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Abstract. This work presents an identification methodology of stiffness and damping parameters of anisotropic rolling 

bearings in a rotor-bearing system. The proposed method is based on Lyapunov matrix equation and state space 

representation. Through the definition of correlations used in matrix equation, it is possible to generate an algorithm 

that relates system physical parameters to the correlation matrices of the measured state variables in time domain 

without the knowledge of the external input forces. The purpose of this work is to make a theoretical study of the 

viability of this methodology to be used in real systems. The numerical procedures were performed considering a 

rotating system with twenty degrees of freedom modeled by finite elements and excited by random forces. The 

numerical results show the proposed method is feasible and it can be used to identify real machines. 
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1. INTRODUCTION  

 

In many industries, the demand for high power and high speed is increasing in a significant way. In order to achieve 

such performance, the accurate prediction and control of the dynamic behavior (unbalance response, critical speeds and 

the instability) is also an important requirement. The bearings are vital components in any rotating machine and the 

knowledge of their physical properties is pre-requisite to the prediction of the machine´s behavior, as the dynamic 

behavior of a rotating shaft is significantly influenced by the stiffness and damping characteristics of the bearings. 

The influence of bearings on the performance of rotor-bearing systems has been recognized for many years. In a 

general way, the identification methods of bearing parameters (stiffness and damping) are different concerning the 

domain, time or frequency, and the kind of excitation used. So, these methods require input signals (forces) and output 

signals (displacements/velocities/accelerations) of the dynamic system to be measured and the unknown parameters are 

calculated based on input-output relationships (Tiwari et al. 2004). 

Different excitations have been used, such as unbalance (Muszynska et al, 1993; Chen and Lee, 1997; Kim et al., 

2007), impulsive (Tiwari and Chakravarthy, 2006; De Santiago and San Andrés, 2007a), unknown forces (Tiwari and 

Vyas, 1995; Khan and Vyas, 1999). In practice, each method has its own strong and weak features, which lead to 

different levels of accuracy in specific applications. 

Another way to determine the dynamic bearing properties is using correlation analysis. One advantage of this 

method is the non-necessity of measuring the input signals. The parameters are estimated through the correlation 

matrices among the output signals in many time instants. Isermann et al. (1974) compared six identification and 

parameter estimation methods and highlighted some advantages of correlation analysis: short computational time, only 

little a priori knowledge about the structure of the model, initial values for the parameters are not necessary.  

Desforges et al. (1995) showed that correlation techniques produce good parameters estimation using just the 

responses to white noise excitation. Cooper et al. (1995) used ‘colored’ input signals to estimate modal parameters with 

success. Pederiva (1992) used correlation analysis of the state variables measured and Lyapunov matrix equation to 

identify parameters of a rotor-bearing system with 6 degrees of freedom. Eduardo (2003) used Lyapunov matrix 

equation and Artificial Neural Network (ANN) to diagnose faults in rotating mechanical systems excited by unbalance 

and stochastic forces. 

This work uses the method proposed by Pederiva (1992), extended by Sanches (2008), to identify physical bearing 

parameters of a rotating system modeled by finite elements and excited by white noise. Reductions of the number of the 

measured state variables are also considered. 

 

2. MATHEMATICAL MODELING 

 

Consider a system that can be modeled by a linear and time invariant mechanical system with n degrees of freedom 

is described by the differential matrix equation: 

 

 [ ]{ } [ ]{ } [ ]{ } [ ]{ }( ) ( ) ( ) ( )M t P t K t S u tξ ξ ξ+ + =&& &           (1) 
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where [M ] is the mass matrix, [P] is a matrix of speed proportional forces, [K] is a matrix of displacements proportional 

forces, { } { })(,)( tt ξξ & and { })(tξ&& are the vectors corresponding to displacements, speeds and accelerations in this 

order, [S] is the input matrix and {u(t)} is an input vector. 

The system described by Eq. (1) can be rewritten in a state-space representation as: 

 

{ } [ ]{ } [ ]{ }( ) ( ) ( )x t A x t B u t= +&             (2) 

 

where the state vector is given by: 
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The output equation of the system described by Eq. (2) is: 

 

{ } [ ]{ }( ) ( )y t C x t=               (4) 

 

[C] is the output matrix and {y(t)}is the output vector. 

Equation (2) has the solution given by (Melsa and Sage, 1973): 

 

{ } [ ]
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0 0( ) ( , ){ } ( , ) { ( )}

t
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x t t t x t B u dτ τ τ= Φ + Φ∫           (5) 

 

where Ф(t,τ) is the state transition matrix. 

The expression for correlation matrix is defined by: 

 

( ) ( ) ( ){ } ( ){ }{ }, T

xx xxR t t R x t x tτ τ ε τ   + = = +             (6) 

 

Performing some procedures detailed by Eduardo (2003), it is possible to obtain an equation that correlates the 

measured outputs with the physical system parameters. This expression is called Generalized Lyapunov Matrix 

Equation: 

 

[ ][ ] [ ][ ] [ ] [ ] [ ]
( ) ( ) ( )

TT T A

xx xx uuA R R A B t B e
ττ τ+ = − Ψ         (7) 

 

where Ψuu is the intensity matrix of the excitation process {u(t)}. 

Equation (7) can be expanded (Pederiva, 1992) as: 
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with 
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Evaluating Eq. (8), it is possible to obtain an expression that relates the physical parameters with the correlations of 

the measured output: 
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All the assumptions considered until now were made considering that the entire state vector can be measured. In 

practice, this does not happen because some degrees of freedom are not available by reasons such as dangerous 

conditions and difficulties of accessing some points of the system. By this way, a reduction of the number of the output 

measurements should be considered in the identification process in order to apply this methodology in real systems. 

 

2.1. Reduction of the output measurements 

 

It is known that displacements and speeds measurements are redundant to the mechanical systems observability. So, 

only with the displacement measurements it is possible to observe completely the system (Pederiva, 1992). If a 

reduction of the number of measured state variables is considered, Eq. (10) cannot be used because some variables are 

not measured. In addition to this, it was mentioned that it is impossible to access all the points in a machine, so there is a 

reduction of the displacement measurements to be taken in account.   

In order to identify the system, additional correlations should be used to replace the correlations of the unmeasured 

state variables. Pederiva (1992) proposes the utilization of a filter system to generate these additional data to be possible 

to identify the system. Figure 1 shows how the filter actuates in the mechanical system.   

 

 
 

Figure 1. Schematic representation of the filter actuation  

 

The filter system is represented by: 

 

{ } [ ]{ } { }( ) ( ) ( )
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with: 
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1 2

0 0 0

0 0 0 0
f

m

P

p p p

 
 
   =   
 
 

L

M M O M

L

          (14) 

 

The filter system has order q and it is stable, controllable and described according to Eq. (11). The values p1 to pm 

are the input filter parameters. 

When a reduction of the number of output measurements is done, the system observability should be guaranteed by 

the available output. Dynamic systems described in the way showed by Eq. (2) and Eq. (4) can be represented by 

different forms which are known as normal forms of state equation, which have others coordinate systems (Pederiva, 

1992). So the system input-output description changes as well as the input and output system matrices. 
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Through a specific coordinate base it is possible to have matrices [A
*
], [B

*
] and [C

*
] with simple particular internal 

structures which can be utilized in a parameter estimation algorithm. These special structures are obtained by the choice 

of specific bases using a coordinate transformation. 

Performing a coordinate transformation in the system: 

 

{ } [ ]{ }*x T x=             (15) 

 

where [T] is the coordinate transformation matrix. The system can be rewritten as: 

 

{ } { } { }* * * *( ) ( ) ( )x t A x t B u t   = +   &          (16) 

 

and 

 

{ } { }* * *( ) ( ) .y t C x t =              (17) 

 

From Eqs. (15), (16) and (17) the following relations are obtained: 

 

[ ][ ][ ]
1*

A T A T
−

  =             (18) 

 

[ ][ ]*B T B  =              (19) 

 

[ ][ ]
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C C T
−

  =              (20) 

 

Considering the dynamic system completely observable, if [T] is the observability matrix, so the matrices [A
*
] and 

[C
*
] have the internal structures (Shafai and Carroll, 1984): 
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f =2n, with n the number of degrees of freedom, and m the number of available measurements. [B
*
] has no especial 

structure (Pederiva, 1992). 

As discussed before, when the entire state vector is not available it is necessary to use an auxiliary system in order to 

become possible the system identification. The new system is formed by the dynamic system to be identified and the 

filter and they will be designated as expanded system and its expanded state equation is given by:              

 

{ } [ ]{ } [ ]{ }( ) ( ) ( ) ,
e e e e

x t A x t B u t= +&          (23) 

 

with 

 

{ }

*

,e

x

x

f

 
 

=  
 
 

L             (24) 

 

[ ]
*

*

( , )

0
,

e

f q q

A
A

P C N

 
=  
  

           (25) 

 

and 
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Equation (7) can be rewritten as: 

 

[ ][ ] [ ][ ] [ ]
T

A R R A Q′ ′ ′ ′ ′+ =           (27) 

  

3. CASE STUDY: ¼ OF STATE VECTOR AVAILABLE 

 

The main purpose of this work is to make a theoretical study of the proposed methodology in real systems. The 

system analyzed is showed by Fig. 2 and it is composed by one shaft, two discs and three rolling bearings. 

 

 
 

Figure 2. Rotor-bearing system 

 

The system was modeled by finite elements with 5 nodes and 20 degrees of freedom. Computational simulations 

were performed by using the softwares Matlab 7.0 and Mathematica 6.   

Considering that the angular displacements are difficult to be measured, it is proposed an identification method in 

which only the linear displacements (1/4 of the state vector), which are easily obtained by transducers, are known. In 

this case, it is necessary to assure that, with only the linear displacements, the system is still observable. So the 

transformation matrix is based on observability matrix and it is given by: 
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It is proposed a filter of order 6 to identify the system (Sanches, 2008), which has the following form: 

 

[ ]

1 2 3 4 5 6

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

N

n n n n n n

 
 
 
 

=  
 
 
 
  

         (29) 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

1 2 9 10 (6 ,10 )

0 0 0 0

0 0 0 0

0 0 0 0

fP

p p p p

 
 
 
   = 
 
 
  

L

L

M M O M M

L

L

         (30) 

 

Equation (27) will generate relations that can be used to estimate the bearing parameters and the matrices involved 

have the structures (Pederiva, 1992 e Sanches, 2008): 
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and 
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m is the number of state variables measured and 
*

m
x  is the measured state variable (linear displacements).  

Working with the lines 41 to 45, two estimation equations can be obtained. These relations contain the physical 

system parameters and the correlations among the filter outputs and the measured linear displacements (Sanches, 2008): 
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3.1. Numerical results 

 

The filter parameters were chosen based on the system stability (Sanches, 2008): 

 

• n1 = -2,5469.10
19

, n2 = -3,3293.10
14

, n3 = -2,9132.10
13

, n4 = -2,244.10
8
, n5 = -1,02.10

7
, n6 = -30, p1=p2=…=p10=1. 

 

The three rolling bearings were assumed to be equal and anisotropic in which the damping and stiffness are different 

in the vertical (z) and horizontal (x) directions, the cross terms were not considered. The estimation procedure was done 

by least squares applied to Eqs. (35) and (36) with 2 and 3 time delay instants (τ ). Two simulated cases were performed 

to test the robustness of this methodology: 

 

Case 1: 

 

Simulations were performed considering an experimental FRF. The parameter values for stiffness and damping are: 

Kxx = 30.10
7
N/m, Kzz = 2,5.10

7
 N/m, Cxx = 70.000 Ns/m and Czz = 10.000 Ns/m. 

The identified parameters are shown in Tab. 1 and Tab. 2: 

 

Table 1. Identified parameters by Eq. (35) 

 

Time delay Kxx Kzz Cxx Czz 

    2 τ´s 

    Error 
29,973x10

7 

(0,09%) 

2,4814x10
7 

(0,74%) 

69260
 

(1,057%) 

10838
 

(8,38%) 

    3 τ´s 

    Error 

29,972x10
7

 

(0,093%) 

2,4876x10
7 

(0,49%) 

68416 

(2,26%) 

10991
 

(9,91%) 
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Table 2. Identified parameters by Eq. (36) 

  

Time delay Kxx Kzz Cxx Czz 

    2 τ´s 

    Error 
29,973x10

7 

(0,09%) 

2,4983x10
7 

(0,068%) 

69445
 

(0,79%) 

10900
 

(9,00%) 

    3 τ´s 

    Error 

29,971x10
7

 

(0,097%) 

2,4988x10
7 

(0,048%) 

68439 

(2,23%) 

11023
 

(10,23%) 

 

Case 2: 

 

In this case, the bearing parameters have different physical properties. The aim here is to test the algorithm 

robustness taking into account these variations. The values adopted are: Kxx = 30.10
6
N/m, Kzz = 4,0.10

7
 N/m, Cxx = 

60.000 Ns/m and Czz = 15.000 Ns/m. 

The identified parameters are shown by Tab. 3 and Tab. 4. 

 

Table 3. Identified parameters by Eq. (35) 

 

Time delay Kxx Kzz Cxx Czz 

    2 τ´s 

    Error 
29,987x10

6 

(0,043%) 

3,9975x10
7 

(0,063%) 

60038
 

(0,063%) 

15463
 

(3,08%) 

    3 τ´s 

    Error 

29,982x10
6

 

(0,06%) 

3,9973x10
7 

(0,068%) 

60133 

(0,22%) 

15339
 

(2,26%) 

 

Table 2. Identified parameters by Eq. (36) 

 

Time delay Kxx Kzz Cxx Czz 

    2 τ´s 

    Error 
29,529x10

6 

(1,57%) 

3,8953x10
7 

(2,62%) 

60035
 

(0,058%) 

15967
 

(6,45%) 

    3 τ´s 

    Error 

29,478x10
6

 

(1,74%) 

3,8904x10
7 

(2,74%) 

60000 

(0%) 

15980
 

(6,53%) 

 

 

4. CONCLUSIONS 

 

An identification method for the bearing parameters estimation is presented for mdof flexible rotor-bearing systems. 

The Lyapunov matrix equation and correlation analysis were used to perform the estimations and the identification 

algorithm was illustrated through a numerical rotor-bearing model. 

The estimation results are considered satisfactory, however the smaller the number of outputs the more difficult the 

estimation procedure. This results from the transformation matrix that leads to a concentration of parameters.  

The filters are auxiliary systems and must be chosen in such a way that the system outputs are not smoothed.   
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The unbalance effect is the next step to be taken into account in the proposed procedure so that by improving this 

identification methodology it will be possible to apply it to real machines in the field. 
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