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Abstract. We present a numerical method for solving two-dimensional nematic liquid crystal flows subject to a magnetic
field. The dynamic equations of nematic liquid crystals are based on the Ericksen-Leslie dynamic theory. This theory
accounts for fluid anisotropy and elastic stresses resulting from spatial distortion of the “director”, which is a vector
field describing the local average molecular orientation. A numerical method for solving the governing equations for
2D flows has been formulated. The basic equations are solved by a finite difference technique based on the GENSMAC
methodology introduced by Tomé and McKee (1994), Tomé et al. (2002). Channel flow was simulated and by using mesh
refinement validated results are given. To demonstrate the capabilities of the numerical method, the flow of a nematic
liquid crystal through a two-dimensional L-shaped channel was simulated. Results are presented for several values of the
Reynolds and Ericksen numbers.
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1. INTRODUCTION

The basic theory that describes the dynamics of nematic liquid crystals is the “Ericksen-Leslie dynamic theory”,
proposed by Ericksen (1961), Leslie (1966), Leslie (1968) in the sixties. This theory has consistently been applied to
many flow problems of nematic liquid crystals, but the equations are complex so that analytic solutions of nematic liquid
crystals flows are extremely rare. Consequently, numerical methods are becoming an important tool for solving the highly
nonlinear equations governing the flow of nematic liquid crystals.

In the literature there are many articles treating the flow of nematic liquid crystals (see for example Pieranski and
Guyon (1974), Pikin (1974), Jenkins (1978), Heuer, Kneppe and Schneider (1991), Chono and Tsuji (1998), Chono,
Tsuji and Denn (1998), Baleo, Vincent and Navard (1998)). For instance, Pikin (1974) formulated a one-dimensional
model to study the influence of shear forces on the orientation of a nematic liquid crystal and obtained some approximate
solutions for the Ericksen-Leslie equations while MacSithigh and Currie (1977) considered strong shear flows and pre-
sented approximate solutions for the director orientation. In other studies, for example Pieranski and Guyon (1974), the
investigation was through experimentation. Many issues in nematic liquid crystal flows have been investigated by solving
the Ericksen-Leslie equations numerically. For instance, Baleo, Vincent and Navard (1998) neglected elasticity, in which
case the equations reduce to the Ericksen TIF "Transversely Isotropic Fluids". Chono, Tsuji and Denn (1998) studied
the spatial development of the director orientation in tumbling nematic liquid crystals in channel flow. Chono and Tsuji
(1998) analyzed the flow around a circular cylinder. However, to our knowledge, studies using the full Ericksen-Leslie
equations for two-dimensional flows are extremely few and far between.

In this paper we present a finite difference technique for solving the full Ericksen-Leslie dynamic equations in two
dimensions under the influence of a finite magnetic field. More especifically, we solve the Ericksen-Leslie dynamic
equations in 2D and L-shaped channels and give steady state solutions for the director and velocity fields for various
values of the Ericksen and Reynolds numbers.

2. THE ERICKSEN–LESLIE EQUATIONS

The Ericksen–Leslie dynamic equations for nematics in the incompressible isothermal case when the director inertial
term is neglected can be stated concisely as follows, using the usual Einstein summation convention where appropriate.
These are the most frequently used forms of the equations and we state them in the commonly accepted notation (see
Stewart (2004)). They consist of the constraints

nini = 1, ui,i = 0, (1)

together with the balance laws which arise from linear and angular momentum, namely,

ρu̇i = −(p+ wF ),i + g̃jnj,i +Gjnj,i + t̃ij,j , (2)
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(
∂wF
∂ni,j

)
,j

− ∂wF
∂ni

+ g̃i +Gi = λni, (3)

where ρ is the density, Gi is the generalised body force (which is related to the external body moment Ki per unit mass
through the relation ρKi = εijk nj Gk, p is the pressure, and wF is the elastic energy density for nematics. In the
one-constant approximation for the elastic constants, the elastic energy can be written as ( see Stewart (2004))

wF =
1
2
K‖ni,j‖2 =

1
2
Kni,jni,j , (4)

where K > 0 is an elastic constant. A comma indicates partial differentiation with respect to the variable it precedes;
for example ni,j denotes the partial derivative of the ith component of ni with respect to the jth variable. The usual
material time derivative is denoted by a superposed dot. The scalar function λ is a Lagrange multiplier which can usually
be eliminated or evaluated by taking the scalar product of Eq. (3) with ni; it arises from the constraint that ni is a unit
vector. The constitutive equations for the viscous stress t̃ij and the vector g̃i are

t̃ij = α1nkAkpnpninj + α2Ninj + α3niNj + α4Aij + α5njAiknk + α6niAjknk, (5)

g̃i = −γ1Ni − γ2Aipnp, (6)

γ1 = α3 − α2 ≥ 0, γ2 = α3 + α2 = α6 − α5, (7)

Aij =
1
2

(ui,j + uj,i), Ni = ṅi −Wijnj , Wij =
1
2

(ui,j − uj,i), (8)

where α1, α2, ..., α6, are the Leslie viscosities, Aij is the rate of strain tensor, Wij is the vorticity tensor, Ni is the co-
rotational time flux of the director ni and a superposed dot again represents the material time derivative. The coefficient
γ1 is often referred to as the twist or rotational viscosity and γ2 is called the torsion coefficient. The viscous stress t̃ij is
in general asymmetric. The Parodi relation (see Parodi (1970))

γ2 = α6 − α5 = α2 + α3, (9)

is assumed to hold and the Leslie viscosities must additionally satisfy the inequalities (see Stewart (2004)):

γ1 = α3 − α2 ≥ 0, α4 ≥ 0, 2α4 + α5 + α6 ≥ 0, (10)

2α1 + 3α4 + 2α5 + 2α6 ≥ 0, 4γ1(2α4 + α5 + α6) ≥ (α2 + α3 + γ2)2. (11)

The stress tensor for nematic liquid crystals is given by

tij = −p δij −Knp,jnp,i + t̃ij . (12)

3. GOVERNING EQUATIONS

We consider the case of two-dimensional flow of a nematic liquid crystal. A magnetic field is applied and we assume
the one-constant approximation for the elastic constants. The unitary director ni and velocity vi can be written in the
general forms

n = (cosφ, sinφ, 0), φ = φ(x, y, t), u = (u(x, y, t), v(x, y, t), 0), (13)

where φ is often referred to as the orientation angle of the director.
The magnetic field potential (equal to the negative of the magnetic energy) is

Ψ =
1
2
µ0∆χ(n ·H)2, H = H(cosφ0, sinφ0, 0), φ0 = constant, |H| = H <∞. (14)

The related external generalised body force Gi is given by

Gi =
∂Ψ
∂ni

= µ0∆χ(n ·H)Hi , (15)

where µ0 > 0 is the permability of free space and ∆χ is a dimensionless measure of magnetic anisotropy. It will be
assumed that ∆χ > 0 since this is valid for most nematics.

3.1 The non-dimensionalised dynamic equations

We consider Cartesian flows and employ the change of variables
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xi = Lx̂i, ui = Uûi, t = LU−1t̂, p = ρU2p̂, t̃ij = η Ŝij , wF = ρU2 ŵF , g̃j = ρU2 R̂j , Gj = ρU2 Ĝj (16)

where L, U and η denote ‘typical’ length, velocity and viscosity scales, respectively. This work used η = α3 − α2.
The incompressiblity condition Eq. (1)2, the elastic energy density Eq. (4) and the linear momentum equation Eq. (2)

can then be expressed, respectively, in dimensionless form as

ui,i = 0, (17)

wF =
1

2ReEr

[
(φ,x)2 + (φ,y)2

]
(18)

∂ui
∂t

= −(p̃+ w̃F ),i − (ujui),j +Rjnj,i +Gjnj,i +
1
Re

(Sij,j), (19)

where Re = ρU L
η and Er = UL η

K are the Reynolds and Ericksen numbers, respectively. For example, the terms Rjnj,x
and Gjnj,x are given by

Rjnj,x =
1
Re

{
− γ1φ,x

[
φ,t + uφ,x + vφ,y +

1
2

(u,y − v,x)
]

−1
2

[
γ2φ,x cos(2φ)(u,y + v,x) + γ2φ,x sin(2φ)(u,x − v,y)

]}
, (20)

Gjnj,x =
1
2
µ0∆χH2φ,x sin(2(φ0 − φ)), (21)

and the non-dimensional component Sxx of the extra-stress tensor is calculated to give

Sxx = α1 cos2 φ
[
u,x cos2 φ+ v,y sin2 φ+

1
2

(u,y + v,x) sin(2φ)
]
− (α2 + α3) sinφ cosφ

[
φt + uφ,x

+vφ,y +
1
2

(u,y − v,x)
]

+ α4u,x + (α5 + α6)
[
u,x cos2 φ+

1
2

sinφ cosφ(u,y + v,x)
]
, (22)

In the equations above, the viscosities α1, . . . , α6 have been scaled by a factor of η.
The angular momentum equation Eq. (3) becomes

φt + uφ,x + vφ,y =
1

Er γ1

[
φ,xx + φ,yy

]
− 1

2
(u,y − v,x)− 1

2
γ2

γ1

[
(u,y + v,x) cos(2φ) + (v,y − u,x) sin(2φ)

]
−1

2
Re

γ1
µ0∆χH2 sin(2(φ0 − φ)). (23)

In Eqs. (18)-(23) the circumflexes have been omitted for notational clarity.
Equations (17), (19) and Eq. (23) form the complete set of dynamic equations and must be solved subject to suitable

boundary conditions in order to find solutions for φ, p and ui.

4. NUMERICAL METHOD

In order to solve Eqs. (17), (19) and Eq. (23) we first write the components of the stress tensor Sij in the following
manner:

Sij =
1
Re

[
α4 (ui,j + uj,i) + Φij

]
(24)

where Φij is called the non-Newtonian stress tensor, hereafter, given by

Φij = α1nkAkpnpninj + α2Ninj + α3niNj + α5njAiknk + α6niAjknk . (25)

For example, the component Φxx of the non-Newtonian stress tensor is given by

Φxx = α1 cos2 φ
[
u,x cos2 φ+ v,y sin2 φ+

1
2

(u,y + v,x) sin(2φ)
]
− (α2 + α3) sinφ cosφ

[
φt + uφ,x

+vφ,y +
1
2

(u,y − v,x)
]

+ (α5 + α6)
[
u,x cos2 φ+

1
2

sinφ cosφ(u,y + v,x)
]
. (26)

Thus, the equation of motion Eq. (19) can be written in the form

∂ui
∂t

= −(p+ wF ),i − (ujui),j +Rjnj,i +Gjnj,i +
1
Re

((ui,j),j + Φij,j). (27)
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4.1 Boundary conditions

In order to solve Eqs. (17), (27) and (23) it is necessary to impose boundary conditions for the velocity field on mesh
boundaries. For rigid boundaries we employ the no-slip condition (ui = 0) while at fluid entrances (inflows) the normal
velocity is specified by uν = Uinf and the tangential velocities are set to zero, namely, uµ = 0, where ν denotes normal
direction to the boundary and µ denotes tangential directions. At fluid exits (outflows) the Neumann condition ui,ν = 0
is adopted.

The director is strongly anchored on rigid boundaries (walls). In other words, the fixed director orientation angle is set
according to the prescribed orientation of the rigid boundary. Details of this anchoring angle will be given in the section
dealing with the numerical results.

The choice of the angle of the director at fluid entrances (inflows) is φ = 0 and at fluid exits (outflows) we set φ,ν = 0.

4.2 Procedure

The momentum equation Eq. (27), the mass conservation equation Eq. (17) and the angular momentum equation Eq.
(23) will be solved by a methodology based on the GENSMAC algorithm introduced by Tomé et al. (2002) as follows.

Assume that, at time tn, the velocity field ui(xk, tn) and the orientation angle of the director φ(xk, tn) are known
and that suitable boundary conditions are provided. In order to calculate the velocity field ui(xk, tn+1), the pressure
p(xk, tn+1), the non-Newtonian tensor Φij(xk, tn+1) and the orientation angle of the director φ(xk, tn+1) we proceed in
the following manner:
Step 1: Using the values of ui(xk, tn) and φ(xk, tn), solve Eq. (18) forwF (xk, tn) and calculatewF,i(xk, tn), Φij(xk, tn),
Rjnj,i(xk, tn), Gjnj,i(xk, tn).
Step 2: Calculate the intermediate velocity field ũi(xk, tn+1) from

∂ũi
∂t

= −(uj ui),j −w̃F,i +Rjnj,i +Gjnj,i
1
Re

[
(ui,j),j +Φij,j

]
(28)

with ũi(xk, tn) = ui(xk, tn) using the same boundary conditions for the velocity ui(xk, tn). This equation is solved by
an explicit finite difference method.
Step 3: Solve the Poisson equation

ψ,ii(xk, tn+1) = ũi,i(xk, tn+1) (29)

subject to the boundary conditions (see Tomé and McKee (1994)): ψ,ν = 0 on rigid boundary and inflows and ψ = 0 on
outflows.
Step 4: Calculate the velocity field

ui(xk, tn+1) = ũi(xk, tn+1)− ψ,i(xk, tn+1) . (30)

Step 5: Determine the pressure field p(xk, tn+1) (see Tomé et al. (1996))

p(xk, tn+1) =
ψ(xk, tn+1)

δt
. (31)

Step 6: Calculate the angle of the director φ(xk, tn+1) from Eq. (23). This equation is solved by an explicit finite
difference method.
Step 7: Calculate the components of the non-Newtonian tensor Φij(xk, tn+1) from equation Eq. (25).

5. FINITE DIFFERENCE APPROXIMATION

The equations contained in the procedure outlined in the previous section will be solved by the finite difference method
as follows. A staggered grid is employed. The velocities u and v are located at the middle of cell faces while the other
quantities (φ, Φ, p, wF ) are positioned at cell centres.

The momentum conservation equation Eq. (27) and the angular momentum equation Eq. (23) are solved by the
explicit Euler method. The spatial derivatives in the momentum conservation equations are discretised at the points(
(i+ 1

2 )δx, jδy
)

and
(
iδx, (j + 1

2 )δy
)

while the angular momentum equation Eq. (23), the density of elastic energy Eq.
(18) and the tensor Φij are approximated at cell centres

(
iδx, jδy

)
.

Terms involving the pressure gradient, the divergence of the non-Newtonian stress tensor, the gradient of the density
of elastic energy, the external force and terms Rjnj,x, Rjnj,y are approximated by central differences.

6. VALIDATION RESULTS

The equations in Sec. 4.were implemented into an existing computer code which was applied to simulate steady flow
of a nematic liquid crystal MBBA at 25C◦.
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The numerical method was validated by simulating the flow of a nematic liquid crystal in a 2D-channel. We considered
a channel with width L and length C = 10L. The boundary conditions for the velocity field were those specified in Sec.
4.1. At the fluid entrance, a fully developed flow given by

u(y) = −4
U

L

(
y − L

2
)2 + U (32)

was imposed.
To simulate this problem, the following input data specifying the flow were employed:

• Width of the entry of plane: L = 0.001m; Velocity scale: U = 0.00038 ms−1; angle of magnetic field: φ0 = 0◦.

The physical parameters, specifying the nematic liquid crystal MBBA at 25C◦ are given in Tables 1 and 2. With these
data we obtain Re = 0.039 and Er = 55.38. To show the convergence of the numerical method presented in this
paper, we simulated channel flow in four meshes until steady state was achieved. The meshes employed were: M0:
δx = δy = 0.000125m (80 × 8 cells); M1: δx = δy = 0.0000625m (160 × 16 cells); M2: δx = δy = 0.00003125m
(320 × 32 cells) and M3: δx = δy = 0.000015625m (640 × 64 cells). We are not aware of an analytic solution for this
problem so that we compared the solutions obtained on meshes M0, M1 and M2 to the solution obtained on the finer mesh
M3 which we refer here as EXACT . Figure 1 displays the numerical and the EXACT values of u(y), Φxx, Φxy and
Φyx at the end of the channel (x = 10). We can see that there is good agreement between the solutions. Moreover, Figs.
1 and ?? show that as the mesh is refined the numerical solutions tend to the EXACT solution. These results show the
convergence of the numerical method presented in this work.

Table 1. Leslie viscosities for the nematic liquid crystal at MBBA given in SI units (see Stewart (2004)).

Leslie viscosities α1 α2 α3 α4 α5 α6

MBBA near 25oC -0.0181 -0.1104 -0.001104 0.0826 0.0779 -0.0336

Table 2. Physical parameters for the nematic phases of MBBA given in SI units (see Stewart (2004)). The abbreviations
used are: magnetic anisotropy (∆χ (unitless)) (see Stephen and Straley (1974)), density (ρ) (see Stephen and Straley

(1974)), permeability of free space (µ0), magnetic field (H) and elastic constant (K).

Physical parameters ∆χ ρ µ0 H K
MBBA near 25oC 1.219× 10−6 1088 kg m−3 12.566× 10−7H m−1 1

4π
103A m−1 7.5× 10−10 N

7. NUMERICAL INVESTIGATION OF THE FLOW OF NEMATIC LIQUID CRYSTALS IN L-CHANNELS

We applied the technique presented in this work to simulate the flow of a nematic liquid crystals in a two-dimensional
L-shaped channel (see Fig. 2). On the channel walls we set ui = 0 and at the channel entrance the velocity was given by
Eq. (32) presented in the previous section.

7.1 Boundary conditions for the angle φ

The boundary conditions for the angle φ were specified as follows:

1. Along the horizontal walls, the anchoring angle was set to zero, implying parallel alignment to the walls.

2. At the re-entrant corner, we used:
(a) φ = −45◦ (see Fig. 2(a)); (b) φ = 0 (see Fig. 2(b)); (c) φ = 45◦ (see Fig. 2(c)).

3. At the vertical walls, we employed:

(a) φ = −90◦ at x = C, 0 ≤ y ≤ H and x = C − L1, 0 ≤ y ≤ H − L (see Fig. 2(a));

(b) φ = 0 at x = C, 0 ≤ y ≤ H and x = C − L1, 0 ≤ y ≤ H − L (see Fig. 2(b));

(c) φ = 90◦ at x = C, 0 ≤ y ≤ H and x = C − L1, 0 ≤ y ≤ H − L (see Fig. 2(c)).

4. At the channel entry we set φ = 0 and at the exit plane we assumed φ,y = 0.

The physical parameters specific to the nematic liquid crystal MBBA at 25C◦ employed to simulate this problem are
presented in Tables 1 and 2.

The remaining parameters specifying the flow were:
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(a) (b)

(c) (d)

.
Figure 1. Comparison between the EXACT and the numerical solutions at x = 10. (a) Velocity field, (b) Φxx, (c) Φxy

and (d) Φyx.

• Mesh (M): 60× 60 cells (δx = δy = 0.0001)m; Width of the entry of plane: L = 0.001m;

• Length of the horizontal channel: C = 0.006m; Length of the vertical channel: H = 0.006m;

• Velocity at inflow: Vinf = 0.001 ms−1; Velocity scale: U = 0.001 ms−1; angle of magnetic field: φ0 = 0◦;

• The width of the channel exit (L1) was varied so that this problem was simulated for the following ratios
(Ri = L1/L): R1 = 1, R2 = 0.5 and R3 = 0.3;

The Reynolds number was calculated using the channel exit width L1 so that we hadRe = 0.005 (R1 = 1), Re = 0.0025

(R2 = 0.5) and Re = 0.0015 (R3 = 0.3). In the results that follow the following Ericksen numbers
(
Er = U L1 η

K

)
were employed:

• for Re = 0.005,

Er = 7.2 =⇒ K = 7.5× 10−9

• for Re = 0.0025,

Er = 36.4 =⇒ K = 7.5× 10−10; Er = 364.0 =⇒ K = 7.5× 10−11;Er = 3643.0 =⇒ K = 7.5× 10−12.

• for Re = 0.0015,

Er = 21.8 =⇒ K = 7.5× 10−10; Er = 218.0 =⇒ K = 7.5× 10−11;Er = 2180.0 =⇒ K = 7.5× 10−12.

To observe elastic and viscous effects in the flow, we simulated this problem for the values of Reynolds and Ericksen
numbers given above until steady state was reached.
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(a) (b) (c)
Figure 2. Definition of the domain for the simulation of the flow in a two-dimensional L-shaped channel. The red arrows

represent the boundary conditions used for the calculation of the angle φ by means of Eq. (23).

Figure 3 displays the isolines of pressure and velocity at time t = 24 for the case Re = 0.005 and Er = 7.2 with the
boundary conditions for the director displayed in Fig. 2(a). We can see in Fig. 3(a) that the isolines in the exit channel
indicates that the pressure varies only in y-direction. However, the isolines in Fig. 3(b) show that the velocity u is zero in
the downstream channel where, in Fig. 3(c), the isolines of velocity v are parallel. These results indicate that steady state
has been reached. The same profiles were obtained for the other Reynolds and Ericksen numbers.

To demonstrate the effect of the boundary conditions on the director field, we performed three simulations using
Re = 0.005 and Er = 7.2. In the first simulation we used the boundary conditions displayed in Fig. 2(a) while in
the second and third simulations we employed the boundary conditions depicted in Fig. 2(b) and Fig. 2(c), respectively.
Each of these simulations were performed until t = 24. A zoom-up of the solutions obtained for the director near the
re-entrant corner of the L-shaped channel are shown in Fig. 4 while Fig. 7 displays the streamlines of the velocity in the
entire L-shaped channel. We can observe in Fig. 4 that the effect of the boundary conditions upon the angle φ is very
interesting. In the first simulation (see Fig. 4(a)) the director profile did not display large variations: the orientation of the
director is mostly uniform throughout the L-shaped channel. In the second simulation (see Fig. 4(b)) we can see that the
director in the downstream channel was strongly affected by the boundary conditions which forced the director to be at 0◦

(perpendicular to the downstream walls). Similarly, in the third simulation, when the angle φ along the downstream walls
was set opposite to the main flow direction (90◦), the director was again strongly affected by the boundary conditions
making it to lie at 90◦ along the downstream walls (see Fig. 4(c)). On the other hand, Fig. 7 shows that the different
boundary conditions applied to the director did not impose major changes in the streamlines of the velocity in the L-shaped
channel: the streamlines are smooth along the L-shaped channel. Such behavior was similar to that observed in certain
viscoelastic fluids (see Chono and Iemoto (1992)) .

In order to investigate the effect of Er and the ratio Ri = L1/L on the flow, we performed three simulations using
Re = 0.0025 (R2 = 0.5) and Er = 36.4, 364.0, 3643.0. It is known that Er is typically 104Re for many nematics (see
Stewart (2004)). The boundary conditions used were those displayed in Fig. 2(a). A zoom-up of the solutions obtained
for the director near the re-entrant corner of the L-shaped channel is shown in Fig. 5 while Fig. 8 displays the streamlines
of the velocity in the L-shaped channel. We can observe in Fig. 5(a) that for Er = 36.4 the director acommodates the
boundary conditions and converges to the centerline of the channels. The results obtained for Er = 364.0 (see Fig. 5(b))
were similar to the caseEr = 36.4 except for the vectors adjacent to the left wall of the downstream channel where we can
see that the director did not obey the imposed boundary condition of−90◦. As the Ericksen number is increased to 3643.0,
Fig. 5(c) shows that the director profile became very complex in the re-entrant channel. Rotation of the director made it
pointing vertically upwards. The corresponding streamlines displayed in Fig. 8 are very interesting as we see a lip vortex
for Er = 36.4 (see Fig. 8(a)) which decreases at Er = 364.0 (see Fig. 8(b)) and almost vanishes when Er = 3643.0
(see Fig. 8(c)). We believe that the appearance of the lip vortex was due to the change in the geometry because in the
results obtained for Er = 7.2 (see Fig. 7(a)) a lip vortex was not present. To confirm this fact, we performed three more
simulations for Re = 0.0015 (R3 = 0.3) and Er = 21.8, 218.0, 2180.0 using the boundary conditions displayed in Fig.
2(a). The director profiles obtained in these simulations are shown in Fig. 6 while the streamlines are displayed in Fig. 9.
We can see that the director profiles are similar to those obtained for Re = 0.0025 (see Fig. 5). However, as we can see
from Fig. 9, the effect of the change in geometry caused the appearance of a larger lip vortex which decreased very little
when the Ericksen number was increased. A similar result was obtained by Chono and Iemoto (1992) using the White
Metzner model to simulate the flow of a polyacrylamid solution in a L-shaped channel.
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(a) (b) (c)

Figure 3. Numerical simulation of the flow through a L-shaped channel with Re = 0.005 and Er = 7.2. Isolines: (a)
Pressure, (b) Velocity u and (c) Velocity v.

(a) (b) (c)
Figure 4. Numerical simulation of the director through a L-shaped channel with Re = 0.005 and Er = 7.2. Plots of

director for different boundary conditions for the angle φ: (a) φ = −90◦, (b) φ = 0, and (c) φ = 90◦.

(a) (b) (c)
Figure 5. Numerical simulation of the director through a L-shaped channel with Re = 0.0025. Plots of director for

different Ericksen numbers: (a) Er = 36.4, (b) Er = 364.0 and (c) Er = 3643.0.

(a) (b) (c)
Figure 6. Numerical simulation of the director through a L-shaped channel with Re = 0.0015. Plots of the director for

different Ericksen numbers: (a) Er = 21.8, (b) Er = 218.0 and (c) Er = 2180.0.
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(a) (b) (c)
Figure 7. Plots of streamlines for Re = 0.005 and Er = 7.2: (a) (φ = −90◦), (b) (φ = 0) and (c) (φ = 90◦).

(a) (b) (c)
Figure 8. Plots of streamlines for Re = 0.0025 and different Ericksen numbers: (a) Er = 36.4, (b) Er = 364.0 and (c)

Er = 3643.0.

(a) (b) (c)
Figure 9. Plots of streamlines for Re = 0.0015 and different Ericksen numbers: (a) Er = 21.8, (b) Er = 218.0 and (c)

Er = 2180.0.
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8. CONCLUSIONS

This paper dealt with the development of a numerical method for solving two-dimensional flows of nematic liquid
crystals subject to a finite magnetic field. The numerical technique developed herein was based on the finite difference
method developed by Tomé et al. (2002). The validation of the technique was performed through the simulation of the
flow in a channel using four meshes: M0, M1, M2 and M3. An analytic solution for this problem is not yet available,
so we compared the solutions on meshes M0, M1 and M2 to the solution obtained on the finer mesh M3 (which we
called EXACT ). Good agreement between the solutions obtained on the coarser meshes and the solution on mesh M3
was observed. Moreover, the flow in a L-shaped channel was simulated for various values of the Reynolds and Ericksen
numbers and interesting effects were obtained. The results showed that when the ratio of the width of the exit channel
to width of the entrance channel (Ri = L1/L) was decreased this caused the appearance of a lip vortex at the re-entrant
channel. It was shown that this lip vortex can disappear (in the case high Ericksen number) or become larger (as the ratio
is decreased).
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