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Abstract. This paper presents a regularization technique suited to the inverse problem associated with the reconstruc-
tion of the internal convection coefficient from external temperature measurements. More precisely, the error function
between measured and model temperatures, obtained from a prospective convection coefficient, is minimized by applying
the Newton. The Truncated Singular Value Decomposition (TSVD) is used to regularize the corresponding hessian ma-
trix. Numerical simulations were conducted for three different test cases and three different randomly perturbed initial
guesses in order to validate our proposal. Results confirm that the reconstructed convection coefficient can be effectively
reconstructed.

Keywords:Inverse problem, convection coefficient, singular value decomposition, thermal tomography, regularization

1. INTRODUCTION

Industrial process tomography is a technique used to determine the internal properties of an object through non-
intrusive external measurements. The main application of thermal tomography is to the mapping of imperfections (fouling,
cracks, voids, etc.) in solid materials. Another important application is in the measurement of thermophysical properties in
processes involving fluids. It is the case of flowmeters of thermal principle, in which the velocity of the flow is determined
by the measurement of the convection coefficient. The principle of thermal tomography operation is usually based on
the application of a heat flux at the external boundary of the process or object and on the measurement of the response
temperatures at that same boundary.

Among the main advantages of thermal tomography are its low cost and robustness, which make it extremely inter-
esting for industrial applications. However, in the current theoretical framework, the obtained results are associated with
large errors. More specifically, thermal tomography is currently capable of producing qualitative internal images of a
medium or material.

These difficulties arise from non-linearities and the intrinsic ill-conditioned nature of the inverse problem, which
makes it extremely sensitive to the presence of errors.

The construction of an image from signals with the aid of tomographic techniques generally involves solving an inverse
problem. A thermal problem is described by a differential equation that governs the temperature inside the domain, and
by adequate boundary conditions, which simulate the excitation and measurement process. In the inverse problem studied
in this paper, we assume that no access is granted to the surface where the convection coefficient distribution is to be
determined. This lack of information will be bridged by introducing supplementary data measured at the accessible
boundary of the problem. An error functional, whose minimization corresponds to the sought solution (Borcea, 2003),
(Özisik and Orlande, 2000) is defined.

There are several practical situations in which the convection coefficient can not be determined by direct measure-
ments. Thus, the interest in the development of a technique capable of producing good estimates of the convection
coefficient from non-intrusive measurements becomes obvious. The objective of this work is to present a new regulariza-
tion method suited for the solution of the inverse problem that arises when the convection coefficient is to be reconstructed
from external temperature measurements obtained in response to an excitation heat flux. According to a functional formu-
lation, the intrinsic ill-conditioned nature of the inverse problem appears in the hessian matrix associated with the Newton
or a Newton-like optimization strategy used to refine approximations of the convection coefficient. Our proposition is the
obtaining of a pseudo-inverse of the hessian matrix by truncating its singular value decomposition in order to eliminate
the problematic directions. Results have confirmed that this approach is feasible and allows a satisfactory reconstruction
of the convection coefficient.
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2. STATEMENT OF THE PROBLEM

Let θ andT be thermal potentials andk the thermal conductivity of the medium. The ambient temperature isT∞ and,
thus,θ = T − T∞. Denoting the domain of the problem byΩ, the heat conduction equation is written as

−→∇ · (−k
−→∇θ) = 0 in Ω. (1)

The interaction betweenΩ and the exterior occurs through the boundary∂Ω and is defined by relationships between
thermal excitation and response. Consider the following mixed boundary condition, i.e., the coupling between conduction
and heat convection

−k
∂θ

∂n
= hθ + q in ∂Ω, (2)

wheren is the normal vector,h is the convection coefficient andq is the heat flux imposed at the boundary. If all
the parameters of equations (1)–(2) were known, a mathematically well-posed problem would be constituted, which
could solved by conventional numerical techniques. However, this is not the case in thermal tomography; one or more
parameters are unknown in parts of the boundary. The strategy for the solution consists in palliating this information
deficiency through the measurement of redundant boundary conditions at the accessible parts of the boundary.

The finite element method was chosen to discretize the problem equations from the following residual equation based
on a convenient weight function (v) (Becker, Carey and Oden, 1981)

∫

Ω

k
−→∇θ · −→∇v dx dy +

∫

∂Ω2

[hθ + q]v ds = 0. (3)

Our approach to solve the inverse problem associated with the reconstruction of the convection coefficient from boun-
dary data is based on an error functional assessing the difference between measured and model temperatures.

Assuming a prospective distribution of h (hnum), the set of equations (1)–(2) is used to simulate the problem, returning
Tnum. In this work, instead of taking the experimental measurements, they are simulated through the same set of equations
(1)–(2), however solved for a reference convection coefficienthactual, and havingTactual as the result.

Thus, two different models were considered: one corresponding to the experimental assembly itself (actual or ana-
logical model) and the other corresponding to the numerical implementation of equations (1)–(2) on a digital computer
(mathematical-numerical model) (Rolnik and Seleghim Jr., 2006). The error functional can be written as follows

e(hnum) = ‖Tactual − Tnum‖, (4)

where temperaturesTactual andTnum refer only to the accessible region of the boundary where measurements can be
accomplished. In Eq. (4), the euclidian norm is usually adopted, that is,

e(hnum) =
√∑

(Tactual − Tnum)2. (5)

3. OPTIMIZATION ALGORITHM AND REGULARIZATION STRATEGY

The correct convection coefficient distribution can be found by an optimization method that produces successive
correctionsdk to prospective solutionshk minimizing the error function given by Eq. (5). In mathematical terms, this can
be expressed as (Colaço, Orlande and Dulikravich, 2006; Nocedal and Wright, 1999)

hk+1 = hk + λk dk, (6)

whereλk is the search step size,dk is the direction of descent andk is the iteration number. The graphs ofhk or
its statistical moments over the iterations correspond to the here called convergence trajectories and reveal extremely
important aspects about the ill-conditioned nature of the problem.

The majority of the deterministic optimization methods can be described by Eq. (6), and they differ from each other
by the form of calculating the descent direction. For instance, in the Steepest Descent method (Nocedal and Wright,
1999), which is a gradient-based method,dk are corrections along the gradient of the error function which corresponds to
downward movements along the steepest descent. Therefore, the direction of the descent is given by

dk = −−→∇e(hk), (7)

where
−→∇e corresponds to the vector gradient associated with the error surface and calculated at thek-th iteration.

The main characteristic of this method is the capacity to converge for the solution even if the initial guess is distant
from the global minimum. An important disadvantage is the easiness with which convergence trajectory is trapped by
local minima.
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A very powerful optimization technique is the Newton method (Nocedal and Wright, 1999), which in addition to using
first-order derivative of the error functional, such as the Steepest Descent and the Conjugate Gradient methods, also uses
information of the second derivative in order to achieve a faster convergence rate. Therefore, in this method the corrections
are given by

dk = −H(hk)−1−→∇e(hk), (8)

whereH is the Hessian matrix containing the second-order derivatives of the error functional in relation to the local values
of the convection coefficient

Hi,j =
∂2e

∂hi∂hj
. (9)

Although the convergence rate of the Newton method is quadratic, the calculation of the Hessian matrix is compu-
tationally expensive. As a result, other methods that approximate the Hessian matrix with simpler and faster computing
forms have been developed. In this work, the finite difference method was adopted to calculate the Hessian matrix, with
derivatives approximated by standard second-order central differences.

In brief, the sequence that hypothetically leads to the solution (global minimum) is the following:

hk+1 = hk − λ · 4hk = hk − λ ·H(hk)−1−→∇e(hk), (10)

where4h are corrections in vectorh.
This method is very powerful and straightforward if the Hessian matrix associated with the optimization problem is

well behaved. Since the problem we are dealing with is inverse and, therefore, intrinsically ill-conditioned,H is expected
to be problematic in some sense. More precisely, corrections4hk in Eq. (10), which are obtained by solving the Hessian-
gradient problem, may lead to an erratic convergence trajectory.

The Newton method obtains a quadratic convergence rate, however it may fail to converge depending on whether
the initial guess is outside of the convergence attraction region (region next the maximum/minimum) or due to the ill-
conditioning of the Hessian matrix.

Considering that the error functional was not regularized by the application of some specific techniques, as the
Tikhonov method for instance, some equivalent procedure must be applied to the Hessian matrix. The Singular Value
Decomposition was adopted in this work to obtain a pseudo-inverse of the Hessian matrix with a better conditioning
number: the eigenvectors corresponding to singular or near singular eigenvalues of H are truncated (TSVD). In rough,
this corresponds to throwing away sets of equations that are nearly linear-dependent or corrupted by round off errors and,
thus, solving Eq. (10) in an average sense. These problematic equations attract the solution to the null space associated
with H and, consequently, result in increasingly larger correctionsdk towards infinity.

4. NUMERICAL SIMULATIONS AND RESULTS

Numerical simulations were conducted for three different test cases and three different randomly perturbed initial
guesses in order to validate our proposal. The exact simulation conditions and the corresponding results will be shown in
the sequel.

4.1 Test Cases

Consider a two-dimensional domain, that is, a square of unitary sides withk = 1 in the whole domain and the other
boundary condition parameters according to Fig. 1. The governing equation (1), in Cartesian coordinates, was discretized
by the finite element method. The domain was discretized in a computational mesh of31 × 31 points, generating961
nodes equally spaced (δx = δy = 0.033) and1800 linear triangular elements. Both the temperature variation and the
thermal conductivity were assumed linear inside the elements.

The reference problem, which mimics the actual experimental test, was defined by setting a reference convection
coefficient distribution (hactual) at the inferior side of the domain (y = 0). More specifically, by fixinghactual, reference
temperatures are obtained on the accessible boundary of the domain (y = 1), which would be measured in response
to the application of the reference heat flux. As the error (4) decreased during the optimization process, the obtained
temperatures of the numerical model converged to the reference problem temperatures and, supposedly,hnum converged
to hactual.

Three different distributions of h defined three different test cases in which the first one the actual convection coefficient
was adopted as a constant function, that is,hactual = 5. In the second test, a cosinusoidal convection coefficient was
adopted ashactual = 1 + cos(2πx) and in the last test, a triangular convection coefficient was adopted:

hactual =
{

2− 2(x/15), x ≤ 15;
−2 + 2(x/15), x > 15.
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Figure 1. Configuration of the problem simulated numerically.

4.2 Hessian Matrix Conditioning and Thresholding Criterion

The singular value decomposition (SVD) is based on the matrix factorization. One of the advantages of SVD is the
order reduction of the problem through the elimination of eigenvalues very small (Press et al., 1992).

The Hessian matrix can be written as the product of an orthogonal matrixUm,n, a diagonal matrixWn,n with positive
or zero elements (the singular values), and the transpose of an orthogonal matrixVn,n, i.e.,

H = U [diag(wj)]V T . (11)

The inverses of these matrices are trivial to compute:U andV are orthogonal, so their inverses are equal to their
transposes, i.e.,U−1 = UT andV −1 = V T ; W is diagonal, so its inverse is the diagonal matrix whose elements are the
reciprocals of the elementswj . From Eq. (11) it follows immediately that the inverse ofH is

H−1 = V [diag(1/wj)]UT . (12)

This construction may contain singularities if one of the values ofwj ’s to be zero or (numerically) for it to be so small
that its value is dominated by roundoff error and therefore unknowable. If more than one of thewj ’s have this problem,
then the matrix is even more singular.

This is shown in the following figure where the eigenvalues of the Hessian matrix were calculated at a pathological
and a regular region of the optimization surface. The ideal thresholding limits for the cases simulated in this work were
determined by trial and error.

Figure 2. Eigenvalues spectrum of the Hessian matrix for two different regions on the optimization surface (blue dots
correspond to a pathological region, orange dots correspond to a regular region).



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

4.3 Convergence Trajectories

As previously mentioned, since the inverse problem is intrinsically ill-conditioned, the corresponding optimization
problem is pathological. This can be shown by simulating the convergence trajectory on the error surfaces, whose two-
dimensional versions were analyzed in (Brandi and Seleghim Jr, 2008) and (Rolnik and Seleghim Jr., 2006). More
specifically, starting from perturbations ofhactual in Eq. (4), the sequence given by Newton’s recurrence formula (10)
should converge monotonically if the error surface were concave. As shown in (Brandi and Seleghim Jr, 2008) our
optimization surfaces are pathological, that is, they contain structures such as narrow valleys, multiple local minima,
plateaus, etc., and, consequently, the corresponding convergence trajectories are expected to be erratic.

For each case studied we will construct three convergence trajectories by starting from progressively more perturbed
versions ofhactual given by the formulahinicial = hactual + δ, whereδ corresponds to a uniform random perturbation
vector centered around zero, and a standard deviation previously set. This ensures that the inicial guess in Eq. (10) is
taken progressively more distant from the correct solutionhactual.

In the first case,hactual is constant and equal to5 and the perturbations are set according to the following formulas

h = 5 +





δ ∈ [−5.0,+5.0], case 1.1;
δ ∈ [−2.0,+2.0], case 1.2;
δ ∈ [−0.15,+0.15], case 1.3.

(13)
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Figure 3. Initial guesses and real solution of the convection coefficient.

In the second case,hactual is a cosinusoidal function and the perturbations are set according to the following formulas

h = 1 + cos(2πx) +





δ ∈ [−2.0, +2.0], case 2.1;
δ ∈ [−1.0, +1.0], case 2.2;
δ ∈ [−0.5, +0.5], case 2.3.

(14)
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Figure 4. Initial guesses and real solution of the convection coefficient.
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In the third casehactual is a triangular function and the perturbations are set according to the following formulas

h =
{

2− 2(x/15), x ≤ 15
−2 + 2(x/15), x > 15

}
+





δ ∈ [−2.0, +2.0], case 3.1;
δ ∈ [−1.0, +1.0], case 3.2;
δ ∈ [−0.5, +0.5], case 3.3.

(15)
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Figure 5. Initial guesses and real solution of the convection coefficient.
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Figure 6. Convergence trajectories corresponding to Eq. (13) using the Newton method (case 1.1=(a), case 1.2=(c), case
1.3=(e)) and using the Newton method with TSVD (case 1.1=(b), case 1.2=(d), case 1.3=(f)).
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(a) (b)
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Figure 7. Convergence trajectories corresponding to Eq. (14) using the Newton method (case 2.1=(a), case 2.2=(c), case
2.3=(e)) and using the Newton method with TSVD (case 2.1=(b), case 2.2=(d), case 2.3=(f)).

The resulting convergence trajectories are shown in Figs. 6, 7 and 8. As expected, the proposed technique based on
applying the TSVD method to the Hessian matrix of the Newton optimization algorithm was capable of overcoming the
convergence problems associated with the intrinsic ill-conditioned nature of the inverse problem considered in this work.
In other words, several pathologies of the optimization surface were virtually eliminated which stabilized the convergence
trajectory in a way that the global minimum could be attained in a reasonable computational time.
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Figure 8. Convergence trajectories corresponding to Eq. (15) using the Newton method (case 3.1=(a), case 3.2=(c), case
3.3=(e)) and using the Newton method with TSVD (case 3.1=(b), case 3.2=(d), case 3.3=(f)) .

5. CONCLUSIONS

In this paper the minimization of the error function was based on Newton’s method, where the inverse of the Hessian
matrix can be replaced by a pseudo-inverse built to come from the technique of TSVD associated with the reconstruction of
the internal convection coefficient from external temperature measurements. Three different test cases and three different
randomly perturbed initial guesses were analyzed. Results have confirmed that this approach is feasible and allows a
satisfactory reconstruction of the convection coefficient.
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