linear compliant displacements x and y, and the rotational compliant displacement 
about axis z. The procedure for obtained the compliant displacements is described in details in Gonçalves (2009) and 
Gonçalves and Carvalho (2008a). The corresponding objective functions can be given as: 
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where (f3,x)d, (f3,y)d and (f3,φz)d are the compliant displacements obtained by Eq. (23) and, the (f3,x)g, (f3,y)g and 

(f3,φz)g are the  initial values whose  may be different for each problem.  
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3.4 Weighting Objective Formulation 
 

     To formulate the performance criterion that takes into account all the objective functions in such a way that an 
overall multi-criterion objective function can be written, the Weighting Objective Method is used. The minimization 
process leads to a Pareto optimal solution or, alternatively, to a set of optimal solutions. The scalar objective function 
that represents the performance criteria altogether is written as:      

 

∑
=

=
k

i
ii xfxf
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)()( α             (28) 

 

where αi ≥ 0 are weighting coefficients that represent the relative importance of each separate criterion. From the 
numerical point of view the minimization process depends also on the numerical values that express the objective 
functions. Due to scaling problems, the numerical values that express the objective functions should be adjusted. 
Otherwise, αi will not represent the relative importance of the objective functions (Deb, 2001). Consequently, Eq. (28) 
should be rewritten as follows: 
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where ci
  are scaling factors. Usually, satisfactory results are obtained if 0
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if  represents the minimum 

of the objective function fi calculated separately (Eschenauer et al., 1990). Equation (29) was used in the optimization 
process shown in this paper. 
 

4. NUMERICAL RESULTS 
 

Numerical simulations were performed to evaluate the proposed objectives in a unified approach where the 
maximum area f1, the singularity avoidance f2 and the maximization of the stiffness f3 are considered in the           
multi-objective formulation. 

To obtain an optimal design of the structure the goal is to maximize the workspace, given by the objective function 
f1, minimize the singularities, given by the objective function f2, and maximize the stiffness, given by the objective 
function f3. Then, without loss of generality, a minimization objective function can be given by 
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The proposed formulation, Eq. (30), can be solved as a maximization problem by multiplying this objective function 
by (-1). 

The design variables are the link diameter R, and the links length r1, r2 and r3 of the 5R linkage which are comprised 
in the following intervals: 0.001 < R < 0.05 m,     0.01 < r1 < 1 m, 0.01 < r2 < 1 m and 0.01 < r3 < 1 m, respectively. 

Since an initial design (R0, r1,0, r2,0, r3,0) are given, weighting factors need to be determined that to obtain an 

appropriate value, the objective function is evaluated without such constants, that is, )1( 0 =if . The values of the 
objective functions when using such design are set as weighting factors 0

if .  
Deterministic and heuristic optimization methods were used to find the optimal solution of the problem.  
For a deterministic evaluation, a Sequential Quadratic Programming (SQP) was adopted, since it belongs to the state 

of the art in nonlinear programming methods. At the major iterations, a positive definite quasi-Newton approximation 
of the Hessian of the Lagrangian function is calculated using the BFGS method (Powell, 1978). 

Results obtained by this methodology are presented in Table 1. 
 

Table 1. Optimal design provided by a deterministic procedure. 
 

Initial design 
(R, r1, r2, r3) 

0
1f  0

2f  0
1,3f  0

2,3f  0
3,3f  Optimal design 

(R, r1, r2, r3) 
(0.005, 0.1, 0.1, 0.1) 2.7e-12 3.3e+18 9.4e+3 0.3 2.0e+5 (0.05, 0.01, 0.01, 1.00) 
(0.01, 0.3, 0.3, 0.3) 2.4e-11 8.0e+17 4.0e+4 2.4 1.4e+5 (0.037, 0.010, 0.031, 0.010) 

(0.03, 0.01, 0.01, 0.01) 2.7e-14 5.4e+20 7.9343 3.3e-004 4.1e+5 (0.05, 0.01, 0.13, 1.00) 
 

The problem under consideration is highly nonlinear then, it follows that small deviation in the design values may 
lead to big deviations in the objectives. In this context the deterministic optimization is well suited to perform a fine 
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tuning of the design parameters aiming to improve the overall performance of the system. The interpretation of this 
behavior is: if the small decrease of any performance will lead to a bigger increase of other performance, this new 
configuration will be preferred. 

A second analysis was carried out by means of a heuristic optimization methodology, the so called Differential 
Evolution Methodology. This strategy is based on genetic algorithm and has been proven to be suitable to deal with a 
number of problems. 

A feature of such methodology is that initial design is not required. Furthermore, local minima are not a problem, 
since the search direction does not requires information about the gradient of the objective function. 

Without loss of generality, weighting parameters were chosen the same used in the first experiment. It should be 
pointed out that different values may influence the optimal design. This behavior can be used to provide a higher 
priority to some objective against others. 

The optimal results are presented in Table 2. Different evolution criteria can be set in the procedure. The current 
implementation provides nine strategies of evolution (lines 1 to 9, respectively). Each strategy was evaluated three 
times (columns 1st , 2nd and 3rd respectively).  
 

Table 2. Optimal design provided by a heuristic procedure. 
 

 Optimal design 
Strategy R r1 r2 r3 

 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 
1 0.0410 0.0305 0.0453 0.8700 0.7141 0.6138 0.0936 0.2295 0.6215 0.4058 0.1262 0.8608 
2 0.0018 0.0044 0.0345 0.9842 0.3264 0.5511 0.1755 0.5356 0.4315 0.1152 0.6579 0.6480 
3 0.0318 0.0345 0.0010 0.7743 0.7070 0.8668 0.9335 0.4479 0.6164 0.9730 0.0294 0.9901 
4 0.0071 0.0454 0.0392 0.4955 0.5384 0.3442 0.8545 0.1181 0.6118 0.8752 0.8276 0.7438 
5 0.0063 0.0217 0.0476 0.6354 0.3660 0.4495 0.1352 0.5627 0.0694 0.1430 0.7451 0.8681 
6 0.0120 0.0105 0.0148 0.3798 0.8969 0.7337 0.0966 0.1081 0.1464 0.6437 0.0537 0.8384 
7 0.0159 0.0193 0.0206 0.0557 0.5973 0.8336 0.2035 0.8738 0.1430 0.7230 0.9342 0.0699 
8 0.0311 0.0080 0.0011 0.8205 0.5638 0.1973 0.8874 0.0145 0.1511 0.9318 0.7690 0.2754 
9 0.0015 0.0205 0.0455 0.5370 0.3810 0.5567 0.2866 0.1398 0.0426 0.9468 0.4407 0.0633 

 
In this case the method is not attracted by a local minimum. Differences on the optimal design are justified by a 

highly nonlinear nature of the problem and a high sensitivity of the objectives regarding small changes on the design 
variables. 

 

5. CONCLUSION 
 

In this paper a methodology to obtain design parameter of a parallel robotic structure was presented.  
First, inverse and direct kinematic equations of a 5R symmetric parallel manipulator were presented. It was followed 

by general concepts of multi-objective optimization concepts, optimum workspace formulation, stiffness and singularity 
analysis. 

A key point to evaluate multi-objective problems is the computation of weighting factors to correctly express 
objective priorities. 

The current study considered objectives with the same priority. It was achieved by using results of an initial design 
as weighting factors. Other applications can to use different weighting for the objective functions. 

Two strategies were used for the optimization process. The first strategy was a Quadratic Sequential Programming 
that could to improve the initial design by means of a local optimization. This method is recommended when a fine 
tuning of design variables is required. The improvement of the overall performance index is sometimes achieved by 
means of the penalization of individual objectives. The second strategy consists in a Differential Evolution 
Methodology which is a heuristic method to search for a global optimum. Different evolution parameters were 
considered in multiple runs.  

The results show that there is no unique solution for this problem. Then, it follows that multiple designs lead to 
similar objective values. The proposed formulation is able to deal with the complexity of the parameters evaluated 
because the problem is highly nonlinear and coupled. 

Future research includes the analysis of the Pareto frontier when a qualitative analysis is considered and the use of 
stochastic optimization methods to consider uncertainties in the parameters. 
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