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Abstract. Vapor flow rate (VFR) is one of the main variables affecting the nebulization quality of oil flames in petroleum refinery 
furnaces. Too low values of VFR are directly correlated to a significant increase of the solid particulate material rate; as a 
consequence, the overall efficiency of the process decreases. As it has been observed, changes in VFR give rise to modifications of 
the flame visual patterns. Using characteristic vectors based on geometric properties of  the gray level histogram of instantaneous 
flame images related to combustion processes with  known a priori VFR values, feature vectors were  calculated for all the  images 
of a properly organized training set; then, a classification algorithm created a fuzzy measurement vector whose components 
represented membership degrees to the  ‘high nebulization quality’ fuzzy set. Aiming at developing a real-time diagnostic system to 
describe the nebulization quality of the process when VFR is unknown, the fuzzy classification  vector is assumed to be a state-vector 
in a random-walk model, and a Kalman filter attempts to predict this state after temporal input data issue. The successful validation 
of the output data, based on small training data sets, indicates that the proposed approach could be applied to synthesize a real-time 
algorithm dedicated to the evaluation of  the nebulization quality of combustion processes developed in petroleum refinery furnaces 
that use oil flames as the heating source. 
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1. INTRODUCTION  
  

In order to project a control system that could improve the energetic efficiency of petroleum refinery furnaces and 
reduce the emission rate of pollutants  especially CO, NOx and particulate material  it is necessary to set up a large 
network of heterogeneous sensors (thermocouples, flow meters, air-fuel ratio gauges, opacity meters, pressure sensors 
etc) dedicated to measure the main variables of the process and to give feedback to the controller. In the last two 
decades, however, video CCD cameras and frame grabbers have been incorporated to this measurement apparatus, since 
image sequences of flames captured by a near infra-red sensitive CCD and properly analyzed by suitable computer 
vision methods may provide a large quantity of useful information to the control.  Correlations between the brightness, 
spectral and geometric properties of flame images and the corresponding variables of the combustion process have been 
reported by several authors, who developed different methods to build characteristic vectors and use them to estimate a 
subset of the state variables that characterize a combustion point of operation; consequently, it is expected that a 
computer vision based system may eventually replace the majority of the sensors  used in traditional monitoring 
instrumentation of combustion processes. 

Using average images of flames propagating inside glass furnaces operated at known a priori physical conditions, 
Santos-Victor et al. (1993) constructed a flame classification training set whose feature vectors were based on simple 
luminous and geometric properties of those images. The classification results generated by a Bayesian classifier and an 
MLP neural network with back propagation learning demonstrated that it was possible to identify the condition 
operation point of the furnace from simple estimations of the properties of their average images.  

Tuntrakoon and Kuntanapreeda (1993), after establishing correlations between the colors of flames emanating from 
a premixed gas burner and the physical characteristics of the process, generated a pair of fuzzy rules based on triangular 
membership functions whose inputs measured the blue and orange content of RGB instantaneous images. Using those 
rules as a nonlinear controller, the authors have succeeded in implementing a real-time system to control the air and gas 
flow rates used in the combustion process.  

Considering that the light intensity of the flame is proportional to combustion rate and, consequently, to heat release, 
Bertucco et al. (2000) developed an original computer vision based method to describe the hot spots dynamics, which 
may cause the rise of CO and NOx emissions. Using a high speed camera to grab images at the frequency of 250 
frames/s, these authors apply a sequence of thresholding and logical AND operators to a collection of sequential images, 
in order to identify the regions associated to high temperatures. A characteristic vector, based on geometric properties of 
these regions, is calculated, and the time series associated to each of its components, when represented in phase space, 
properly describes the vortex dynamics of the hot spots. 

Baldini et al. (2000) investigated the correlation between parameters of image flames and the phenomenon of 
combustion instability that emerges when premixed combustors are used in industrial processes. After applying to each 
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instantaneous image a thorough segmentation process to separate the interest area (hottest zone of the flame) from the 
background, these authors constructed a characteristic vector based on some geometric properties of the isolated region. 
Considering the trend of those parameters as the measurements describing the temporal varying combustion process, 
their respective power spectra are generated and properly analyzed. As the relative importance of the characteristic 
vector parameters becomes explicit through the presence or absence of peaks in the spectra, a simple method to select 
the most significant parameters to control the process can be immediately elicited.  

Yan et al. (2002) found out correlations between flame image measured parameters (area and centroid of the 
luminous region, ignition point position and spread angle) and physical data (particle size of the pulverized coals tested 
and mass flow rate of the primary air) and used them to build a characteristic vector of the combustion process. 
Working in the same project, Lu et al. (2004) added to the previous characteristic vector a flame flickering measure, 
based on the power spectral density of the temporal brightness of individual pixels. Later on, Lu et al. (2005) improved 
the characteristic vector with measures of the flame temperature distribution, using estimations based on 3D flame 
images reconstructed from 2D images captured by three 120o separated cameras. Working on data and images 
proceeding from both laboratorial and industrial furnaces, these authors demonstrated that it is possible to monitor a 
real-time combustion process on the basis of a continuous analysis of flame images.  

Sousa et al. (2003), in a previous project developed at IPT (Instituto de Pesquisas Tecnológicas do Estado de São 
Paulo - Brazil), proposed various computer vision algorithms to extract features of instantaneous and average flame 
images, in order to generate crisp decision rules that could be used to diagnose several kinds of abnormalities of the 
combustion process, encompassing flame extinction, lack of symmetry, instability, low nebulization quality and high or 
low excess air. Despite the good agreement between the decisions issued by the application of those rules to image test 
sets and the known a priori  physical conditions concerning the capture of such images, three drawbacks of this 
diagnostic system must be pointed out: firstly, it required the calculation of average images and the application of 
heterogeneous computer vision methods to generate the parameters used by  the majority of the diagnostic decision 
rules, what imposed a limitation to the system computational performance; secondly, only two states  either strict 
normality or abnormality of the process  could be diagnosed, although the decisions that can be made by a human 
expert on the combustion process are not so strict; finally, history of measurements were completely ignored, for the 
diagnostics were proposed on the basis of present measured values only. 

Aiming at eliminating the above mentioned drawbacks, the referred combustion diagnostic system has been 
completely reformulated in this way: 1) computational performance has increased, since feature vectors based only on 
few properties of instantaneous images are used, and the algorithms applied to calculate such properties become simpler 
than those in Sousa et al. (2003); 2) fuzzy linguistic variables are used in the classification process, making the 
diagnostics more realistic; 3) decision-making becomes more robust, since predictions are obtained through a stochastic 
minimum variance least squares estimator. 

 Although the range of this diagnostic system encompasses five classes of abnormalities, as described above, only 
the modeling of nebulization quality diagnosis will be approached in this paper. It must be emphasized, however, that 
this parameter is of utmost importance in the combustion process, since low nebulization quality gives rise to an 
increase of the particulate material emission rate and to a decrease of the furnace thermal efficiency.  As it will be 
described in the next topics, nebulization quality depends mainly on the vapor flow rate, defined as: 

o

v

Q

Q
VFR=                              (1) 

where Qv refers to the nebulization vapor flow and QO to the fuel oil flow that compose the combustion mixture flow. It 
can be verified experimentally that low values of VFR are associated to combustion processes with low nebulization 
quality. Hence, as it will be explained below, this paper focuses on the development of an image-based diagnostic 
method to classify combustion processes according to its nebulization quality and to establish, by inference, an indirect 
correlation with the corresponding VFR value.  
 
2. EXPERIMENTAL APARATUS 
 

Experiments have been carried out at the IPT’s Combustion Laboratory, where a comprehensive infrastructure to 
measure and actuate on the variables of combustion processes is fully available. 

As illustrated in Fig. 1-a, the furnace used in the experiments is a vertical one, with the burner settled at the bottom 
and the gases exhaustion at the top. Having a total height of 4.0m, it is subdivided in 12 independent water cooled 
blocks and can process no. 1 fuel oil1 at a maximum flow rate of 80 kg/h. The burner has two (primary and secondary) 
air entrances for natural air suction with manual flow regulation valves (Fig. 1-b). 

 

                                                           
1 Fuel oil is classified into classes 1 to 6, according to its boiling point, composition and application. Number 1 fuel oils 
are distillated oils, i.e., they have low viscosity and are free of sediments and inorganic ash. 
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Figure 1.  (a) Vertical furnace used in the experiments; (b) Burner schematics. 
 
Flame images are generated by a standard monochromatic RS-170 CCD camera (Marshall Model 1070) using an 

objective lens (6mm, f1.2) supplied with a narrow band-pass (±10nm) interferometric filter at the 900 nm reference 
wave length, near to the sensitivity luminance peak (750 nm) of the CCD sensor and in the range of radiation of the 
soot, that corresponds to the major part of the radiation emitted by a typical fuel oil flame. All these optical components 
lie inside an air-water cooled housing with a double glass window, which is inserted into the furnace through a proper 
orifice (Fig. 2). The CCD camera output composed video signals are sampled at 25Hz by a frame grabber (Sensoray 
Model 611) as a series of interlaced 640x480 pixels images that are finally transferred to a Pentium-4 computer 
memory,  using specific frame grabber driver functions.  

 
 

    
 

Figure 2. (a) Installation of the air-water cooled housing; (b) Housing details. 
 
Flame images are processed by the image-based diagnostic system application, whose main tasks will be described 

in the next topics. 
 

3. IMAGE FLAME ANALYSIS 
 

Although combustion process characterization could be made on the basis of a large number of image feature 
properties, encompassing geometry, luminance and spectral aspects of the flame image, it was established that, to attend 
real-time performance requirements, only the simplest and fastest algorithms should be applied.  Noticing that the shape 
of image gray-level histograms changed for flames with different nebulization qualities (Figs. 3-4), ten geometric 
properties of these histograms have been selected to compose the characteristic vector { }iv  of a particular image flame 

I i: vi1 = x-coordinate of the centroid; vi2 = y-coordinate of the centroid; vi3 = x-projection of the radius of gyration; vi4 = 
y-projection of the radius of gyration; vi5 = coordinate x corresponding to 33% of the accumulated area of the histogram; 
vi6 = coordinate x corresponding to 66% of the accumulated area of the histogram; vi7 = coordinate x of the highest peak 
of the histogram;  vi8 = coordinate y of the highest peak of the histogram; vi9 = coordinate x of the second highest peak 
of the histogram; vi10 = coordinate y of the second highest peak of the histogram. 

The characteristic vectors { }iv  referred before have been calculated to every instantaneous image I i of a training set 

with 214 deinterlaced flame images corresponding to nine different VFR values (0.17, 0.21, 0.23, 0.26, 0.29, 0.36, 0.43, 
0.50, 0.57) associated to increasing nebulization qualities; at the same time, their respective fuzzy classifications to the 
fuzzy set ‘Flames with high nebulization quality’ have been made by an expert in combustion processes (Fig. 5). 

 

(a) (b) 

Input water flow 

Output water flow 
Input air flow 

Power and  
signal cables 

(a) (b) 
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Figure 3. (a) Flame with high nebulization quality;  (b) Flame with low nebulization quality. 
 

GRAY LEVEL HISTOGRAM: FLAME WITH HIGH NEBULIZATION QUALITY (VFR=0.57)
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GRAY LEVEL HISTOGRAM: FLAME WITH LOW NEBULIZATION Q UALITY (VFR=0.17)
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Figure 4. Gray level histograms of image flames: (a) High nebulization quality; (b) low nebulization quality. 
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Figure 5. Fuzzy set associated to the ‘High nebulization quality’ concept. 

 

After calculating the average histograms and the respective average characteristic vectors { }( )9,,1L=ivi
 for each of 

these nine image subsets, it has been established a straightforward method to determine the membership degree vector 

{ }ix of a training set image I i to the fuzzy set U = ‘Flames with high nebulization quality’:  

Let jiv , be an element of the matrix of 214 characteristic vectors{ }jv , where { }9,,1K∈j . Then 

 for every vector 214,,1, K=ivi ,  

  for every component 10,,1,, K=jv ji    

   calculate { } 91,min ,, K=−= kvvd jkjij
 

   determine |mink  { } 91,min ,, K=−= kvvd jkjij
 

   determine ( )min, ,kUx ji µ=  

(a) (b) 

(a) (b) 
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Applying the above fuzzy measurement algorithm, vector { }x  has been calculated for all the 214 images of the 

training set. Table 1 shows a collection of such measurements for five images of low nebulization quality, grabbed at 
VFR = 0.21. 

 
Table 1: Membership degree vector { }x  to fuzzy set U = ‘Flames with high nebulization quality’,                     

calculated for images of low nebulization quality (VFR=0.21). 
 

Images \ {x} x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

1 0,00 0,00 0,00 0,40 0,00 0,00 1,00 0,00 0,10 0,00 
2 0,00 0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00 0,00 
3 0,30 0,30 0,40 1,00 0,30 0,30 1,00 0,40 0,30 0,00 
4 0,00 0,00 0,00 0,00 0,00 0,30 1,00 0,00 0,00 0,00 
5 0,00 0,00 0,00 0,40 0,00 0,00 1,00 0,00 0,00 0,00 

 
 

4. ESTIMATION PROBLEM 
 

The literature presents some attempts to model the dynamics of flame propagation in a woodland fire through 
discretization of reaction-diffusion partial differential equations in one or two dimensions by finite differences and to 
estimate the state, the temperature distribution and the remaining amount of fuel, using the Ensemble Kalman Filter 
(Mandel et al., 2008; Balbi, Santoni and Dupuy, 1999). Mandel et al., for instance, generate synthetic ensembles for the 
Kalman Filter from the numerical solution of the reaction-diffusion equation. Combustion parameters of the model 
result from monitoring real woodland fire; as a result, the uncertainties are restricted to the PDE discretization. On the 
other hand, Hong, Yang and Ray (2000) simulate a state-space model of the truncated solution of the wave equation 
incorporating effects of acoustic waves and combustion dynamics in a generic gas-turbine engine combustion chamber. 
The researchers aim at designing a controller to cope with combustion instability, and their system model include 
uncertainties due to combustion parameters, model reduction (truncation) and boundary conditions. Both Mandel and 
Hong admit the difficulty in describing combustion behavior based on theoretical models. This brief discussion is meant 
to introduce and justify the approach this paper adopts.  
 

The problem of determining the quality of flames is formulated as a state-estimation problem in which the state to 
be estimated is a vector containing ten image parameters obtained as described on the previous section. A linear Kalman 
filter is implemented to observe the state. Since a detailed discussion on stochastic estimation or on Kalman filtering 
theory is out of scope, only the main hypotheses and assumptions for applying the filter equations are stated. First of all, 
both the system and observation models must be in state-space form. The system model is given by a state equation that 
describes the evolution of the state, the ten-parameter vector in this case.  
 

The difficulty that arises is: since those image parameters are geometric statistical properties of the gray level 
histogram, a physical relationship between them and the grabbed images is not straightforward. A model that can be 
used when there is little knowledge on the process is the random walk model, whose state-equation shows that system 
dynamics is governed by a noise vector, as given by the discrete-time equation, Eq. (2). 
 

 { } { } { })()()],([)( 1 kkkkk ttxtttx ω+Φ= −                         (2) 

 
where { } n

ktx R)( ∈  is the state at the kth time step k∆t, )],([ 1−Φ kk tt  is the transition matrix, in this case the identity 

matrix of order n, and { } n
kk txQt R)))](([,0N(~)( ∈ω  is a white zero-mean Gaussian noise vector with 

symmetrical positive semi-definite covariance matrix nxn
ktxQ R)))](([ ∈ , a necessary condition for Kalman filter 

implementation. 

In order to build the observation model, it is taken for granted that each state-vector computed by the fuzzy 

classification algorithm carries an inherent uncertainty, which can be modeled as a measurement noise that corrupts the 

state-vector. Mathematically, then, measurements are given by Eq. (3), 

 

  { } { } { },)()()( kkk ttxty ν+=                         (3) 
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where { } n
kty R)( ∈  represents the measurement at tk, and { } n

kk tyRt R)))](([,0N(~)( ∈ν  is a white zero-mean 

Gaussian noise vector with symmetrical positive definite covariance matrix nxn
ktyR R)))](([ ∈ . The white 

sequences { })( ktω  and { })( ktν  are assumed mutually independent; therefore, as a consequence of being Gaussian, 

they are also uncorrelated among themselves. However, noise covariance matrices shall not be assumed diagonal, once 

it is possible to compute them from the available data, as it will be discussed in the next section. 
 

Recursive estimation theory based on Kalman filtering is extensively discussed in the literature, see for instance 
Jazwinski (1970); thus, for the moment, it suffices to briefly describe the algorithm framework through its equations. 
For the model given by Equations (2) and (3), there is a forecast stage that seeks to produce the best estimates (in a 
stochastic least-squares sense) by propagating the previous estimated state based on the process model and its known 
(or admitted) statistics before new information is available. This way, Eq. (4) 
 

 { } { }u
k

f
k txtx )(ˆ)(ˆ 1−=                           (4) 

 
constitutes the state estimation forecast and Eq. (5) 
 

 ))](([))((][))((][ 11 −− += kk
u

k
f txQtxPtxP                    (5) 

 
gives the estimation error covariance matrix forecast. When new data is available, an update stage provides proper 
correction to the forecasted estimates of the state and error covariance according to Equations (6) and (7),  
 

 ( )f
kkk

f
k

u
k txtyKtxtx )}(ˆ{)}({][)}(ˆ{)}(ˆ{ −+=                  (6) 

 f
kk

u
k txPKItxP ))](ˆ(])[[]([))](ˆ([ −=                     (7) 

 
The correction is provided by the Kalman gain matrix, computed by Eq. (8) 

 

 1)])(())](ˆ(([))](ˆ([][ −+= k
f

k
f

kk txRtxPtxPK                   (8) 

 
thus completing the prediction-correction steps necessary for the next iteration. 
 
5. NEBULIZATION QUALITY ESTIMATION 
 
As it was stated on the previous section, the process covariance matrix ))](([ 1−ktxQ  to be included in Eq. (5) is 
calculated from available data in the following manner: According to the dynamical model from Eq. (2) and (3), state 
and measurement are the same for each training set (data set). It is admitted that the state, on each case, is corrupted by 
a white zero-mean Gaussian noise sequence that represents the uncertainty generated by the fuzzy measurement 
algorithm. In order to quantify this uncertainty, the complete history of state vector evolution, known for all sets, is 

assembled in a matrix nxm
ktxX R))](([ ∈ ,with n=10 (the dimension of the state vector) and m=214 (the complete 

history of state evolution); once it is done, the covariance of the state for the whole set of measurements, matrix  
nxnR][ ∈Γ , can be computed according to Eq. (9) 

 

 })]()].[({[][ TXEXXEXE −−=Γ                      (9) 

 
The calculation of matrix ][Γ  involved data in the range from “high” to “low” nebulization quality characteristic 

experiments and, therefore, states the uncertainties of an actual process, whose nebulization quality is unknown  a 
priori ;  on that ground, although the actual state covariance for a particular set is not available, matrix ][Γ is assumed to 
be an estimator of matrix ][Q  for each individual process, thus completing the random walk model for the state 
evolution. 
 

As to the observation model, measurements are synthetically generated for each set by adding to the state a white 
zero-mean Gaussian noise sequence with 10% of the maximum value assumed by the state variables throughout the 
process. The noise sequence is calculated using a routine from Press et al. (2002), operating within a self-made driver. 
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The estimation procedure was evaluated by running the Kalman filter algorithm with the model from Eq. (2) and (3), 
state covariance matrix ][Q  and measurement noise covariance matrix ][R  computed by Eq. (9) using vector }{ y  
instead of matrix ][ X , and using three training sets, namely VFR = 0.17, 0.29 and 0.5, respectively reproducing “low”, 
“medium” and “high” quality nebulization conditions. The initial state vector assumes a “high” nebulization quality, 
i.e., the state variables are given the value 1.0. Initial error covariance matrix, [P0], is assumed diagonal with variances 
0.3 for all experiments.  
 

Validation of the process is achieved by comparing the estimates for the three training sets with their expected fuzzy 
measured values.  

 
6. RESULTS AND DISCUSSION 
 

Estimates obtained with the proposed approach for the three situations appear in Figures 6, 7 and 8, in which the 
evolution of every state variable is separately represented with coloured lines. In order to classify nebulization quality, 
we averaged state variables for every time step and plotted it with a bold black line with triangle markers; this way, it is 
possible to visualize the trend of the state vector throughout the process. 
 

 
Figure 6: State evolution for VFR=0.17 nebulization quality data set. 

 

 
Figure 7: State evolution for VFR=0.29 nebulization quality data set. 
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Figure 8: State evolution for VFR=0.5 nebulization quality data set. 

 
The mean values for the state estimates obtained from data reproducing the VFR=0.17 (“low” nebulization quality), 

Figure 6, show that the process converges after 5 iterations to values ranging from 0.0 to 0.3, meaning that the estimated 
nebulization quality, in average, agreed with the expected result. However, the behavior of state variable no. 7, plotted 
in brown line, is not in accordance with the expectation for the following reason: It corresponds to the 253 pixel gray 
level, that is the most frequent for all images, since the relatively low dynamic range of the CCD camera used in the 
experiments gives rise to images with luminance saturated pixels at the higher gray levels. As similar behavior for this 
state variable is observed in Figures 7 and 8, one concludes that it is unable to distinguish nebulization quality features. 
On the other hand, it asserts the proper implementation of the Kalman filter for the three processes, since it represents a 
forcing term that actually converges for the recurrent value, 1.0 in average. 

 
The “medium” and “high” nebulization qualities are estimated respectively after 15 and 25 iterations of the Kalman 

filter processing data from VFR=0.29 and VFR=0.5, as depicted by the bold black line in Figures 7 and 8. Figure 7 
shows that the estimates of average state variables oscillate around 0.45, whereas in Figure 8 the bold black line has a 
positive decreasing gradient towards the “high” nebulization range. Despite those results, actual convergence of the 
estimation process must be asserted by the inspection of the observation residuals (Jazwinski, 1970), the difference 
between the effective measurement and its value as calculated by the filter using the last available state estimate. An 
estimation process is considered convergent once the normalized observation residuals is zero-mean Gaussian with 

standard deviation between νσ3−  and νσ3 , given by Eq. (10) 

 

))}(ˆ{)}(({
1

1
∑

=

−=
l

l j
k

f
k txtyr

ν
ν σ

,                     (10) 

 
wherel  represents measurement vector dimension (Fleury, 1985). In Figure 9, it is shown that those requirements are 
fulfilled for experiments with VFR set to 0.17 and 0.29; therefore, one concludes that they converge. In relation to 
VFR=0.50 experiment, the mean criterion is not accomplished. A possible explanation is the reduced number of 
measurements available for procedure validation. Nevertheless, one observes that the triangle-marked curve has a clear 
tendency towards the null value.  
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Figure 9. Normalized observation residuals 
 

 
7. CONCLUSION 

 
This work has investigated a method that potentially allows the classification of nebulization quality of oil flames in 

industrial processes. The method is based on the prediction of the dynamic behavior of a characteristic vector of 
parameters extracted from the gray level histogram of instantaneous flame images by the application of a fuzzy 
measurement algorithm to those images. A state-space approach through the Kalman filter provided estimates of image 
parameter vectors from data including experimental results of all the training image sets, reproducing several 
nebulization quality conditions. 

 
Validation of the method was accomplished by comparing those estimates with experimental data for which the 

nebulization quality, according to a definite VFR, was previously known. Results show that the filter estimates can be 
considered statistically convergent towards their expected values after few iterations. Since the computational time 
necessary to generate the histograms and the estimates for the parameter vector is on the order of nanoseconds, the only 
limitation for using the method as a real-time monitor of the combustion process nebulization quality is the image 
sampling rate. For instance, the experimental apparatus described in this paper is able to grab images at a frequency of 
25 Hz and, as it took the estimation algorithm at most 20 iterations to track the state, nebulization quality is determined 
in less than one second.  

 
We stress that, despite the poor state model used, the results obtained are promising; this suggests that such a 

method could be applied to real-time monitoring the nebulization quality of an oil refinery furnace, with the following 
advantages over conventional methods: (i) the instrumentation setup is based on a single CCD camera; (ii ) 
measurements are simple properties of the gray level histogram of flame instantaneous images; (iii ) diagnostics consider 
the time history of the process.  
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