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Abstract. The computation of macroscopic thermal properties of composites is of fundamental and practical 
importance, given the widespread application of such multicomponent materials. Many factors are important to 
determine the effective thermal conductivity of a composite material body. The main physical parameters are the 
temperature-dependent thermal conductivities of the constituent phases and, possibly, an interfacial thermal resistance 
between the phases. Microstructural parameters are related to the geometry and the spatial and size distributions of 
the dispersed phase. They include the relative volume amounts of the phases and higher order moments. An important 
class of composite materials is that of fibrous composites. The geometrical arrangement of the fibers in the matrix will 
depend on the manufacturing process of the composite. Of course, different geometrical arrangements of the fibers 
lead to different microstructure configurations, which in turn affect the effective thermal conductivity of the material. 
In this paper a first analysis is conducted numerically, to verify the influence of the microstructure configuration on the 
effective conductivity of 3-D short-fiber composite bodies. For this purpose, previous continuous and discrete 
formulations and computational implementation are used. The continuous equations are obtained through application 
of homogenization theory to the variational form of the heat conduction boundary value problem for the multiscale 
composite medium. The variational form is well suited for subsequent numerical solution by the finite element method. 
An expression for the effective thermal conductivity of the composite is provided, such that it can be computed for each 
constructed microstructure configuration. Several sets of numerical results are then presented and analyzed. 
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1. INTRODUCTION 
 

Milton (2002) defines composites as materials with inhomogeneities on length scales that are much larger than the 
atomic scale, but which are essentially statistically homogeneous at macroscopic length scales. Therefore, one may use 
the equations of classical physics at the length scales of the inhomogeneities. Composites are useful because the 
synergistic combination of materials with different attributes permits a range of properties to be obtained (Tsai, 1992). 
The underlying problem of composites consists in the resolution of the pertinent classical physics principles at the 
microscopic level. In practice, however, a much simpler route is adopted: one decouples the original problem into the 
macromechanics problem formed by the macroscopic equations and the micromechanics problem formed by the 
microscopic cell problem; the latter establishes the relation between the properties of the constituents and those of the 
composite body. To effect the decoupling rigorously, homogenization theory (Bensoussan et al., 1978; Auriault, 1983) 
is frequently employed. 

Lately, an often manufactured type of composite used for heat transfer and other applications consists of solid short 
fibers dispersed in a solid matrix (Mirmira, 1999; Hine et al., 2004). Short-fiber composites have low cost and are 
relatively easy to fabricate. For those thermal applications requiring strong directionality (i.e., anisotropy), short-fiber 
composites are suited, because the thermal conductivities in orthogonal directions may differ by more than one order of 
magnitude depending on the underlying microstructure. Common materials for fibers are carbon, glass and polymers, 
whereas common materials for matrices are thermosetting resins and thermoplastics (Hull, 1981). 
 
1.1. Fundamentals and review of literature 
 

The geometrical arrangement of the fibers in the matrix material will generally depend on the manufacturing process 
of the composite. Commonly when fabricating short-fiber composites, the matrix and fibers are mixed and pressed 
together, such that the fibers tend to align in planes perpendicular to the applied compression forces. Consequently, the 
fibers may become transversely aligned (lying on parallel planes but not parallel to each other in each plane) or even 
longitudinally aligned (lying on parallel planes and parallel to each other in each plane). Longitudinal alignment may be 
disrupted by possible small  random  deviations from the main direction  of alignment.  Other manufacturing routes may  
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Figure 1. (a) Ordered one-layer composite with longitudinally-aligned short fibers. (b) Orthogonal two-layered 
microstructure. (c) Cell with multiple fibers at random locations. 

 

distribute the fibers randomly throughout space, or may construct layered structures, in which fibers are oriented at 
different angles in each layer. Figure 1 illustrates various short-fiber composite microstructures. 

Many parameters are important to determine the effective thermal conductivity of composite materials (Milton, 
2002). In theory, only the temperature-dependent thermal conductivities, volume fractions, and spatial and size 
distributions of the constituent phases should be taken into account. However, in practice, other parameters may come 
into play. Because of manufacturing imperfections, the composite effective conductivity may also depend on an 
interfacial thermal resistance (or contact resistance) between the phases and also on a porosity (void) content in the 
matrix (Hasselman and Johnson, 1987; Mirmira, 1999; Hatta et al., 2000; Garnier et al., 2002). 

Given the complexities involved in the study of heat conduction in short-fiber composites, flexible approaches that 
can accommodate geometrical (e.g., cell and fiber shapes) and physical (e.g., contact resistance) variations are needed, 
in order to predict properties and aid interpretation of experimental measurements. Reviews of analytical, computational 
and experimental investigations of heat conduction in composite materials are presented, respectively, by Furmanski 
(1997), Cruz (2001) and Mirmira (1999). Analytical (Han and Cosner, 1981; Furmanski, 1991) and phenomenological 
(Benveniste et al., 1990; Dunn et al., 1993) models developed to predict the effective thermal conductivity of short-
fiber composites have limited accuracy and generally do not account for all the relevant physics and/or geometrical 
intricacies (e.g., the fibers are modeled as ellipsoids of revolution, rather than sharp-edged circular cylinders). An 
alternative to exact analytical treatments is statistical bound methods. The objective of these methods is to determine 
upper and lower bounds for the effective property of interest, based on a description of the medium’s microstructure via 
correlation functions. Nomura and Chou (1980) developed bounds for the longitudinal and transverse effective thermal 
conductivities of longitudinally-aligned composites with isotropic ellipsoidal short fibers. Finally, computational 
approaches (Veyret et al., 1993; Rolfes and Hammerschmidt, 1995), relative to analytical studies, are better suited to 
treat more complex geometries and phenomena. However, none of the approaches has been applied to short-fiber 
composites. Here, it is believed that finite-element based approaches should offer enough flexibility to handle more 
realistic models of actual composites microstructures and physics. 
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1.2. Scope of paper 
 

In view of the preceding scenario, it is clear that an accurate determination of the effective thermal conductivity of 
short-fiber composites under controlled parametrical and microstructural specifications is of great practical interest. In 
this paper an earlier developed multiscale finite-element-based methodology (Matt and Cruz, 2001, 2002, 2006) is 
applied to solve the heat conduction problem in different cell microstructures for circular-cylindrical short-fiber 
composites. In the present investigation the focus is on the analysis of the influence of the three-dimensional cell 
microstructure configuration on the effective thermal conductivity of the composite material. Therefore, several other 
effects are not considered here, and should be taken into account in future follow-up studies. Specifically, the 
configurations considered are multiple particle parallelepipedonal cells, in which fiber volume fraction, fiber aspect 
ratio and fiber inter-spacing are controlled. The parallelepipedonal cells overcome the severe limitation on the range of 
fiber aspect ratios (Matt and Cruz, 2001). The fibers are considered isotropic and more conductive than the matrix. The 
interfacial thermal resistance and presence of voids in the matrix are disregarded. As a consequence, calculated values 
for the effective thermal conductivity are expected to overestimate measured values, provided a good, or candidate, 
microstructural configuration has been developed for the experimental composite specimens. In this case, the approach 
developed by Matt and Cruz (2008) to consider both contact resistance and voids in 3-D may then be employed to yield 
(expectedly) realistic results. 

This paper is organized as follows. In the next section the continuous problem formulation is briefly presented. The 
method of homogenization is applied to the variational form of the appropriate multiscale heat conduction problem, to 
derive the periodic cell problem of interest, as well as an expression for the composite effective conductivity tensor. 
Subsequently, the numerical methods – three-dimensional mesh generation, isoparametric finite-element discretization 
and iterative solution – used to solve the cell problem are summarized. In the results section, the influence of the 
microstructure configuration on the effective conductivity is analyzed through the use of different sets of periodic cells, 
each with same fiber volume fraction, fiber and cell aspect ratios and matrix-to-fiber thermal conductivity ratio. When 
possible, the numerical findings are compared to some available experimental data. Finally, concluding remarks are 
stated. 
 
2. CONTINUOUS PROBLEM FORMULATION 
 

The continuous problem formulation introduced by Matt and Cruz (2001, 2002, 2006) is condensed here for 
completeness of the paper. Consider a composite medium whose three-dimensional representative volume element 
(RVE) or periodic cell is denoted by �pc. The cell, illustrated in Fig. 2, may contain several short fibers of diameter D 
and length � distributed in some fashion inside a parallelepipedonal matrix of height H and volume �2H. The y1, y2 and 
y3 axes form the Cartesian coordinate system attached to the cell. The fibers-to-cell volume ratio defines the 
concentration or fiber volume fraction c of the composite and the ratio �/D defines the fiber aspect ratio �. The 
composite extends throughout a macroscale region �c��d of dimension L, over which an external temperature gradient 
�T/L is imposed; the geometric domains and the thermal conductivities of the continuous and dispersed phases are, 
respectively, denoted by �c, kc and �d, kd; � � kd/kc, � 	 0. It is assumed here that the two phases have a perfect thermal 
contact at the interface and are solid, homogeneous and isotropic. The parameter 
 � �/L, a ratio of two natural length 
scales of the composite medium problem, is further assumed to be much less than unity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Illustration of the geometry of a periodic cell �pc. 
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The multiscale periodic steady-state heat conduction problem in the composite medium is governed by: 
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In Eqs. (1)-(4), summation over repeated indices is implied; x is the vector of macroscopic space coordinates; T is the 
temperature field; dotted g is the volume rate of heat generation; ��s is the union of all the interfaces between the 
matrix and the fibers; n is the unit vector locally normal to ��s and pointing into �d; the bracket notation [�]�� is used 
to indicate the discontinuity of the function � at ��; and, finally, �(�c��d) in (4) is the union of the external boundaries 
of the body, where boundary conditions are imposed to generate the macroscopic temperature gradient �T/L. 

The application of homogenization theory (Bensoussan et al., 1978; Auriault, 1983) to the variational form of the 
heat conduction problem (1)-(4) is presented by Matt and Cruz (2001). The idea of the method is to derive an equivalent 
macroscale, or homogenized, problem whose solution permits the calculation of engineering bulk quantities. The 
relevant input parameter in the homogenized problem is the effective thermal conductivity, the calculation of which 
requires the solution of an associated cell problem. The variational formulation naturally enforces the flux condition in 
Eq. (3) and casts the cell problem in a form suited for subsequent numerical solution by the finite-element method. The 
homogenization procedure starts with the introduction of the usual multiple-scale asymptotic expansion, in which T
 is 
written as a function of the slowly-varying coordinate x and the rapidly-varying coordinate y � x/
. After some 
manipulation and collection of terms of equal powers of 
, the following equations are derived: 
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Equation (5) means that T0 varies on the macroscale only. In Eqs. (6) and (7), the function space X(�c��d) is defined as 
X(�c��d) = {w  H0

1(�c��d) | w|�c = wc, w|�d = wd}, where H0
1(�c��d) is the space of all functions which vanish on 

�(�c��d), and for which both the function and derivative are square-integrable over (�c��d). Equations (6)-(7) will 
then give rise to the cell and homogenized problems, as follows. 

Now writing 
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where �p is a periodic solution to (7) corresponding to a temperature gradient �T/L imposed in the xp direction 
(summation over p, p = 1,2,3, is implied), substituting (8) into (7) and applying the periodicity property (Auriault, 1983; 
Matt and Cruz, 2001), one obtains 
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where Y(�pc) = {w  H#
1(�pc) | w|�pc,c = wc, w|�pc,d = wd}, H#

1(�pc) is the space of all triply periodic functions (subscript 
#) in �pc for which both the function and derivative are square-integrable. Equation (9) is the solvable cell problem of 
interest here: the left-hand side of (9) is the standard Laplacian operator and the right-hand side, although slightly non-
standard, is easily computed for a chosen test function. For uniqueness, it is further required that �p integrates to zero 
over the cell �pc. 

The homogenized problem for the function T0(x) is derived to be (Matt and Cruz, 2001): 
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where |�pc| is the total volume of the cell. The quantity ke,pq in Eq. (10) is the tensorial effective thermal conductivity of 
the composite medium: once the solution to the cell problem (9) is obtained for �p, p = 1,2,3, one can calculate 
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For anisotropic short-fiber composites, it is necessary to solve the cell problem three times, for p = 1 (y1-axis), p = 2 (y2-
axis) and p=3 (y3-axis), to obtain the components of the tensorial effective conductivity. 
 
3. NUMERICAL SOLUTION 
 

Numerical solution of the cell problem (9) demands the execution of three tasks: geometry and mesh generation, 
finite element discretization and iterative solution of the resultant linear system of algebraic equations. Here, only the 
main aspects of the numerical solution of the desired conduction problem are presented. 

Finite-element mesh generation consists in the subdivision of the physical domain of interest in a collection of non-
overlapping conforming sub-domains, called the elements. The geometry and mesh generation procedures to construct 
unstructured quadratic tetrahedral meshes inside �pc are described in detail by Matt and Cruz (2001, 2002, 2006), and 
exploit the resourceful third-party 2-D/3-D mesh generator NETGEN 4.0 (Schöberl, 1997, 2001). The periodic cell 
domain �pc for the short-fiber composites contains N fibers, whose spatial positions and orientations are chosen to form 
microstructure configurations, that might approach those of real composites. In this study, the geometry and mesh 
generation procedures are simplified, and comprise three basic steps. In the first step, an ASCII data file is written with 
all domain and boundary conditions data. In the second step, a (sufficiently small) default mesh spacing is entered. 
NETGEN then reads the previously written data file and subsequently generates fine surface meshes on the faces of the 
cell (where periodicity is met) and on the surfaces of the fibers. In the third step, NETGEN constructs fine volume 
meshes in the various cell subdomains and automatically optimizes the meshes upon the user’s request. The quality of 
meshes generated by this procedure is ascertained by the consistency of the numerical results (section 4). Figure 3 
shows a pictorial tetrahedral mesh generated using the three-step procedure just described, for a cell with 16 short fibers 
and the concentration value of c = 0.11. As a final note, after the generation of the quadratic tetrahedra, one must 
identify the midside nodes on tetrahedra edges whose extremities lie on a fiber surface. These nodes must be moved to 
also lie on the fiber surface, in order to implement isoparametric quadratic discretization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Tetrahedral mesh generated in a 3-D cell with 16 fibers and c = 0.11. 
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To carry out finite element discretization, Eq. (9) is first rewritten in the non-dimensional form 
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where the field variable of interest in the periodic cell is the temperature �, �  Y(�pc), a(�,v) and l(v) are, respectively, 
the usual bilinear form and the (non-dimensionalized) linear functional on the right-hand side of Eq. (9) (Matt and Cruz, 
2001). In Eq. (12), �* = �i* when p = i, i = 1,2,3. The non-dimensional variables are defined as �* � (�/�T)(L/�), k* � 
k/kc, y* � y/�. The Galerkin approximation (Hughes, 2000) to Eq. (12) is given by 
 

( )*
pc,h( , )    ( )h ha v l v v Yχ = ∀ ∈ Ω ,                                                                                                                               (13) 

 
where �h* is the discrete approximation to �*, Yh(�pc,h) = {w|TK  P2(TK)} � Y(�pc,h), P2(TK) is the space of all 
polynomials of degree 2 defined on the Kth tetrahedron TK and �pc,h  is the numerical domain. Expressing �h* and v in 
Eq. (13) in terms of the usual nodal Lagrangian interpolants and performing all the integrals by Gaussian quadrature 
with five points (Bathe, 1982), the following discrete linear system of equations is obtained, 
 

*
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where A is the global system matrix corresponding to the discrete (negative) Laplacian operator, �h* is the vector of 
unknown global nodal values of the scalar field �h* and F is the vector corresponding to the inhomogeneity l(v), related 
to the (direction of the) imposed temperature gradient. The well-known conjugate gradient algorithm (Schewchuk, 
1994) with no preconditioning is chosen for iterative solution of the discrete problem (14). The iteration proceeds until 
the square of the ratio of the Euclidean norm of the residual to the Euclidean norm of the initial residual is less than a 
user-specified tolerance, σ2; in this work, σ=10-4 has been used. The discrete equation for the numerically determined 
pq-component of the effective thermal conductivity tensor, made non-dimensional with respect to the matrix 
conductivity, is obtained by substituting �h* for � and the appropriate values of p and q in Eq. (11), so that 
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Henceforth, for the microstructures considered in the current study, the longitudinal and transverse effective thermal 
conductivities are denoted by the symbols ,e Lk  (= ,11

N
ek ) and ,e Tk  (= ,22

N
ek  = ,33

N
ek ), respectively. 

 
4. RESULTS 
 

Numerical results for the effective conductivities of different microstructure configurations of composite materials 
are now presented. The main objectives in this section are, first, to investigate the effect of the microstructure 
configuration (varied, e.g., by changing the number of fibers) on the effective thermal conductivity and, second, to 
make a tentative comparison between the numerical results and some measured data provided by Mirmira et al. (2001). 
Those authors fabricated composites with short graphite fibers, named K22XX (kd,|| = 600 W/m�K), dispersed in a solid 
cyanate ester matrix (kc = 0.3 W/m�K at 300 K) with three different fiber volume fractions– 0.55, 0.65 and 0.75–, and 
measured their effective thermal conductivities. The diameter of the graphite fibers is 10 �m, whereas their lengths lie 
within the range from 3 to 5 �m. Hence, in the computational runs performed here, the fiber-to-matrix conductivity ratio 
is set equal to 2000, and the three fiber volume fractions mentioned previously are considered. Furthermore, three fiber 
aspect ratios are analyzed, namely, 0.3, 0.4 and 0.5, in order to possibly reproduce values encountered in the composites 
fabricated by Mirmira and co-workers. 

In the first set of results, the effects of changing fiber volume fraction and fiber aspect ratio on the effective thermal 
conductivities of a composite with one longitudinally-oriented fiber in the parallelepipedonal cell are indicated. Such 
one-fiber cell microstructure configuration is designated as Microstructure A (Fig. 1(a)). The numerical effective 
conductivities for Microstructure A along the longitudinal and transverse directions with respect to the fiber’s alignment 
plane are presented in Tab. 1 for three values of the fiber aspect ratio, �  {0.3, 0.4, 0.5}. The parallelepiped aspect 
ratio is defined as � = H/λ; it is worthwhile to mention that in each run for Microstructure A the value of � is set equal 
to that of �. For a fixed fiber volume fraction, the parallelepiped and fiber aspect ratios specify the distances between 
fibers in neighboring cells along the y1-, y2- and y3-axes, thereby influencing the effective conductivities (Matt and Cruz, 
2006). For instance, for Microstructure A with one particular value of � and �, as the fiber volume fraction increases, 
the distances between fibers in neighboring cells along the y1- and y2- (or y3-) directions decrease (as more fiber material 
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is added); therefore, because kd � kc, both the longitudinal and transverse effective conductivities increase as c 
increases, as can be verified in Tab. 1. On the other hand, for a fixed value of the fiber volume fraction c for 
Microstructure A, as the fiber aspect ratio decreases, both the longitudinal and transverse effective conductivities 
decrease. The latter behavior is explained by the fact that all the inter-fiber distances increase as � and � decrease at 
fixed c. 
 

Table 1. Longitudinal and transverse numerical effective conductivity results for Microstructure A. 

Fiber volume 
fraction, c 

� = � = 0.5 � = � = 0.4 � = � = 0.3 

,e Lk  ,e Tk  ,e Lk  ,e Tk  ,e Lk  ,e Tk  

0.55    6.826     4.712     6.499     4.640     6.390     4.628 
0.65 12.89     7.051 12.68     7.044 12.48     7.040 
0.75 51.47 16.21 51.39 16.12 50.04 16.05 

 

In the second set of results, the effects of changing the microstructure configuration on the effective thermal 
conductivities are verified, when the number of longitudinally-aligned fibers with � = 0.5 in the parallelepipedonal cell 
is varied; the fiber volume fraction is c  {0.55, 0.65, 0.75}. The microstructure configurations with 3 and 4 fibers are 
designated as Microstructure B and Microstructure C, respectively. Figures 4 and 5 show finite-element meshes inside 
the Microstructures B and C, respectively, for each of the three fiber volume fractions. The longitudinal and transverse 
effective conductivities for these microstructures are presented in Tab. 2. 
 

 

 

 

 

 

 
Figure 4. Tetrahedral meshes inside Microstructure B– 3 fibers with � = 0.5, � = 1.5– for  

c = 0.55 (left), c = 0.65 (middle) and c = 0.75 (right). 
 

 

 

 

 

 

Figure 5. Tetrahedral meshes inside Microstructure C– 4 fibers with � = 0.5, � = 2.0– for  
c = 0.55 (left), c = 0.65 (middle) and c = 0.75 (right). 

 
Table 2. Longitudinal and transverse numerical effective conductivity results for Microstructures B and C. 

Fiber volume fraction, 
c 

Microstructure B Microstructure C 

,e Lk  ,e Tk  ,e Lk  ,e Tk  

0.55     6.840     4.715     7.186     4.815 
0.65 13.16     7.080 13.29     7.170 
0.75 51.73 16.33 65.06 18.06 
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From the observation of Tab. 2 one may make the following comments. First, for both Microstructures B and C, as 
the fiber volume fraction increases, both the longitudinal and transverse effective conductivities also increase. Second, 
the largest effective conductivities are verified for Microstructure C with c = 0.75. Third, the effect of the number of 
fibers on the composite effective conductivities becomes more pronounced as the fiber volume fraction increases. 
Lastly, the number of fibers in the cell influences more significantly the longitudinal rather than the transverse effective 
conductivity. 

Table 3 summarizes the numerical results obtained for the transverse effective thermal conductivities of all the 
microstructures considered in the current study. For purposes of comparison, in Tab. 3 some experimental data for the 
transverse effective conductivity measured by Mirmira et al. (2001) are also presented. From the analysis of Tab. 3 one 
verifies that the numerical predictions underestimate the measured data for the two lowest fiber volume fractions (c = 
0.55 and c = 0.65), whereas for the highest value of c (0.75), the numerical calculations overestimate the measured 
conductivity. The discrepancies obtained between the numerical predictions and the measured data might be, in part, 
attributed to the geometrical deviations of the microstructure configurations constructed here with respect to the real 
microstructures. The current configurations, despite being fully three-dimensional and appropriate to investigate the 
effects of structural parameters of paramount importance on the composite effective conductivities (Matt and Cruz, 
2006), do not consider fibers with different orientations and/or different aspect ratios inside the periodic cell. The 
continuous and numerical formulations employed here, however, can treat more complex cell configurations. Thus, 
such cells must be constructed in future investigations. 
 

Table 3. Numerical results for the transverse effective conductivities of all the microstructures 
considered, and measured values provided by Mirmira et al. (2001). 

Microstructure c = 0.55 c = 0.65 c = 0.75 
Numerical Measured Numerical Measured Numerical Measured 

A, � = 0.3 4.628 

12.8 ± 0.4*  

7.040 

11.4 ± 0.4*  

16.05 

10.0 ± 0.3* 
A, � = 0.4 4.640 7.044 16.12 
A, � = 0.5 4.712 7.051 16.21 

B 4.715 7.080 16.33 
C 4.815 7.170 18.06 

*The average overall uncertainty of the effective conductivity is reported by those authors to be approximately 3.2%. 
 
5. CONCLUSIONS 
 

In this study, a previously developed finite-element based procedure to compute the effective thermal conductivity 
of ordered or disordered short-fiber composite materials has been successfully applied to different microstructure 
configurations. It has been verified that, for the same values of the fiber volume fraction, ratio of phase conductivities 
and fiber aspect ratio, the composite effective conductivity varies as the configuration is changed. It has also been 
established that numerical and experimental results do deviate significantly. Thus, the investigation must be extended to 
consider more complex microstructure configurations, by including fibers with different orientations and aspect ratios in 
the periodic cell. Finally, to wrap up, it is recommended that experimental studies with short-fiber composites should be 
reported, as much as possible, with detailed quantitative information about the fabricated microstructures and the 
geometrical characteristics of the short fibers. It is believed that complementary numerical approaches will then help 
interpretation of experimental results. 
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