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Abstract. In this paper we investigate the motion of a single oscillating bubble in a viscoelastic fluid. The constitutive
equation for the fluid has been based on a Maxwell model with an extensional viscosity for the viscous contribution. This
viscoelastic model results in a second order nonlinear integro-differential governing equation that might be integrated
by using a fifth order Runge-Kutta scheme with adaptive time step. The numerical computation solves three first order
ordinary differential equations, including the one associated with the solution of the convolution integral. In addition, it
is also presented an asymptotic solution of the bubble dynamics for small values of the elastic parameter (i.e. Deborah
number). While the extensional viscosity is related to the strong anisotropy produced in the flow by the stretched macro-
molecule, the elastic part of the model represents the relaxation time of the additive. Results of the nonlinear response of
the bubble as a function of the elastic and the anisotropic parameters are presented.
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1. INTRODUCTION

The development of the study of bubble dynamics started with problems presented by the first ship propellers initially
constructed, due to their inefficiency caused by the presence of water vapor bubbles on the blades. Despite the unwanted
effects cavitation provides in performance or vibrations for many mechanical processes, the non-linear dynamics of bub-
bles discovered applications in numerous areas. For instance, cavitation plays an important role in protein folding (Brinker
et al., 2006), as well as in breaking up harmful molecules found in water (Dahi, 1982). The subject also has concerns to
recent biomedical fields (Allen and Roy, 2000). The stress field generated by cavitation induces comminution of kidney
stones (Lokhandwalla and Sturtevant, 2000). Moreover, an innovative proposal consists on the use of ultrasound-induced
cavitation for safe and efficient drug delivery, for chemotherapy treatment (Liu, Miyoshi and Nakamura, 2006). However,
cavitation can become a source of unwanted collateral effects, limiting the place for its application (Sehgal and Wang,
1981). The dynamical response of a spherical oscillating bubble largely appears in literature, nevertheless its behavior
when immersed in a non-newtonian fluid still requires much progress. Related works from Ting, 1978 and Chahine and
Fruman, 1979 showed that bubble oscillations in non-linear fluids composed by polymer solution are attenuated com-
pared to a Newtonian fluid. The relation between the factors responsible for the bubble collapse attenuation phenomenon
is uncertain; the role of the extensional viscosity due to the particle extensions versus the elastic effects in this physical
mechanism is still an ongoing subject of debate.

We propose a study of a single oscillating bubble immersed in a viscoelastic fluid, undergoing an acoustic pressure
field. The ambient fluid is characterized as a substance composed of a Newtonian liquid and a dilute volume fraction
of additives as long fibers or few ppm of macromolecules. The constitutive equation for the fluid has been based on
a Maxwell model, combining an extensional viscosity (for the viscous contribution) and elastic effects. While the ex-
tensional viscosity is related to the strong anisotropy produced in the flow by the stretched macromolecule, the elastic
contribution of the model represents the relaxation of the additives.

An extension of the classical Rayleigh-Plesset equation is developed, where we take into account the boundary con-
ditions in the bubble interface. The equation is solved numerically, integrated by using a fifth order Runge-Kutta scheme
with appropriated time steps. The referred model involves a convolution or memory integral, resulting into a non-linear
integro-differential equation which governs the bubble dynamics. The solution of the integro-differential equation is ob-
tained by the Newton-Leibniz transformation of the original second order ordinary differential equation into a system
with three non-linear first order equations, including an ordinary differential equation for the convolution integral. This
procedure is used in the context of different flows involving non-Newtonian fluid with memory (Jiménez-Fernández and
Crespo, 2006). An asymptotic solution is proposed, by an integration by parts. The convergence of the resulting series
is validated by a comparison with the numerical integration by the Runge-Kutta scheme aforementioned. With an ap-
propriated dimensionless analysis of the governing equation it is possible to identify the following physical parameters:
Reynolds number, Re, the Weber number, We and the Deborah number, De. The influence of these on the bubble motion
are investigated.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

2. MATHEMATICAL FORMULATION

The bubble is considered immersed in a Newtonian incompressible fluid of viscosity µ and density ρ, containing a
volume fraction of anisotropic particles of length ` and diameter a. The inner side of the bubble is composed by a mixture
of contaminant gas (which develops a polytropic process) and liquid vapor. This mixture acts like a energy cushion of
the liquid while the bubble contracts. We assume that the bubble maintains a spherical shape and develops only radial
motions due to superficial tension, simplifying our analysis to an unidimensional motion. Factors that could be able to
change the sphericity of the bubble, like pressure gradients in the liquid, presence of gravitational field or surfactants are
neglected.

No mass flux in the liquid-gas interface is considered because this phenomenon only has relevant dynamical effects
at very low ambient pressure and for great portion of vapor in the mixture inside the bubble. The pressure inside the
bubble is supposed to be spatially uniform and non-equilibrium effects in the collapse instant are not taken into account.
Furthermore, heat conduction through the bubble wall is negligible. The general governing equations for the motion of an
incompressible fluid are given by the continuity equation

∇ · u = 0 , (1)

and the momentum equation

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ ·Σ , (2)

where u is the Eulerian velocity field and Σ is the stress tensor of the flow. Now, considering a radial flow i.e., u = ur,
in a spherical coordinate system with origin at the center of the bubble, Eqs. (1) and (2) lead to the well-known Rayleigh-
Plesset equation for describing bubble dynamics. Hence:

R̈R +
3
2
Ṙ2 =

p`(R, t)− p∞(t)
ρ

. (3)

Here R represents the bubble radius as a function of time. The dot indicates time differentiation. The term p∞(t) is
the transient ambient pressure that excites the system and p`(R, t) denotes the liquid pressure, defined by the boundary
conditions in the bubble interface.

2.1 Constitutive Model

The Maxwell model consists of a combination between a damp (viscous contribution) and a spring (elastic effects), in
series connection. The Maxwell model is described by the following superposition of deformation rates:

γ̇ = γ̇e + γ̇v , (4)

with γ̇ being the total rate of deformation, γ̇v presents the rate of viscous deformation and γ̇e is the rate of elastic
deformation. We consider σ = γ̇vµe, where µe denotes the extensional viscosity and σ denotes the stress applied by
the flow. Also we have σ̇ = γ̇eG, where G corresponds to the elastic modulus. Equation (4) becomes:

σ̇ +
1
α

σ =
µe

α
γ̇ , (5)

where α = µe/G represents the relaxation time of the elastic fluid. For the problem examined here the rate of deformation
is defined as γ̇ = D : ss, where s is the unit vector in the additive orientation direction and D is the rate of strain tensor,
given by D = 1/2(∇u + (∇u)T ). Note that if α = 0, we recover a pure anisotropic model with extensional viscosity
(i.e. without elastic effects). Using the integrating factor method, after few algebraic manipulations we achieve:

σ(R, t) = −2
µe

α

∫ t

−∞
e
−(t−τ)

α
Ṙ(τ)
R(τ)

dτ , (6)

with τ being the time variable of the integration, and t the current time of the motion. Equation (6) represents an integro-
differential equation, or convolution integral. The bulk stress tensor for a statistically homogeneous suspension is given
by Cunha, 1995, as

Σ = −pI + 2µD + 2Σf , (7)

where p represents the pressure field, I is the identity tensor and Σf denotes the extra stress tensor due to additive particles,
which assumes the form:

Σf = 2σ(R, t)ss ⇒ Σ = −pI + 2µD + 2σ(R, t)ss . (8)
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At the bubble interface we consider continuity of tangential stresses and velocity. On the other hand a discontinuity in
the normal stresses occurs due to surface tension. In this case the jump of the normal stress is given by:

[[Σnn]] = (n ·Σ · n)` − (n ·Σ · n)b = Γ2κ̄ . (9)

Here n is the flow direction (unit normal vector). The term Γ denotes the surface tension coefficient, which is κ̄ = 1/R,
for a spherical bubble. The term (n ·Σ · n)b represents the normal component of the traction for the bubble inner side,
while (n ·Σ · n)` is related to the normal component of the traction on the suspension side. Analyzing each contribution
on the right hand side of equation (9) we have, respectively:

(n ·Σ · n)b = −pb(t) (10)

(n ·Σ · n)` = −n · p`(R, t)I · n + n · [2µD + 2Σf
] · n . (11)

Here pb(t) is the bubble internal pressure, evaluated by pb(t) = pv + pg(t), where pv refers to the liquid vapor pressure
inside the bubble and pg(t) is the contaminant gas pressure (which is assumed to describe a polytropic process, i.e.,
pgV

n = constant). The term n ·D · n is expressed by:

n ·D · n =
∂u

∂r

∣∣∣∣
r=R

= −2
Ṙ

R
. (12)

Using the expression of n ·Σf · n = σ(R, t) defined in Eq. (6) and n ·D · n given by Eq. (12), Eq. (11) reduces to:

(n ·Σ · n)` = −p`(R, t)− 4µ
Ṙ

R
− 4

µe

α

∫ t

−∞
e
−(t−τ)

α
Ṙ(τ)
R(τ)

dτ . (13)

Now, substituting Eqs. (10) and (13) into Eq. (9), one obtains:

p`(R, t) = pv +
(

(p̃∞ − pv) +
2σ

RE

)(
RE

R

)3n

− 2σ

R
− 4µ

Ṙ

R
− 4

µe

α

∫ t

−∞
e
−(t−τ)

α
Ṙ(τ)
R(τ)

dτ , (14)

where p̃∞ represents the statical pressure for an equilibrium condition and RE is the bubble equilibrium radius. The
forcing acoustic pressure field is defined by p∞(t) = p̃∞(1 + ε sin(ωt)), where ε represents the pressure amplitude and
ω is the forcing pressure frequency. Now with p` expressed by Eq. (14), a modified Rayleigh-Plesset equation may be
written as:

R̈R +
3
2
Ṙ2 = −∆p̃

ρ
+

1
ρ

(
∆p̃ +

2σ

RE

)(
RE

R

)3n

− 2σ

Rρ
− p̃∞

ρ
ε sin(ωt)

− 4µ

ρ

Ṙ

R
− 4

µe

ρα

∫ t

−∞
e
−(t−τ)

α
Ṙ(τ)
R(τ)

dτ , (15)

where ∆p̃ = p̃∞ − pv .

2.2 Non-dimensional formulation

First we define dimensionless variables, which are indicated by asterisks as follows:

R∗ =
R

RE
, t∗ =

t

tc
, (16)

where Uc = (|∆p̃| /ρ)1/2 and tc = RE/Uc represent typical scales of velocity and time, respectively. Thus, the non-
dimensional form of Eq. (15) results in:

R∗R̈∗ +
3
2
(Ṙ∗)2 =

2
We

(
1

(R∗)3n
− 1

R∗

)
− 1− ε∗ sin(ωt) +

1
(R∗)3n

− 4
Re

Ṙ∗

R∗

− 4
Re

1
De

f∗
∫ t∗

−∞
e−

(t∗−τ∗)
De

Ṙ∗(τ∗)
R∗(τ∗)

dτ∗ . (17)
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Here f∗ is a material function, which corresponds to the ratio µe/µ. The following physical parameters were identified:

Re =
ρUcRE

µ
, We =

ρU2
c RE

σ
, De =

α

tc
, (18)

where Re corresponds to the Reynolds number (i.e. the relation between inertia and viscous forces) and We is the Weber
number, which denotes the ratio of inertia and surface tension forces. In particular, the Deborah number De is the relevant
elastic parameter, which represents the ratio of the relaxation time and characteristic timescale for the bubble wall motion.
It should be important to note that the excitation amplitude ε was redefined in Eq. (18) as ε∗ = ε (∆p̃/p̃∞). Batchelor,
1970, has developed a model for the extensional viscosity, based on a slender body theory for a dilute rigid-rod suspension.
He found that:

f∗ =
µe

µ
=

4π

3
(nd`

3)
ln(`/a)

=
4
3

(
`

a

)2
φ

ln(`/a)
, (19)

where nd represents the number of additives per unit volume and `/a is the additive aspect ratio. The theory is considered
for elongated additives at low Reynolds number, with additives fully oriented in the radial direction. Equation (19) is
satisfied for a dilute regime (i. e., nd` ¿ 1). For cylindrical particles, nd`

3 = (φ/π)(`/a)2, where φ denotes the additive
volume fraction. A second order model for f∗ was proposed by Shaqfeh and Frederickson, 1990. These authors have
expanded Batchelor’s theory for a semi-diluted suspension (φ ¿ 1 ¿ nd`

3), finding that:

f∗ =
4
3

(
`

a

)2
φ

ln(1/φ)

[
1− ln(ln(1/φ))

ln(1/φ)
+

E(φ)
ln(1/φ)

]
. (20)

Equation (20) takes into account the effect of two-particle hydrodynamic interaction, where E(φ) depends on the
particle volume fraction (e.g. for aligned cylindrical particles, E(φ) = 0.1585). Equation (20) is used in the present
work.

2.3 Numerical solution

In order to simplify the problem, we write the convolution memory integral as follows:

I(R∗, t∗) =
∫ t∗

−∞
e−

(t∗−τ∗)
De

Ṙ∗(τ∗)
R∗(τ∗)

dτ∗ . (21)

Now, using the Newton-Leibniz formula, Eq. (21) is derived with respect to time, giving:

d

dt∗
(I(R∗, t∗)) =

Ṙ∗(t∗)
R∗(t∗)

− 1
De

∫ t∗

−∞
e−

(t∗−τ∗)
De

Ṙ∗(τ∗)
R∗(τ∗)

dτ∗

İ(R∗, t∗) =
Ṙ∗(t∗)
R∗(t∗)

− 1
De

I(R∗, t∗) . (22)

Equation (22) is needed to solve the full governing equation described in Eq. (17), as being a system of three first
order differential equations. The resulting initial value problem is integrated using a fifth order Runge-Kutta scheme with
an adaptive time step (Press et al., 1992). The algorithm is based on the Fehlberg method (Cash and Karp, 1990). The
input datas of the simulations are De, Re, We, φ, R0 (initial radius), `/a, ω, I0 (initial value of the convolution integral),
ε, Ṙ0 (initial velocity) and the parameters that control interactions and the adaptive time steps. A difficult problem in
bubble dynamics simulations is the control of time steps and the prediction of the collapse. Computation time tends to be
higher in the neighborhood of the collapse point, which may be avoided. We have developed a theory in order to predict
the bubble collapse radius, and use it to extrapolate the numerical solution at times close to the collapse event.

3. PRELIMINARY ANALYSIS

3.1 An asymptotic solution for the governing equation

An asymptotic solution for the convolution integral in Eq. (6) is obtained by means of successive integrations by parts.
The solution is found in terms of a power series written in terms of Deborah number is given by

A(R∗, t∗) =
N∑

k=1

(−1)k2µeDe(k−1) d(k−1)

dt∗(k−1)

(
Ṙ∗(t∗)
R∗(t∗)

)
. (23)
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For the first three terms, the serine in Eq. (23) reduces to

A(R∗, t∗) = −2µe
Ṙ∗

R∗
+ 2µeDe


 R̈∗

R∗
−

(
Ṙ∗

R∗

)2

− 2µeDe2


R(3)∗

R∗
− 3

R̈∗Ṙ∗

(R∗)2
+ 2

(
Ṙ∗

R∗

)3

 + O(De3). (24)

Figure 1 shows the variation of the convolution integral I(t) as a function of De, for both contribution of the asymptotic
solution (O(De) (dotted line) and O(De2)) (dashed line with points) and also the numerical solution (solid line). A
comparison between analytical and numerical integration points out that as the Deborah number increases the series
converges only for the O(De) contribution. When De → 0, the asymptotic solutions O(De), O(De2) and the numerical
solution are in very good agreement. However, it is seen that for De > 0.1, the series expansion O(De2) presents a
different convergence from the numerical solution. So, the analytical solution converge at first order, O(De). Therefore

A(R∗, t∗) = −2µe
Ṙ∗

R∗
+ 2µeDe


 R̈∗

R∗
−

(
Ṙ∗

R∗

)2

 , (25)

for De → 0.
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Figure 1. Integral I(R, t) as a function of the Deborah number. Solid line: numerical solution; dotted line: O(De);
dashed line with points: O(De2).

3.2 An asymptotic theory for the bubble collapse

An efficient way of dealing with bubble dynamics is first to establish a minimum radius Rcol, which consists of the
value when collapse occurs. This critic radius is considered as the lowest value between an asymptotic minimum radius
developed (Rmin) and the van der Waals radius Rvw, denoted as the maximum packing factor achieved by the contaminant
gas molecules within the bubble. Represented by van der Waals hard core, it has been assumed in the present work that
Rvw ∼ 1/10R0 (Löfstedt et al., 1995, suggested Rvw/R0 ∼ 1/8, for air).

Now, we propose an asymptotic theory in order to predict the bubble collapse radius. Consider the most severe
condition of the flow (i.e. Re → ∞), where the viscous term is neglected (µ → 0). With a constant ambient pressure,
p∞(t) = p̃∞, Eq. (15) reduces to

R̈R +
3
2
Ṙ2 = −∆p̃

ρ
+

1
ρ

(
∆p̃ +

2σ

RE

) (
RE

R

)3n

− 2σ

Rρ
. (26)

So, making use of the integrating factor, for an isothermal process (n = 1), we have:

d

dt

(
R3Ṙ2

)
= −2

3

(
∆p̃

ρ

)
d

dt

(
R3

)
+

2
ρ
G̃

d

dt
(ln R)− 2σ

ρ

d

dt

(
R2

)
, (27)

where G̃ = (∆p̃ + 2σ/RE)R3
E is an equilibrium constant. For the initial conditions R(0) = R0 and Ṙ(0) = 0, and

integrating Eq. (27), results in:

Ṙ2 =
(

R3
0

R3

)[
2
3

(
∆p̃

ρ

) (
1− R3

R3
0

)
+

2
ρ
G̃

1
R3

0

ln

(
R

R0

)
− 2σ

ρ

1
R0

(
R2

R2
0

− 1
)]

. (28)
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Nearby to the collapse, the bubble radius goes to zero (i.e. R ¿ R0). Under this condition, Eq. (28) reduces to:

Ṙ2 =
(

R3
0

R3

)[
2
3

∆p̃

ρ
+

2
ρ
G̃

1
R3

0

ln

(
R

R0

)
+

2σ

ρ

1
R0

]
. (29)

Considering that if the bubble radius reaches a minimum, Ṙ = 0 must be satisfied, Eq. (29) may be solved to give

ln
(

R

R0

)
= −R3

0

3G̃

(
∆p̃ +

3σ

R0

)
. (30)

Therefore, as R = Rmin leads to

Rmin = R0e
−
»

R3
0

3G̃

“
∆p̃+ 3σ

R0

”–

. (31)

In terms of dimensionless quantities Eq. (31) assumes the form

R∗min = R∗0e
−(R∗0)2

»
1+R∗0We/3

We+2

–

. (32)

As before, the radius are non-dimensionalized by RE . Note that the criterion for collapse is dependent of the bubble
initial radius, for a finite Weber number (Fogler and Goddard, 1970). In order to save computation time, we develop
a semi-theoretical equation for describing the bubble radius evolution at configurations close to the collapse condition,
given by Eq. (32). Theoretical refinement is used in order to improve the control of the bubble minimum collapse radius.
Therefore, when defining Rmin as a function of R0, it results in different curves for a given We. This plot is presented in
Figure 2, where both asymptotic limits (We → 0 and We →∞) are showed as well.
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Figure 2. Minimum bubble radius Rmin as a function of the initial radius R0 for several Weber numbers (i.e. We =
0.1; 1; 10; 100). The asymptotical limits We → 0 (Rmin = R0e

−R2
0/2) and We → ∞ (Rmin = R0e

−R3
0 ) are also

showed.

It should be important to note that the saturation R0 → 0 is out of the limit application of the proposed theory, since
it requires that R ¿ R0. Hence, it is considered values of R ∼ 1. Figure 2 indicates that for high We (i.e. low surface
tension effect compared to inertia), as the bubble contracts, the surface tension is not sufficient to equilibrate the strong
external pressure, resulting on a lower value presented for Rmin.

The opposite physical situation occurs at the asymptotical limit We → 0, when the surface tension in very small
bubble radius strongly reacts to the external pressure, increasing Rmin significantly. As a complementary result, Rmin

as a function of We is presented in Figure 3, for different values of R0. It is seen that Rmin decreases accordingly to
the increasing of the We parameter. In particular, Figure 3 shows that We ∼ 5 should be considered as the saturation
condition corresponding to high We. When We = 5, Rmin

∼= 0 for R0 = 3.0 and Rmin
∼= 0.02 for R0 = 2.5.

4. RESULTS AND DISCUSSIONS

In this work bubble dynamics has been examined by integrating Eq. (17) with the following initial conditions: R0 = 1,
Ṙ0 = 0 and I0 = 0. The focus is to investigate the nonlinear response of a single bubble immersed in a viscoelastic fluid.
In all numerical simulations, the polytropic coefficient is assumed n = 1 and the frequency ω = 1. The Reynolds number
also demands limited values, whereas under Re > 102, the effect of the liquid rheology on the spherical bubble dynamics
may be negligible (Brujan, 1999). However, viscoelastic effects have an increasing quantitative influence as the Reynolds
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Figure 3. Minimum bubble radius Rmin as a function of the We parameter, for different R0 values.

number is reduced. Fig. 4 shows the bubble radius response in a viscoelastic fluid as a function of time, for a particle
volume fraction φ = 0.3%, an aspect ratio `/a = 100, Re = 15, We = 15 and a pressure amplitude ε = 1. Fig. 4 (a)
shows multiple periods of oscillations whereas Fig. 4 (b) shows a plot of a single period of the bubble oscillatory motion.
In these figures, the solid line represents De = 0. The dotted line denotes De = 0.2 and dashed line with points denotes
De = 0.6. As De → 0 we have the asymptotic limit with elasticity effects being only a small effect. Actually, this limit
corresponds to the anisotropic regime represented by an extensional viscosity, and the additives are fully stretched. The
results indicate that as the Deborah number increases, the effect of additive relaxation (i.e. elasticity) produces a bubble
oscillatory motion more unstable, representing bifurcations threshold.
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Figure 4. Bubble radius as a function of time, for φ = 0.3%, `/a = 100, Re = 15, We = 15 and ε = 1. (a) a plot with
multiple periods and (b)a plot of a single period. Solid line: De = 0 (i.e. the elasticity effects are neglected); dotted line:

De = 0.2; dashed line with points: De = 0.6.

Figure 5 shows the behavior of the bubble internal pressure and the bubble surface velocity, respectively. The plot (a)
presents the variations of the internal pressure of the bubble , pb, as a function of time and, (b) denotes the bubble surface
velocity Ṙ as a function of time. Again, solid lines represent De = 0, dotted lines De = 0.2 and dashed lines with
points De = 0.6. Fig. 5 (a) shows higher picks of the pressure amplitude inside the bubble as the influence of elasticity
on the bubble motion increases. It is seen that the sharp points take place when the bubble contracts, reaching pb ∼ 13.
We can see that during the bubble compression motion the relaxation of the additives (or macromolecules) in the ambient
liquid leads to bubble radius smaller than the case in which the elasticity is absent (De = 0). Consequently, it is observed
higher pressure inside the bubble as De increases. The velocity also presents higher values as De increases. It should
be important to note that this coupling between the motion of the bubble and the relaxation of the additive is significant
only when the bubble period oscillation is of the same order of magnitude of the additive relaxation time. That means
De ∼ 1/ω.

The convolution integral I is plotted in Fig. 6. In these plots (a) gives I as a function of time and (b) presents the
phase diagram of I (which corresponds to the I rate as a function of I). In particular, fig. 6 shows that the instability
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Figure 5. Nonlinear bubble oscillations, for φ = 0.3%, `/a = 100, Re = 15, We = 15 and ε = 1. (a) internal bubble
pressure as function of time; (b) bubble surface velocity as function of time. Solid line: De = 0; dotted line: De = 0.2;

dashed line with points: De = 0.6.

of the oscillatory behavior is enhanced by the elasticity of the fluid, accelerating the route to the bubble collapse. These
findings predicted by the proposed viscoelastic are in qualitative agreement with several works available in the literature
(e.g. Tanasawa and Yang, 1970, Shima et al., 1988 and Kim, 1994).
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Figure 6. Dynamical behavior of I for different De numbers. (a) I integral as a function of time; (b) dI/dt as a function
of I (phase diagram). Solid line: De = 0; dotted line: De = 0.2; dashed line with points: De = 0.6.

Figure 7 shows the bubble radius evolution, for De = 0 (solid line), De = 1 (dotted line) and De = 5 (dashed line
with points). The plots certify a significant influence of the additive elasticity (measured by the De numbers) in the bubble
response. It is seen only a small difference between the plots corresponding to De = 1 and De = 5. This result could
be expected since for De ∼ 1 the additives tend to become fully stretched such as rigid fibres. In particular a De = 5
means that the relaxations time of the additive is five times bigger than the typical period of the forcing bubble oscillation
(ω = 1). Under these conditions the motion of the bubble is not changed by the effect of additive relaxation (i.e. its
elasticity).

Figure 8 shows a plot of the maximum radius of the bubble Rmax as a function of the Deborah number De, for
different particle volume fractions. The solid line denotes φ = 0.1%, the dotted line φ = 0.3% and the dashed line with
points φ = 0.5%. The elastic regime corresponds to region of De ∼ 1, where the relaxation time is of the order of the flow
time. This regime is bounded by the two asymptotic limits mentioned above (i.e. De → 0, and De À 1). In both limits,
our model consider that the additives are fully stretched, and they behave like rigid fibres. This anisotropy is characterized
in terms of an extensional viscosity of the ambient liquid around the bubble. The results of Figure 8 indicates that, as
the additive volume fraction is enhanced, the effect of the additive elastic relaxation on the bubble is increased giving the
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Figure 7. Bubble radius as a function of time; Here φ = 0.3%, `/a = 100, Re = 15, We = 15 and ε = 1. Solid line:
De = 0; dotted line: De = 1; dashed line with points: De = 5.

higher values of Rmax observed. On the other hand, it is seen that an increasing in the volume fraction of the additive
requires stronger flows (i.e. higher De) to stretch the additives. Consequently, it leads to a delay in De for the oscillatory
motion of the bubble reaching its maximum radius. It also produces a delay in the anisotropic regime of fully stretched
particles. Figure 8 shows that Rmax for φ = 0.5% corresponds to a Deborah number approximately twice the Deborah
number associated with Rmax at φ = 0.3%.
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Figure 8. Variation of the maximum radius Rmax with Deborah number De. Aspect ratio `/a = 100, Re = 15, We = 15
and ε = 1. Solid line: φ = 0.1%, dotted line: φ = 0.3% and dashed line with points: φ = 0.5%.

5. CONCLUDING REMARKS

The dynamic behavior of a single bubble immersed in a viscoelastic liquid characterized by a Maxwell model was
successfully observed. The integro-differential equation was solved and an analytical solution was proposed. A rigorous
study on the eminence of the bubble collapse has been done, including the development of an asymptotical theory for the
bubble minimum radius. This theory has been used to extrapolate the results of the numerical simulation for the collapse
condition.

The results have shown that the liquid elasticity increases the degree of instability in the oscillatory motion of the
bubble. This of course can decrease the collapse time of a cavitating bubble. In particular, when the bubble surface is
expanding the additives are experiencing a stretching. In counterpart, during the compressional motion of the bubble the
elastic energy stored by the additive contributes during its relaxation time with the contraction of the bubble leading to
very small radius. This coupling between the additive elasticity and the bubble oscillatory motions seems to be important
only under condition that De ∼ 1/ω.
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