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Abstract. This paper analyzes a simple stochastic dynamical system and a target performance to be achieved by the sys-
tem, in other words, the optimization algorithm seeks the optimal parameter values to achieve a pre-defined performance.
However, some parameters of the system are modeled as random variables, thus, requiring the use of stochastic opti-
mization. To model the uncertainties of the system the parametric approach is used and the probability density functions
are derived using the Maximum Entropy Principle. To take into account the uncertainties of the dynamical system in the
optimization process, a multi-objective optimization of some statistical characteristics of a distance between the response
of the system and the target performance is proposed. The global and bounded Nelder-Mead optimization algorithm is
employed to optimize the stochastic function. The results showed that when the uncertainties are considered, the optimum
design is different from the deterministic optimization and that the robust optimization is a very useful tool to deal with
uncertainties in dynamical systems.
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1. INTRODUCTION

Optimization has become a very important tool in several fields, especially in engineering design. Although determin-
istic optimization methods have been widely applied, it is difficult to find examples of systems to be optimized, in any
field, that do not include some level of uncertainty, for example, on its parameters, geometry, boundary conditions, or
even in the very model being used.

When one takes into account uncertainties in the design optimization process, it is named robust design optimization
(RDO). Several forms of objective function have been proposed in the RDO, for instance: minimization of the mean and/or
variance of the response of the system under consideration. Thus, the robust optimal design concentrates the probability
distribution of the response near to its mean. Stochastic programming (Kall and Wallace, 1994), Taguchi methodology
(Phadke, 1989), and optimization methods (Chen et al., 1999) have been applied to solve RDO. As the robust optimization
may have two or more objective functions (e.g., minimize the mean and the variance), its formulation is in the form of
a multi-objective optimization problem. To deal with multi-objective optimization, among others, the weighted sum,
compromise approach, and the preference aggregation methods have been employed, (Beyer and Sendhoff, 2007).

The application of the RDO in dynamical systems is recent (Zang et al., 2005; Capiez-Lernout and Soize, 2008). In
this paper, we are concerned with the RDO of a simple dynamical system with only two-degrees-of-freedom in order
to focus in the robust optimization. A target performance optimization is proposed, in other words, we seek the set
of system parameters that lead to a system response as close as possible to a performance defined a priori. Here, the
uncertainties on the stiffness of such system are taken into account by modeling them as random variables. To do so,
the parametric approach is used and the probability density functions are derived using the Maximum Entropy Principle
(Shannon, 1948; Jaynes, 1957a; Jaynes, 1957b). Then, the objective function of the RDO problem is constructed as the
minimization of the mean and the variance of the difference between the system performance and the target one. The
Global and Bounded Nelder-Mead (GBNM) algorithm is employed as optimizer due to its ability to handle non-convex
and multimodal functions (Luersen and Le Riche, 2004).

This paper is organized as follows. The deterministic dynamical problem is presented in Section 2 and the probabilistic
model is presented in Section 3. The robust optimization problem is defined in Section 4 and the optimization algorithm
is explained in Section 5. Finally, the numerical results are presented in Section 6 and the concluding remarks are given
in Section 7.

2. DETERMINISTIC MODEL

A simple dynamical system is considered in order to focus on the robust optimization strategy used. The optimization
procedure proposed is easily extended to more complex dynamical problems, but it is interesting to note that, even for a
simple system, the RDO presents results that are not trivial. Figure 1 shows the two degrees of freedom dynamical system



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

that is analyzed.
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Figure 1. Two d.o.f. system used.

This linear system has two natural frequencies and two normal modes. The dynamics of the system is given by:

[M ]ü(t) + [C]u̇(t) + [K]u(t) = f(t) , (1)

with initial conditions u(0) = u0 and u̇(0) = v0, in which

[M ] =
[
m1 0
0 m2

]
; [C] =

[
c1 + c2 −c2
−c2 c2

]
; (2)

[K] =
[
k1 + k2 −k2

−k2 k2

]
(3)

and

f(t) =
[
f1(t)
f2(t)

]
; u(t) =

[
u1(t)
u2(t)

]
. (4)

The mass, damping, and stiffness matrices, denoted by [M ], [C], and [K], are real symmetric positive-definite. The
external force is represented by the vector f = (f1, f2)T , where f1 and f2 are the forces applied on the masses m1

and m2. The displacements of the masses are denoted by u1 and u2, which are the components of the vector u. Let
f(t) = (f1(t), 0)T be the input force applied on the system, and let u(t) = (u1(t), u2(t))T be the corresponding output.
Let f̂1 be the Fourier transform of f1, û1 be the Fourier transform of u1, and û2 be the Fourier transform of u2. In the
frequency domain Eq. (1) is written as:(

û1(ω)
û2(ω)

)
=
(
−ω2[M ] + iω[C] + [K]

)−1
(
f̂1
0

)
, (5)

where i =
√
−1 and ω is the frequency. In this paper, the deterministic frequency response function of interest is denoted

by h and is defined as

h(ω) =

∣∣∣∣∣ û2(ω)

f̂1(ω)

∣∣∣∣∣ . (6)

3. PROBABILISTIC MODEL

We consider a design problem that the rigidity of the two springs are uncertain, say they were taken from a lot. As
the manufacturing process is not perfect, there are uncertainties in the values of the stiffnesses and they may differ from
the nominal value. A parametric probabilistic approach has been employed to model the uncertainties on the stiffnesses
which have mean values k1 and k2, their nominal values, and associated random variables K1 and K2 (the capital letter
is used for the random variables).

The choice of the probability distribution function is crucial since all the stochastic simulations depend on it. The
Maximum Entropy Principle (Shannon, 1948; Jaynes, 1957a; Jaynes, 1957b) has been used to construct the probability
density function of the random variables in a way that only the known information is used. This information is: (1) the
stiffness is always positive, K1 > 0 and K2 > 0, (2) the mean values are known (E{K1} = k1 and E{K2} = k2),
and (3) E{K−2

1 } = c1 < +∞ and E{K−2
2 } = c2 < +∞, so that the response of the system is a second order random
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variable (this means that from the measured displacement and the stiffness the force could be computed, that is the inverse
problem is well posed).

It follows that K1 and K2 are Gamma random variables: K1 ∼ Gamma(k1, δK1) and K2 ∼ Gamma(k2, δK2), where
δK = σK/k is the coefficient of variation and σK is the standard deviation. In terms of probability density functions:

pK1(k1) = 1]0,+∞[(k1)
1
k1

(
1
δ2K1

) 1
δ2
K1 1

Γ
(
1/δ2K1

) (k1

k1

) 1
δ2
K1

−1

exp
(
− k1

δ2K1
k1

)
, (7)

and

pK2(k2) = 1]0,+∞[(k2)
1
k2

(
1
δ2K2

) 1
δ2
K2 1

Γ
(
1/δ2K2

) (k2

k2

) 1
δ2
K2

−1

exp
(
− k2

δ2K2
k2

)
. (8)

which are Gamma probability density functions. Γ(z) =
∫ +∞
0

tz−1e−1dt is the Gamma function defined for z > 0. The
stiffness random matrix has the following form:

[K] =
[
K1 +K2 −K2

−K2 K2

]
, (9)

where the boldface is used to represent a random matrix. The Monte Carlo Method (Rubinstein, 1981) is used to generate
the random variables K1 and K2. The stochastic dynamical equation is written as:(

Û1(ω)
Û2(ω)

)
=
(
−ω2[M ] + iω[C] + [K]

)−1
(
f̂1
0

)
, (10)

and the random frequency response function H is the randomization of h

H(ω) =

∣∣∣∣∣ Û2(ω)

f̂1(ω)

∣∣∣∣∣ . (11)

4. ROBUST DESIGN OPTIMIZATION

Here, we wish to obtain a structural design for which the response is as close as possible to a pre-defined target
performance. Thus, we aim at minimizing the distance between the system response and the target performance. Such
distance d in a deterministic problem would be defined as:

d(s) =
(
p1(s)− t1

t1

)2

+
(
p2(s)− t2

t2

)2

, (12)

where s is the variable design vector s = (k1, k2), t1 and t2 are the target peaks in the frequency bands B1 and B2,
respectively. For i = 1 and 2, pi is the peak given by pi = max (hBi) where hBi is the response of the system in
the frequency band Bi. Thus, d measures how close the performance of the system (peaks p1 and p2) is to the target
performance (peaks t1 and t2). Figure 2 shows a frequency response function with two targets t1 in B1 and t2 in B2.

In the associated stochastic problem the peaks will be random variables P1 and P2 and, consequently, the distance is
also a random variable D. So,

D(s) =
(
P1(s)− t1

t1

)2

+
(
P2(s)− t2

t2

)2

, (13)

where s is the mean value of the variable design vector s = (k1, k2). For i = 1 and 2, Pi is the peak given by Pi =
max (HBi) where HBi is the response of the system in the frequency band Bi. Thus, D has mean E{D} and variance
var{D}.

As already commented, the aim of this paper is to pursue the RDO of a dynamical system, in other words, the system
is optimized taking into account uncertainties. To accomplish this, we propose to minimize some statistical characteristics
of D (Eq.(13)). First, the stochastic optimization problem is posed as:

minimize
s ∈ Cadm

J(s) , (14)

where J is comprised by some statistical characteristics of the distance D and the feasible set is defined by Cadm =
{s = (k1, k2); k1min ≤ k1 ≤ k1max, k2min ≤ k2 ≤ k2max}. To take into account the uncertainties of the parameters,
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Figure 2. Frequency response function with targets t1 and t2.

we propose to minimize simultaneously the mean and the variance of D ending up in a multi-objective optimization
problem similar to what was done in (Zang et al., 2005; Capiez-Lernout and Soize, 2008). The first step to solve the
multi-objective optimization problem is to find the Utopia points by minimizing individually the mean and the variance
as single objective functions. The Utopia points are denoted by E∗ and var∗. Since there are only two objective functions,
they may be combined into a single objective function using the weighted sum method. Therefore, the objective function
becomes:

J(s) = α
E{D(s)}

E∗
+ (1− α)

var{D(s)}
var∗

, (15)

where α ∈ [0, 1] is the weighting factor. Then, J is minimized for different values of α between 0 and 1 in order to
construct the Pareto frontier obtaining trade offs between the two objectives of the problem. The function to be minimized
is non-convex and multimodal as will be shown in the numerical analysis (Section 8). Thus, in order to get good results,
the use of a global optimizer becomes mandatory. The globalized and bounded Nelder-Mead algorithm (Luersen and Le
Riche, 2004) is employed here and it is described in the sequel.

5. OPTIMIZATION ALGORITHM

As the function under analysis is non-convex and multimodal, the utilization of a global optimization algorithm is
required. In this framework, stochastic or hybrid stochastic/deterministic methods are often used. The simplest approach
is a random search, where a new point is randomly generated and examined. It is kept if its performance is better than the
previous iteration, if not it is rejected and the old point is kept. Of course, this procedure leads to a very high computational
cost. Thus, several classes of global optimization algorithms have been developed to perform the search in a more efficient
way. One of them is the coupling of global and local optimization algorithms. For instance, any local optimizer can be
turned into a global one by restarting the search randomly. The Global and Bounded Nelder-Mead (GBNM) optimization
algorithm does it in a interesting way. The restart procedure uses an adaptive probability density constructed using the
memory of past local searches. The algorithm is fully described in Luersen and Le Riche (2004) and Luersen et al. (2004).
Here, the main parts of the algorithm are detailed, especially its probabilistic restart.

The local search of the GBNM is performed by the Nelder-Mead algorithm, which is a classic zero order method that is
based on the comparison of function values at the n+1 vertices of a simplex. Some modifications have been implemented
in the GBNM such as the handling of constraints by penalization, bounds through projection and the degeneracy of the
simplex. The stopping criteria of the local searches are when the simplex is flat, small or degenerated. When one of such
criteria is achieved, the search is restarted, which is described in the sequel.

The probability of having sampled a point s in the GBNM is described by a Gaussian-Parzen-window approach (Duda,
2001):

f(s) =
1
N

N∑
i=1

fi(s) , (16)
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where N is the number of points s(i) already sampled. Such points come from the memory kept from the previous
local searches, being, in the present version of the algorithm, all the starting points and local optima already found. fi(s)
is the normal multidimensional probability density function given by:

fi(s) =
1

(2Π)n/2det(Σ)1/2
× exp

(
−1

2
(s− s(i))

T Σ−1(s− s(i))
)

(17)

where n is the problem dimension and Σ is the covariance matrix:

Σ =

 σ2
1

. . .
σ2

n

 (18)

and variances are estimated by the relation:

σ2
j = β

(
smax

j − smin
j

)2
(19)

where β is a positive parameter that controls the length of the Gaussians, and smax
j and smin

j are the bounds of the jth

variable (j = 1, 2 in our case). To keep the method simple, such variances are kept constant during the optimization.
After every local minimum is found, N points are randomly sampled (s1, s2, . . . , sN ) to restart the next search and the
one that minimizes Eq.(16) is selected. The stopping criterion of the global optimization is the maximum number of
function evaluations nmax defined a priori by the user.

6. NUMERICAL ANALYSIS

In this section some results are discussed. Section 6.1 shows the surface generated by d Eq. (12) considering the
deterministic problem. The convergence of the Monte Carlo simulations to evaluate the mean and variance of D Eq. (13)
are in Section 6.2. In Section 6.3 the robust optimization problem is solved and the results are compared to the ones of
the deterministic optimization.

The data used in the simulations are: m1 = 1.5 kg, m2 = 0.75 kg, c1 = 0.5 N.s/m, c2 = 0.05 N.s/m, 900 ≤ k1 ≤
1100 N/m, 130 ≤ k2 ≤ 170 N/m, t1 = 0.2 m/N, t2 = 0.02 m/N, B1 = [0, 3.5] Hz, B2 = [3.5, 7] Hz, δK1 = 0.025,
δK2 = 0.025. The parameters used in the GBNM are shown in Table 1.

Table 1. Parameters used for the optimization algorithm.

Parameter value
N 10

nmax 5000
simplex size 5

β 0.01

6.1 Surface generated by d

Figure 3 shows an approximation of the surface generated employing Eq.(12) in function of s = (k1, k2).
It is noticed that, for the target chosen, we get a very complicated surface with many local minima. This point must be

emphasized, note that the system considered for the analysis is very simple, nevertheless it turns out that the optimization
problem is non-convex and multimodal.

6.2 Convergence of the stochastic solution

Monte Carlo simulations are employed to compute the mean and variance at each point of the robust optimization.
The typical convergence curves for the estimator of the mean and variance of D are shown in Figures 4 and 5.

In all the numerical experiments, the sample size used is 2000.

6.3 Robust Design Optimization

Before presenting the results of the RDO, a comment has to be made regarding the computational cost of the opti-
mization. As shown in section 6.2, each point evaluated by the GBNM in the RDO requires a sample of 2000 analysis,
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Figure 3. Surface generated by J using D1.

Figure 4. Convergence of the mean.

which costs 85.70 seconds in a Intel Pentium M 1.6GHz processor. Thus, each point in the Pareto frontier (Figure 6) took
approximately 5 days to be computed.

Figure 6 shows the results in the objective space, formed by the normalized values of E{D(s)} versus var{D(s)} for
each α considered. The trade-off between the mean and the variance can clearly be observed.

The results of the robust optimization using different values of α is shown in Table 2. It can be seen that when the
value of α changes, different optimal results are obtained. The higher the α is, the better the mean value of the response
is and the worse the variance of response is. Then, it is up to the designer to choose his prefered trade-off between the
mean and the variance of the response for the structure under analysis.

A good feature of the GBNM algorithm is that it provides several local optima of the optimization problem. Such
feature is explored in Figure 7, where the five best local optima of four different situations are shown: deterministic
problem and robust problems for α = [0.0, 0.5, 1.0]. Note that the bigger symbol of each situation gives the best design
found, except for the deterministic case, where, of course, the response of all the five designs coincide. It can be seen
that when the uncertainties of the system are considered, the optimum design changes, even in the case where only the
mean of the target function is minimized (α = 1.0). To see how different the deterministic and the robust optimization
results are, Table 3 shows the mean and variance values of the five best local minima of the deterministic optimization.
Table 3 shows clearly that the mean and variance of the deterministic optima are much higher than the optimum results of
the robust optimization (Table 2), especially when the variance is considered. One sees then, when the uncertainties are
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Figure 5. Convergence of the variance.

Figure 6. Pareto Front.

not considered, the deterministic optimization results are poor. Moreover, the results show that the robust optimization is
a very useful tool to deal with uncertainties in dynamical systems.

Table 2. Results of the multi-objective optimization.

α E{K1} E{K2} E{D(s)} var{D(s)}
0.00 1096.27 139.72 0.0481 0.2528 ×10−3

0.10 1097.11 140.33 0.0477 0.2690 ×10−3

0.25 1090.04 141.29 0.0441 0.2890 ×10−3

0.50 1094.90 144.81 0.0413 0.2993 ×10−3

0.75 1099.96 151.57 0.0347 0.3648 ×10−3

0.90 1097.04 158.62 0.0328 0.5617 ×10−3

1.00 1100.00 161.64 0.0299 0.5905 ×10−3
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Figure 7. Five best local minima found for the deterministic case and for the RDO with different α values.

Table 3. Mean and variance of the deterministic optima.

E{K1} E{K2} E{D(s)} var{D(s)}
998.08 150.00 0.0458 0.0017
1060.18 164.55 0.0402 0.0012
1066.78 168.56 0.0405 0.0014
910.07 130.52 0.0585 0.0027
1035.36 159.79 0.0443 0.0016

7. CONCLUDING REMARKS

This paper dealt with the target performance optimization of a simple stochastic dynamical system subject to un-
certainties in two parameters. To consider such uncertainties of the system, the parametric approach was used and the
probability density functions were derived using the Maximum Entropy Principle. To take into account the uncertainties
of the dynamical system in the optimization, a multi-objective optimization of some statistical characteristics of a distance
between the response of the system and the target performance was proposed and solved using the weighted sum approach.
The GBNM algorithm was employed in the optimization due to its ability to handle non-convex and multimodal func-
tions. The results showed that: (i) even for a very simple system, the optimization problem can be complicated, (ii) the
GBNM has successfully dealt with the optimization of the stochastic function; (iii) when the uncertainties are considered,
the robust optimum design is different from the deterministic optimization optimum, and (iv) the robust optimization is a
very useful tool to deal with uncertainties in dynamical systems.

8. ACKNOWLEDGEMENTS

The first author is supported by the Programme Alban, the European Union Programme of High Level Scholarships for
Latin America, scholarship no. E07D401224BR. The second and the third authors acknowledge the financial support of
CNPQ, CAPES, and FAPERJ. We thank Marco Antonio Luersen (Universidade Tecnologica Federal do Parana (UTFPR),
Brazil) for the optimization algorithm GBNM.

9. REFERENCES

Beyer H-G. and Sendhoff B., 2007, "Robust optimization - a comprehensive review", Computer Methods in Applied
Mechanics and Engineering, Vol.196, No.33, pp. 3190–3218.

Capiez-Lernout E. and Soize C., 2008, "Robust design optimization in computational mechanics", Journal of Applied
Mechanics, Transactions ASME, Vol.75, No.2, pp. 021001-1–021001-11.

Chen W., Wiecek M.M. and Zhang J., 1999, "Quality utility: a compromise programming approach to robust design",
ASME Jornal of Mechanical Design, Vol.121, No.2, pp. 179–187.

Duda O.R., Hart P.E. and Stork D.G., 2001, Pattern classification, John Wiley and Sons, New York, USA.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Inman D.J., 2007, Engineering Vibration, Prentice-Hall Inc., New Jersey, USA.
Jaynes E., 1957, "Information theory and statistical mechanics", The Physical Review, Vol.106, No.4, pp. 620–630.
Jaynes E., 1957, "Information theory and statistical mechanics II", The Physical Review, Vol.108, pp. 171–190.
Kall P. and Wallace S.W., 1994, "Stochastic Programming", John Wiley and Sons, Chichester, USA.
Luersen M.A. and Riche R., 2004, "Globalized Nelder–Mead method for engineering optimization", Computers and

Structures, Vol.82, No.23-26, pp. 2251–2260.
Luersen M.A., Riche R. and Guyon F., 2004, "A constrained, globalized and bounded Nelder–Mead method for engineer-

ing optimization", Structural and Multidisciplinary Optimization, Vol.27, pp. 43-54.
Phadke M.S., 1989, "Quality engineering using robust design", Prentice-Hall Inc., New Jersey, USA.
Rubinstein R.Y. and Kroese D.P., 2007, Simulation and the Monte Carlo Method (Wiley series in probability and Statis-

tics), John Wiley and Sons, New York, USA.
Shannon C.E., 1948, "A mathematical theory of communication", Bell System Tech. J., Vol.27, pp. 379-423 and 623-659.
Zang C., Friswell M.I. and Mottershead J.E., 2005, "A review of robust optimal design and its application in dynamics",

Computers and Structures, Vol.83, No.4, pp. 315–326.

10. Responsibility notice

The authors are the only responsible for the printed material included in this paper


