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Abstract. This paper presents a numerical investigation using the commercial software Polyflow on the criterion to
classify motions proposed by Thompson (2008) which is based on the dynamics of a material element. This criterion can
be applied to second order tensor fields chosen to describe the relation between material response, forces and kinematics.
In our case, the focus of the investigation will be the deviatoric part of the stress tensor. An aim of this criterion is to
provide a measure of the local instantaneous tendency of the material to persist on stressing the same material line. An
important concept that is used is a decomposition of a tensor into in-phase and out-of-phase parts with respect to a second
tensor. A persistence-of-stressing parameter is calculated using the self-correlation of the convected time derivative that
vanishes the Elastic Strain Measure of the correspondent model. The case to be resolved is the planar contraction flow
of Oldroy-B and PTT fluids with the exponential stress function and with a solvent viscosity ratio equal to 1/9. When
comparing the results for each model, by fixing the Deborah number, we find an increase in the region of persisting of
stressing as the PTT model departs from the Oldroyd-B one.
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1. INTRODUCTION

1.1 Extensional motion

Even with one hundred years of existence, since the work of Trouton (1906), extensional flows are still an intriguing
and challenging subject Petrie (2006b). Extensional rheometry is an experimental task which has not been precisely
addressed (specially for mobile liquids), in contrast to viscometric rheometry. Unfortunately material functions obtained
from viscometric flows cannot be, in general, extended or translated into extensional rheological functions. Although there
are precise definitions of what are the extensional material functions (e.g. Dealy (1995)), it is difficult (if not impossible)
to impose an extensional kinematic to a mobile fluid which is steady in the Lagrangian and Eulerian sense. Difficulties
come mainly from two sources: 1) the walls of an apparatus intended to produce an extensional kinematics “contaminate"
the flow with shear; 2) growth of material lines are exponential in time and there is no room in a common laboratory to
wait for achieving a steady-state flow. Therefore, researchers of extensional field have, until the moment, to be satisfied
with appearent extensional viscosities (James and Walters (1990), Petrie (2006a)). For this reason, experiments on
extensional motion are considered indexers of extensional response, i.e. their measurements can only provide a material
classification order which discriminates which material resists more to a certain flow that is predominantly extensional.
Experiments which are considered to have a strong extensional character are: fiber spinning, contraction and convergent
flows, flow in opposed nozzle device, four-roll mill apparatus and filament stretching.

In addition to what was discussed above is the fact that extensional flows constitute a broader class of motions,
comparing to viscometric ones (Thompson and Souza Mendes (2005)), since, depending on the kind of extensional flow
the material is submitted, the response can be different. In fact there are an infinity of different kinds of extensional flows.
Attention of researchers is, however, dedicated to the three main representative extensional motions, namely, uniaxial,
biaxial and planar extension. However, since extensional flows appeared as a concept (Trouton (1906)), till nowadays
(e.g. McKinley and Sridhar (2002)), uniaxial extension has received the great part of efforts on extensional rheometry and
the technique of filament-stretching seems to be the most reliable.

Since obtaining a truly extensional motion is an intrinsical challenge for general materials, and it would be interesting
to know how these materials react when submitted to this kind of motion, Pountney and Walters (1978) and Huilgol (1979)
defined, independently, the concept of nearly extensional flow and analyzed the stress response of incompressible simple
fluid undergoing a motion which is resulted from a perturbation of an uniaxial-extensional strain history. In their analysis
they determined the non-zero linear functionals, interrelations among the components of the functional and the relations
with uniaxial extensional viscosity. A different approach was considered by Astarita (1979) and Thompson and Souza
Mendes (2005), (2007), who have developed criteria to be applied to motions in order to measure how close they are
from an extensional flow.

As discussed above, it is not an easy task to produce steady extensional motions. Therefore, one can conclude that
what is needed to be known about materials is how they react when submitted to transient extensional flows.

In this connection Coleman (1968) defined a “motion of extension" of a particle X by the following: “the history of
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X up to time t has been an extension if there is (at least) one orthonormal basis eui independent of s, such
that the matrix of the components of Ut(t− s) with respect to eui has the form

[U t(t− s)] =

 λU1 (t− s) 0 0
0 λU2 (t− s) 0
0 0 λU3 (t− s)

 (1)

for all s, 0 ≤ s <∞. Where Ut(t−s) is the Right-relative-stretch tensor defined by Ut(t−s) =
√

FTt (t− s)Ft(t− s) =√
Ct(t− s). Ft(t−s) is the Relative-deformation-gradient tensor. Coleman (1968) also concluded that the Left-relative-

stretch tensor, Vt(t−s), and Ct(t−s) have also null off-diagonal components in this basis, i.e. share the same eigenvec-
tors. A direct consequence of this definition is that all R-E tensors share the same eigenvectors with Ct(τ) and therefore,
commute with each other.

Analyzing a simple fluid undergoing that motion, Coleman (1968) also proved that the stress tensor S(t) share the
same proper directions or

[
SUt(t)

]
=

 λS1 (t) 0 0
0 λS2 (t) 0
0 0 λS3 (t)

 (2)

In Thompson (2008), some kinematic concepts like MWCRPSH, extensional motion, and persistence of straining
tensor were adapted to a dynamic framework. Then, a criterion based on the dynamics of a material was developed to
classify motions. Although the criterion can be applied to any second order tensor fields, Γ, chosen to describe the relation
between material response, forces and kinematics, in the present work we are concerned with the deviatoric part of the
stress tensor. In this case, the present criterion intends to provide a measure of the local instantaneous tendency of the
material to persist on stressing the same material line. The present criterion encompasses a large variety of materials
including ones with no explicit constitutive equations, since it only needs the fields of tensor Γ and velocity vector to
calculate the scalar field of the measurer considered. In order to construct the present criterion two important concepts
introduced in Thompson (2008) are used. The first is a decomposition of a tensor into in-phase and out-of-phase parts
with respect to a second tensor. And the second is the T -natural convected time derivative, DT ()

Dt . This operator, which
can be applied to any second order tensor, is a time derivative measured from a frame attached to the eigenvectors of the
symmetric part, T S , of a second order tensor T .

2. DYNAMICALLY PERSISTENT MOTIONS

There are interesting consequences on considering a finite interval [t0, t] where an extensional kinematics holds for
a material element. First, this is a more realistic approach, since in a laboratory we cannot subject a material to an
extensional motion since ever. Another worth noticing fact, when we consider that the motion of particle X is not an
extensional motion for τ ∈ (−∞, t0)∪ (t,∞), is related to other dynamic evolution of this material element, as measured
by stress for example. If we assume that a certain material, is undergoing such a motion we would have to consider that
the stress tensor (a non-kinematic quantity) is not given, in general, by an equation like Eq.(2) for the same interval [t0, t].

For the purpose of analyzing this kind of situation, let us define a Common Transient Towards Extension Process.
Definition 4.1: A Common Transient Towards Extension Process is a process which, at time tE0 , starts in a situation

where the eigenvectors of the symmetric part of the velocity gradient, D, and the eigenvectors of the stress tensor, S, are
not aligned; evolves in time monotonically to a situation, at time tE1 , where D and S are coaxial; and stays in this last
situation for a finite interval of time, till tE2 .

In a mathematical form, Def.(4.1), can be given as

d

dτ

∥∥∥Ξ̃ [D,S]
∥∥∥ < 0, τ ∈ [tE0 , t

E
1 )∥∥∥Ξ̃ [D,S]

∥∥∥ = 0, τ = tE1

d

dτ

∥∥∥Ξ̃ [D,S]
∥∥∥ = 0, τ ∈ (tE1 , t

E
2 ] (3)

It is worth noticing that during the stage where τ ∈ [tE1 , t
E
2 ] the material element that is undergoing a Common

Transient Towards Extension Process is not necessarily experiencing a steady motion from a Lagrangian point-of-view.
Since the eigenvalues of D or S can change in this interval of time, this process for τ ∈ [tE1 , t

E
2 ] is Lagrangian-steady only

through the perspective of the eigenvectors of these tensors (D, S and others related to the history). Hence, concerning the
problem cited above in which the material starts an extensional motion at τ = t0 = tE0 there is a time-lag, ∆tstress = tE1 −
tE0 in which stresses accommodate and, eventually, reach the state of Eq.(2). Said differently, for τ ∈ [t0, t0 + ∆tstress],
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the material element keeps a memory of its history previous to time t0, and, the stress tensor still carries this information
even when the strain history does not. The material, therefore, starts a process of stress relaxation at the directions which
are orthogonal to the attractor eigendirections of rate-of-strain, eventually vanishing, therefore, these stress components.
This implies that during ∆tstress if we compute stresses only, we would not know that the material is undergoing an
extensional motion. Moreover, if ∆tstress > t − t0, it is possible that the stress tensor never reaches a state where it
commutes with that extensional strain history. The time lag ∆tstress is a function of the material (relaxation time), but
is also dependent on the previous history (τ < t0), the higher is the distance between Ct(τ)τ<t0 and Ct(τ)τ∈[t0,t], the
higher is ∆tstress.

A situation that could lead to out-of-phase stress-strain evolution, in contrast to Eqs.(1) and (2), even for a time interval
of extensional motion greater then ∆tstress is if we consider, for example, anisotropic fluids. If the orientation director
of a nematic, for example, that is exposed to an aligning magnetic field, is not coincident to any proper strain direction,
an extensional motion would not guarantee stress persistent evolution of the material elements of the fluid considered. In
this case, the material considered subjected to the external forces considered cannot undergo a Common Transient Toward
Extension Process.

Another situation where this can occur is if we consider a plastic deformation which leads to residual stresses at the
material that remain when the deformation is reversed. In this case, stresses cannot relax completely in the orthogonal
directions of a new motion.

The next step to be developed is to define a dynamically persistent evolution in time (τ , t0 ≤ τ ≤ t) of a material
element in a general framework. For this purpose it is necessary to use a history measurer of this material element.

Below we define a dynamically persistent motion of a material element using the generic relative dynamic history,
Jt(τ). For the reasons discussed previously, we require that Γ0 ≡ Γ 6= 1 and Jt(τ) is once differentiable1.

Definition 4.2: A particle X experiences a dynamically persistent motion from the point-of view of a chosen
relative dynamic history, Jt(τ) between times t0 and t if there is (at least) one orthonormal basis eJt

i independent

of τ , such that the matrix of the components of Jt(τ) with respect to eJt
i has the form

[Jt(τ)] =

 λJt
1 (τ) 0 0
0 λJt

2 (τ) 0
0 0 λJt

3 (τ)

 (4)

for all τ , t0 ≤ τ ≤ t. A direct consequence of this definition is that the Generic-Convected-Dynamic tensors, defined by
Eq.(??), share the same eigenvectors as Jt(τ) and therefore, commute with each other. In other words, these tensors are
coaxial. For a dynamically persistent motion it is necessary and sufficient that{

∀τ, τ ∈ [t0, t], Ξ̃
[
Jt(τ),

dJt(τ)
dτ

]
= 0

}
(5)

The special case of the rate-of-strain measure Ht(τ) is recovered for Γ = A1 and the history being the covariant one,
Jt(τ) ≡ Jcovt (τ).

The above definition gives a logic structure, inside the paradigm that force is cause and kinematics is consequence,
to address the dual problem of the one presented at the beginning of this section, by identifying Jt(τ) as a stress history.
Hence, we can think of a common transient toward extension process through which a material element is undergoing,
that, at time tE0 , starts being stress persistent, or, equivalently, at time tE0 starts an stress evolution that can be represented
by Eq.(4). If we assume that previously to time tE0 this material element was not undergoing an extensional motion, at
time tE0 the strain history will not begin to evolve as in Eq.(1). Analogously to its dual case, it will take a finite time,
∆tstrain, for stress and strain to equalize their eigenvectors and complete the common transient toward extension process.
During this interval time, information about the history of the material previous to time t0 is stored (available) in a relative
strain tensor. During ∆tstrain, there is a process of reverse deformation in which the material gradually stops to deform
in the directions orthogonal to the stress eigendirections. If the material will undergo a general extensional motion or a
EMWCRPSH, depends on the existence of a fixed triad of eigenvalues attractor (besides the triad of eigenvectors attractor)
, which in the case of viscoelastic materials is given by the condition of a vanishing natural time derivative of stress.

As it was done when we considered the kinematic quantity Ht(τ), we are able to give a definition of a local instan-
taneous persistent dynamic evolution. This happens when the tendency of the dynamic history as measured by Jt(τ), in
a vicinity of arbitrarily small s = t − τ is to maintain its orthonormal eigenvectors. So, we can define an instantaneous
dynamically persistent motion as

Definition 4.3: A local instantaneous dynamically persistent evolution at time t of a particle X occurs when
the orthonormal eigenvector basis of Jt(τ) and its derivative relative to τ , d

dτ Jt(τ), are the same when τ is,

1The case where one identifies the identity tensor as the special dynamic tensor at the present time to Γ = 1 can be treated in a similar way as done
with the strain history Ct(τ), i.e. requiring that the history is twice differentiable and working with the first and second derivatives.
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arbitrarily close to t.

lim
τ→t

Ξ̃
[
Jt(τ),

d

dτ
Jt(τ)

]
= 0 (6)

And the corollary analogous to Corollary 3.1 is given by
Corollary 4.1: A particle X at time t experiences a local instantaneous dynamically persistent evolution if

and only if Γ and Γ1 commute.
And the theorem that can be proven by the same procedure as Theorem 3.1, is stated as follows
Theorem 4.1: A motion between times t0 and t of a particle X is dynamically persistent if and only if this

particle X experiences a local instantaneous dynamically persistent motion at every instant of time which
belongs to the that finite interval [t0, t].

3. PROBLEM FORMULATION AND NUMERICAL IMPLEMENTATION

3.1 Conservation equations

The velocity and pressure fields are defined by the governing equations that impose conservation of mass and mo-
mentum for an incompressible fluid, together with the appropriate boundary conditions. In the present work, the main
hypothesis considering the flow conditions are

1. The fluid is incompressible.

2. Steady-state laminar regime.

3. Body forces are conservative.

4. Isothermal flow.

With these hypothesis, the conservation of mass is given by

1
r

∂

∂r
(rv) +

∂u

∂r
= 0, (7)

while the conservation of momentum is given by

ρ

(
u
∂u

∂x
+ v

∂u

∂r

)
=

1
r

∂

∂r
(rTxr) +

∂

∂x
(Txx) (8)

ρ

(
u
∂v

∂x
+ v

∂v

∂r

)
=

1
r

∂

∂r
(rTrr)−

Tθθ
r

+
∂

∂x
(Trx) = 0 (9)

Where u and v are respectively the axial and radial components of the velocity field u and the quantities Txx, Txr,
Trx, Trr and Tθθ are the components of the stress tensor T.

3.2 Constitutive equations

In order to close the set of unknowns and equations given by Eqs. (7), (8), and (9), addition equations are needed.
Generally they come from an assumption on the behavior of the material when it is subjected to a certain state of stress.
This constitutive equation is, therefore, a relation between the stress tensor T and kinematics. In the present work, we two
viscoelastic materials models: Oldroyd-B and Phan-Thien-Tanner. The two models are based in a split of the extra-stress
part of the stress into a solvent and a polymeric contributions as

T = −p1 + 2ηsD + τ p (10)

where p is the pressure, ηs is the solvent viscosity, D ≡ 0.5
(
∇v +∇Tv

)
is the symmetric part of the velocity gradient,

and τ p is the stress that comes from the polymeric molecules. In the Oldroyd-B fluid the evolution of τ p is given by

τ p + λ
O
τ p = 2ηpD (11)

where
O
τ p denotes the contravariant convected time derivative of τ p.

while in the PTT model the evolution of τ p is given by

f(trτ p)τ p + λ
O
τ p + ξ (τ p ·D + D · τ p) = 2ηpD (12)
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where tr denotes the trace operator, ξ is a parameter related to the slipage of the polymeric network. Depending on this
parameter, different convected time derivatives are obtained (the whole spectrum of the Gordon-Schowalter convected
time derivative). The function of the trace f(trτ p) can be given by two expressions

f(trτ p) = exp
(
ελ

η
trτ p

)
(13)

or

f(trτ p) = 1 +
ελ

η
trτ p (14)

In the present work, all the PTT results were obtained with ξ = 0 and the exponential version of f(trτ p) given by
Eq.(13)

3.3 Abrupt contraction

In order to measure the persistence of stressing a planar 4:1 abrupt contraction was considered. The boundary condi-
tions for this problem are

1. fully-developed flow at the inlet and outlet.

2. no-slip condition at the wall.

3. symmetry at the middle plane.

3.4 Solution of the equation system by Galerkin / Finite Element Methods

The commercial software Polyflow 3.11.0 is used to solve the differential equations that govern the problem. They are
solved in a coupled manner by the Galerkin/Finite Element Method. Biquadratic basis functions φj are used to represent
the velocity and nodal coordinates, while linear discontinuous functions χj are employed to expand the pressure field.
The velocity and pressure are represented in terms of appropriate basis functions

u =
n∑
j=1

Ujφj ; v =
n∑
j=1

Vjφj ; p =
m∑
j=1

Pjχj ;

(15)

The coefficients of the expansions are the unknown of the problem

c =
[
Uj Vj Pj

]T
The corresponding weighted residuals of the Galerkin method related to conservation of momentum, mass and mesh

generation are:

Ric =
∫

Ω̄

[
1
r

∂

∂r
(rv) +

∂u

∂x

]
χir||J ||dΩ̄ (16)

Rimx =
∫

Ω̄

[
∂φi
∂x

T(xx) +
∂φi
∂r

T(xr)

]
r||J ||dΩ̄

−
∫

Γ̄

ex · (n ·T)φir
dΓ
dΓ̄
dΓ̄ (17)

Rimr =
∫

Ω̄

[
∂φi
∂x

T(xr) +
∂φi
∂r

T(rr) +
φ

r
T(θθ)

]
r||J ||dΩ̄

−
∫

Γ̄

er · (n ·T)φir
dΓ
dΓ̄
dΓ̄ (18)
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3.5 Solution of the non-linear system of algebraic equation by Newton’s Method

As indicated above, the system of partial differential equations, and boundary conditions is reduced to a set of simul-
taneous algebraic equations for the coefficients of the basis functions of all the fields. This set is non-linear and sparse. It
is solved by Newton’s method. The linear system of equations at each Newton iteration was solved using a frontal solver.

4. RESULTS

4.1 Newtonian

Figures 1, 2, 3, and 4 the persistence of straining and persistence of stressing of the Newtonian case.

Figure 1. Persistence of straining with a contravariant measurer.

Figure 2. Persistence of straining with a covariant measurer.

Figure 3. Persistence of stressing with a contravariant measurer.
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Figure 4. Persistence of stressing with a covariant measurer.

4.2 Oldroyd-B

Figures 5, 6, 7, and 8 the persistence of straining and persistence of stressing of the Oldroyd-B case for a value of the
Deborah number De = 2.

Figure 5. Persistence of straining with a contravariant measurer.

Figure 6. Persistence of straining with a covariant measurer.

4.3 PTT

Figures 9, 10, 11, and 12 the persistence of straining and persistence of stressing of the PTT case for a value of the
Deborah number De = 2.

4.4 Discussion
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Figure 7. Persistence of stressing with a contravariant measurer.

Figure 8. Persistence of stressing with a covariant measurer.

Figure 9. Persistence of straining with a contravariant measurer.

From our study realized there was a region of red near the contraction means that there the fluid persists in pulled or
extended depending on the type of analysis that is being made. We note that the region near the wall we have the green
that mean that there is occurring the shear of the fluid and blue next to the center of the vortex where we have the motion
of rigid body.

We can see that for the Newtonian case as expected the kinematic and dynamic fields were equal. This occurs because
the stress tensor is simply proportional to the rate of deformation tensor in the fluid constitutive equation, ie the eigen-
vectors are the same for these two tensors for a given position in the field. In other words the same result shows us that
whatever study by a kinematic or dynamic vision the tendency of movement to continues is the same for the Newtonian
case.

There is a green area within the region in red for all kinematic results, ie independent of the model or that are derived
used this region always appears, which does not occur in any of the dynamic results. The results of kinematic Oldroyd
B and PTT models are similar but not identical. At the end of the red region for the case of De iqual to 2 realize a more
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Figure 10. Persistence of straining with a covariant measurer.

Figure 11. Persistence of stressing with a contravariant measurer.

Figure 12. Persistence of stressing with a covariant measurer.

curve to the PTT case.
About the size of vortex realize that the Newtonian vortex does not reach the contraction, ie the size of the vortex

Newtonian is smaller than models of PTT and OldroydB. In the case of model OldroydB near the lower pipe have the
appearance of the second vortex.

Now for the case of the dynamic results we noticed that the region is where the traction is lower for the case of the
PTT to OldroydB.

5. FINAL REMARKS

This is a preliminary work on the subject and therefore we still have to investigate other conditions/geometry to have
a picture of the classification. The persistence of stressing can be a measure that gives important information of the flow
as compared to the persisitence of straining. However, for this to appear in a more pronounced manner, we should go to
higher Deborah numbers.
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